To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / any / include / boost / math / distributions / bernoulli.hpp @ 160:cff480c41f97
History | View | Annotate | Download (12.2 KB)
| 1 |
// boost\math\distributions\bernoulli.hpp
|
|---|---|
| 2 |
|
| 3 |
// Copyright John Maddock 2006.
|
| 4 |
// Copyright Paul A. Bristow 2007.
|
| 5 |
|
| 6 |
// Use, modification and distribution are subject to the
|
| 7 |
// Boost Software License, Version 1.0.
|
| 8 |
// (See accompanying file LICENSE_1_0.txt
|
| 9 |
// or copy at http://www.boost.org/LICENSE_1_0.txt)
|
| 10 |
|
| 11 |
// http://en.wikipedia.org/wiki/bernoulli_distribution
|
| 12 |
// http://mathworld.wolfram.com/BernoulliDistribution.html
|
| 13 |
|
| 14 |
// bernoulli distribution is the discrete probability distribution of
|
| 15 |
// the number (k) of successes, in a single Bernoulli trials.
|
| 16 |
// It is a version of the binomial distribution when n = 1.
|
| 17 |
|
| 18 |
// But note that the bernoulli distribution
|
| 19 |
// (like others including the poisson, binomial & negative binomial)
|
| 20 |
// is strictly defined as a discrete function: only integral values of k are envisaged.
|
| 21 |
// However because of the method of calculation using a continuous gamma function,
|
| 22 |
// it is convenient to treat it as if a continous function,
|
| 23 |
// and permit non-integral values of k.
|
| 24 |
// To enforce the strict mathematical model, users should use floor or ceil functions
|
| 25 |
// on k outside this function to ensure that k is integral.
|
| 26 |
|
| 27 |
#ifndef BOOST_MATH_SPECIAL_BERNOULLI_HPP
|
| 28 |
#define BOOST_MATH_SPECIAL_BERNOULLI_HPP
|
| 29 |
|
| 30 |
#include <boost/math/distributions/fwd.hpp> |
| 31 |
#include <boost/math/tools/config.hpp> |
| 32 |
#include <boost/math/distributions/complement.hpp> // complements |
| 33 |
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks |
| 34 |
#include <boost/math/special_functions/fpclassify.hpp> // isnan. |
| 35 |
|
| 36 |
#include <utility> |
| 37 |
|
| 38 |
namespace boost
|
| 39 |
{
|
| 40 |
namespace math
|
| 41 |
{
|
| 42 |
namespace bernoulli_detail
|
| 43 |
{
|
| 44 |
// Common error checking routines for bernoulli distribution functions:
|
| 45 |
template <class RealType, class Policy> |
| 46 |
inline bool check_success_fraction(const char* function, const RealType& p, RealType* result, const Policy& /* pol */) |
| 47 |
{
|
| 48 |
if(!(boost::math::isfinite)(p) || (p < 0) || (p > 1)) |
| 49 |
{
|
| 50 |
*result = policies::raise_domain_error<RealType>( |
| 51 |
function, |
| 52 |
"Success fraction argument is %1%, but must be >= 0 and <= 1 !", p, Policy());
|
| 53 |
return false; |
| 54 |
} |
| 55 |
return true; |
| 56 |
} |
| 57 |
template <class RealType, class Policy> |
| 58 |
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */, const mpl::true_&) |
| 59 |
{
|
| 60 |
return check_success_fraction(function, p, result, Policy());
|
| 61 |
} |
| 62 |
template <class RealType, class Policy> |
| 63 |
inline bool check_dist(const char* , const RealType& , RealType* , const Policy& /* pol */, const mpl::false_&) |
| 64 |
{
|
| 65 |
return true; |
| 66 |
} |
| 67 |
template <class RealType, class Policy> |
| 68 |
inline bool check_dist(const char* function, const RealType& p, RealType* result, const Policy& /* pol */) |
| 69 |
{
|
| 70 |
return check_dist(function, p, result, Policy(), typename policies::constructor_error_check<Policy>::type()); |
| 71 |
} |
| 72 |
|
| 73 |
template <class RealType, class Policy> |
| 74 |
inline bool check_dist_and_k(const char* function, const RealType& p, RealType k, RealType* result, const Policy& pol) |
| 75 |
{
|
| 76 |
if(check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) == false) |
| 77 |
{
|
| 78 |
return false; |
| 79 |
} |
| 80 |
if(!(boost::math::isfinite)(k) || !((k == 0) || (k == 1))) |
| 81 |
{
|
| 82 |
*result = policies::raise_domain_error<RealType>( |
| 83 |
function, |
| 84 |
"Number of successes argument is %1%, but must be 0 or 1 !", k, pol);
|
| 85 |
return false; |
| 86 |
} |
| 87 |
return true; |
| 88 |
} |
| 89 |
template <class RealType, class Policy> |
| 90 |
inline bool check_dist_and_prob(const char* function, RealType p, RealType prob, RealType* result, const Policy& /* pol */) |
| 91 |
{
|
| 92 |
if((check_dist(function, p, result, Policy(), typename policies::method_error_check<Policy>::type()) && detail::check_probability(function, prob, result, Policy())) == false) |
| 93 |
{
|
| 94 |
return false; |
| 95 |
} |
| 96 |
return true; |
| 97 |
} |
| 98 |
} // namespace bernoulli_detail
|
| 99 |
|
| 100 |
|
| 101 |
template <class RealType = double, class Policy = policies::policy<> > |
| 102 |
class bernoulli_distribution |
| 103 |
{
|
| 104 |
public:
|
| 105 |
typedef RealType value_type;
|
| 106 |
typedef Policy policy_type;
|
| 107 |
|
| 108 |
bernoulli_distribution(RealType p = 0.5) : m_p(p) |
| 109 |
{ // Default probability = half suits 'fair' coin tossing
|
| 110 |
// where probability of heads == probability of tails.
|
| 111 |
RealType result; // of checks.
|
| 112 |
bernoulli_detail::check_dist( |
| 113 |
"boost::math::bernoulli_distribution<%1%>::bernoulli_distribution",
|
| 114 |
m_p, |
| 115 |
&result, Policy()); |
| 116 |
} // bernoulli_distribution constructor.
|
| 117 |
|
| 118 |
RealType success_fraction() const
|
| 119 |
{ // Probability.
|
| 120 |
return m_p;
|
| 121 |
} |
| 122 |
|
| 123 |
private:
|
| 124 |
RealType m_p; // success_fraction
|
| 125 |
}; // template <class RealType> class bernoulli_distribution
|
| 126 |
|
| 127 |
typedef bernoulli_distribution<double> bernoulli; |
| 128 |
|
| 129 |
template <class RealType, class Policy> |
| 130 |
inline const std::pair<RealType, RealType> range(const bernoulli_distribution<RealType, Policy>& /* dist */) |
| 131 |
{ // Range of permissible values for random variable k = {0, 1}.
|
| 132 |
using boost::math::tools::max_value;
|
| 133 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1)); |
| 134 |
} |
| 135 |
|
| 136 |
template <class RealType, class Policy> |
| 137 |
inline const std::pair<RealType, RealType> support(const bernoulli_distribution<RealType, Policy>& /* dist */) |
| 138 |
{ // Range of supported values for random variable k = {0, 1}.
|
| 139 |
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
|
| 140 |
return std::pair<RealType, RealType>(static_cast<RealType>(0), static_cast<RealType>(1)); |
| 141 |
} |
| 142 |
|
| 143 |
template <class RealType, class Policy> |
| 144 |
inline RealType mean(const bernoulli_distribution<RealType, Policy>& dist) |
| 145 |
{ // Mean of bernoulli distribution = p (n = 1).
|
| 146 |
return dist.success_fraction();
|
| 147 |
} // mean
|
| 148 |
|
| 149 |
// Rely on dereived_accessors quantile(half)
|
| 150 |
//template <class RealType>
|
| 151 |
//inline RealType median(const bernoulli_distribution<RealType, Policy>& dist)
|
| 152 |
//{ // Median of bernoulli distribution is not defined.
|
| 153 |
// return tools::domain_error<RealType>(BOOST_CURRENT_FUNCTION, "Median is not implemented, result is %1%!", std::numeric_limits<RealType>::quiet_NaN());
|
| 154 |
//} // median
|
| 155 |
|
| 156 |
template <class RealType, class Policy> |
| 157 |
inline RealType variance(const bernoulli_distribution<RealType, Policy>& dist) |
| 158 |
{ // Variance of bernoulli distribution =p * q.
|
| 159 |
return dist.success_fraction() * (1 - dist.success_fraction()); |
| 160 |
} // variance
|
| 161 |
|
| 162 |
template <class RealType, class Policy> |
| 163 |
RealType pdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k) |
| 164 |
{ // Probability Density/Mass Function.
|
| 165 |
BOOST_FPU_EXCEPTION_GUARD |
| 166 |
// Error check:
|
| 167 |
RealType result = 0; // of checks. |
| 168 |
if(false == bernoulli_detail::check_dist_and_k( |
| 169 |
"boost::math::pdf(bernoulli_distribution<%1%>, %1%)",
|
| 170 |
dist.success_fraction(), // 0 to 1
|
| 171 |
k, // 0 or 1
|
| 172 |
&result, Policy())) |
| 173 |
{
|
| 174 |
return result;
|
| 175 |
} |
| 176 |
// Assume k is integral.
|
| 177 |
if (k == 0) |
| 178 |
{
|
| 179 |
return 1 - dist.success_fraction(); // 1 - p |
| 180 |
} |
| 181 |
else // k == 1 |
| 182 |
{
|
| 183 |
return dist.success_fraction(); // p |
| 184 |
} |
| 185 |
} // pdf
|
| 186 |
|
| 187 |
template <class RealType, class Policy> |
| 188 |
inline RealType cdf(const bernoulli_distribution<RealType, Policy>& dist, const RealType& k) |
| 189 |
{ // Cumulative Distribution Function Bernoulli.
|
| 190 |
RealType p = dist.success_fraction(); |
| 191 |
// Error check:
|
| 192 |
RealType result = 0;
|
| 193 |
if(false == bernoulli_detail::check_dist_and_k( |
| 194 |
"boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
|
| 195 |
p, |
| 196 |
k, |
| 197 |
&result, Policy())) |
| 198 |
{
|
| 199 |
return result;
|
| 200 |
} |
| 201 |
if (k == 0) |
| 202 |
{
|
| 203 |
return 1 - p; |
| 204 |
} |
| 205 |
else
|
| 206 |
{ // k == 1
|
| 207 |
return 1; |
| 208 |
} |
| 209 |
} // bernoulli cdf
|
| 210 |
|
| 211 |
template <class RealType, class Policy> |
| 212 |
inline RealType cdf(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c) |
| 213 |
{ // Complemented Cumulative Distribution Function bernoulli.
|
| 214 |
RealType const& k = c.param;
|
| 215 |
bernoulli_distribution<RealType, Policy> const& dist = c.dist;
|
| 216 |
RealType p = dist.success_fraction(); |
| 217 |
// Error checks:
|
| 218 |
RealType result = 0;
|
| 219 |
if(false == bernoulli_detail::check_dist_and_k( |
| 220 |
"boost::math::cdf(bernoulli_distribution<%1%>, %1%)",
|
| 221 |
p, |
| 222 |
k, |
| 223 |
&result, Policy())) |
| 224 |
{
|
| 225 |
return result;
|
| 226 |
} |
| 227 |
if (k == 0) |
| 228 |
{
|
| 229 |
return p;
|
| 230 |
} |
| 231 |
else
|
| 232 |
{ // k == 1
|
| 233 |
return 0; |
| 234 |
} |
| 235 |
} // bernoulli cdf complement
|
| 236 |
|
| 237 |
template <class RealType, class Policy> |
| 238 |
inline RealType quantile(const bernoulli_distribution<RealType, Policy>& dist, const RealType& p) |
| 239 |
{ // Quantile or Percent Point Bernoulli function.
|
| 240 |
// Return the number of expected successes k either 0 or 1.
|
| 241 |
// for a given probability p.
|
| 242 |
|
| 243 |
RealType result = 0; // of error checks: |
| 244 |
if(false == bernoulli_detail::check_dist_and_prob( |
| 245 |
"boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
|
| 246 |
dist.success_fraction(), |
| 247 |
p, |
| 248 |
&result, Policy())) |
| 249 |
{
|
| 250 |
return result;
|
| 251 |
} |
| 252 |
if (p <= (1 - dist.success_fraction())) |
| 253 |
{ // p <= pdf(dist, 0) == cdf(dist, 0)
|
| 254 |
return 0; |
| 255 |
} |
| 256 |
else
|
| 257 |
{
|
| 258 |
return 1; |
| 259 |
} |
| 260 |
} // quantile
|
| 261 |
|
| 262 |
template <class RealType, class Policy> |
| 263 |
inline RealType quantile(const complemented2_type<bernoulli_distribution<RealType, Policy>, RealType>& c) |
| 264 |
{ // Quantile or Percent Point bernoulli function.
|
| 265 |
// Return the number of expected successes k for a given
|
| 266 |
// complement of the probability q.
|
| 267 |
//
|
| 268 |
// Error checks:
|
| 269 |
RealType q = c.param; |
| 270 |
const bernoulli_distribution<RealType, Policy>& dist = c.dist;
|
| 271 |
RealType result = 0;
|
| 272 |
if(false == bernoulli_detail::check_dist_and_prob( |
| 273 |
"boost::math::quantile(bernoulli_distribution<%1%>, %1%)",
|
| 274 |
dist.success_fraction(), |
| 275 |
q, |
| 276 |
&result, Policy())) |
| 277 |
{
|
| 278 |
return result;
|
| 279 |
} |
| 280 |
|
| 281 |
if (q <= 1 - dist.success_fraction()) |
| 282 |
{ // // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
|
| 283 |
return 1; |
| 284 |
} |
| 285 |
else
|
| 286 |
{
|
| 287 |
return 0; |
| 288 |
} |
| 289 |
} // quantile complemented.
|
| 290 |
|
| 291 |
template <class RealType, class Policy> |
| 292 |
inline RealType mode(const bernoulli_distribution<RealType, Policy>& dist) |
| 293 |
{
|
| 294 |
return static_cast<RealType>((dist.success_fraction() <= 0.5) ? 0 : 1); // p = 0.5 can be 0 or 1 |
| 295 |
} |
| 296 |
|
| 297 |
template <class RealType, class Policy> |
| 298 |
inline RealType skewness(const bernoulli_distribution<RealType, Policy>& dist) |
| 299 |
{
|
| 300 |
BOOST_MATH_STD_USING; // Aid ADL for sqrt.
|
| 301 |
RealType p = dist.success_fraction(); |
| 302 |
return (1 - 2 * p) / sqrt(p * (1 - p)); |
| 303 |
} |
| 304 |
|
| 305 |
template <class RealType, class Policy> |
| 306 |
inline RealType kurtosis_excess(const bernoulli_distribution<RealType, Policy>& dist) |
| 307 |
{
|
| 308 |
RealType p = dist.success_fraction(); |
| 309 |
// Note Wolfram says this is kurtosis in text, but gamma2 is the kurtosis excess,
|
| 310 |
// and Wikipedia also says this is the kurtosis excess formula.
|
| 311 |
// return (6 * p * p - 6 * p + 1) / (p * (1 - p));
|
| 312 |
// But Wolfram kurtosis article gives this simpler formula for kurtosis excess:
|
| 313 |
return 1 / (1 - p) + 1/p -6; |
| 314 |
} |
| 315 |
|
| 316 |
template <class RealType, class Policy> |
| 317 |
inline RealType kurtosis(const bernoulli_distribution<RealType, Policy>& dist) |
| 318 |
{
|
| 319 |
RealType p = dist.success_fraction(); |
| 320 |
return 1 / (1 - p) + 1/p -6 + 3; |
| 321 |
// Simpler than:
|
| 322 |
// return (6 * p * p - 6 * p + 1) / (p * (1 - p)) + 3;
|
| 323 |
} |
| 324 |
|
| 325 |
} // namespace math
|
| 326 |
} // namespace boost
|
| 327 |
|
| 328 |
// This include must be at the end, *after* the accessors
|
| 329 |
// for this distribution have been defined, in order to
|
| 330 |
// keep compilers that support two-phase lookup happy.
|
| 331 |
#include <boost/math/distributions/detail/derived_accessors.hpp> |
| 332 |
|
| 333 |
#endif // BOOST_MATH_SPECIAL_BERNOULLI_HPP |
| 334 |
|
| 335 |
|
| 336 |
|