To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t2_64.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (116 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:21 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 1154 FP additions, 840 FP multiplications,
|
| 32 |
* (or, 520 additions, 206 multiplications, 634 fused multiply/add),
|
| 33 |
* 316 stack variables, 15 constants, and 256 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 40 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 41 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 42 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 43 |
DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
| 44 |
DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
| 45 |
DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
| 46 |
DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
| 47 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 48 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 49 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 50 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 51 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 52 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 53 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 54 |
{
|
| 55 |
INT m; |
| 56 |
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { |
| 57 |
E T2, T3, Tc, T8, Te, T5, T6, Tr, T7, TJ, T14, T3d, T3i, TG, T10; |
| 58 |
E T3a, T3g, TL, TP, Tb, Td, T17, Tt, Tu, T1i, Ti, T2U, T1t, T7B, T5O; |
| 59 |
E T3N, T3U, T1I, T3G, T3R, T79, T1x, T3D, T2l, T3X, T2d, T1M, T4B, T4x, T4T; |
| 60 |
E T2h, T29, T5s, T81, T5w, T7X, T7N, T7h, T64, T6a, T6e, T7l, T60, T7R, T5A; |
| 61 |
E T6h, T6J, T7o, T5E, T6k, T6N, T7r, T2X, T6t, T6x, TO, TK, TQ, T7c, TU; |
| 62 |
E T2x, T2u, T2y, T7E, T2C, T4b, T48, T4c, T5R, T4g, T3m, T3j, T3n, T4W, T3r; |
| 63 |
E Tx, Ty, TC, T1Z, T23, T4s, T4p, T70, T6W, T19, T41, T44, T1a, T1e, T35; |
| 64 |
E T31, T59, T55, T1k, T1R, T1V, T1l, T1p, T2Q, T2N, T8i, T8e, Th, T4E, T4H; |
| 65 |
E Tj, Tn, T3A, T3w, T5n, T5j; |
| 66 |
{
|
| 67 |
E T1H, Tg, Tw, T1s, T2g, TH, T2t, T47, T3h, T28, T4w, T3M, T2c, T4A, T3Q; |
| 68 |
E T1w, T2k, T1L, T5r, T80; |
| 69 |
{
|
| 70 |
E TI, T13, TF, TZ, Ta, T4, T9, Ts; |
| 71 |
T2 = W[0];
|
| 72 |
T3 = W[2];
|
| 73 |
T4 = T2 * T3; |
| 74 |
Tc = W[5];
|
| 75 |
TI = T3 * Tc; |
| 76 |
T13 = T2 * Tc; |
| 77 |
T8 = W[4];
|
| 78 |
Te = W[6];
|
| 79 |
TF = T3 * T8; |
| 80 |
T1H = T8 * Te; |
| 81 |
TZ = T2 * T8; |
| 82 |
T5 = W[1];
|
| 83 |
T6 = W[3];
|
| 84 |
Ta = T2 * T6; |
| 85 |
Tr = FMA(T5, T6, T4); |
| 86 |
T7 = FNMS(T5, T6, T4); |
| 87 |
Tg = T7 * Tc; |
| 88 |
Tw = Tr * Tc; |
| 89 |
T1s = T3 * Te; |
| 90 |
T2g = T2 * Te; |
| 91 |
TJ = FMA(T6, T8, TI); |
| 92 |
T14 = FNMS(T5, T8, T13); |
| 93 |
T3d = FMA(T5, T8, T13); |
| 94 |
T3i = FNMS(T6, T8, TI); |
| 95 |
TG = FNMS(T6, Tc, TF); |
| 96 |
TH = TG * Te; |
| 97 |
T10 = FMA(T5, Tc, TZ); |
| 98 |
T2t = T10 * Te; |
| 99 |
T3a = FNMS(T5, Tc, TZ); |
| 100 |
T47 = T3a * Te; |
| 101 |
T3g = FMA(T6, Tc, TF); |
| 102 |
T3h = T3g * Te; |
| 103 |
TL = W[8];
|
| 104 |
T28 = T3 * TL; |
| 105 |
T4w = T8 * TL; |
| 106 |
T3M = T2 * TL; |
| 107 |
TP = W[9];
|
| 108 |
T2c = T3 * TP; |
| 109 |
T4A = T8 * TP; |
| 110 |
T3Q = T2 * TP; |
| 111 |
T9 = T7 * T8; |
| 112 |
Tb = FMA(T5, T3, Ta); |
| 113 |
Td = FMA(Tb, Tc, T9); |
| 114 |
T17 = FNMS(Tb, Tc, T9); |
| 115 |
Ts = Tr * T8; |
| 116 |
Tt = FNMS(T5, T3, Ta); |
| 117 |
Tu = FNMS(Tt, Tc, Ts); |
| 118 |
T1i = FMA(Tt, Tc, Ts); |
| 119 |
Ti = W[7];
|
| 120 |
T1w = T3 * Ti; |
| 121 |
T2k = T2 * Ti; |
| 122 |
T1L = T8 * Ti; |
| 123 |
T2U = FMA(Tc, Ti, T1H); |
| 124 |
} |
| 125 |
T1t = FMA(T6, Ti, T1s); |
| 126 |
T7B = FNMS(T14, Ti, T2t); |
| 127 |
T5O = FNMS(T3d, Ti, T47); |
| 128 |
T3N = FMA(T5, TP, T3M); |
| 129 |
T3U = FNMS(T6, Ti, T1s); |
| 130 |
T1I = FNMS(Tc, Ti, T1H); |
| 131 |
T3G = FNMS(T5, Te, T2k); |
| 132 |
T3R = FNMS(T5, TL, T3Q); |
| 133 |
T79 = FNMS(TJ, Ti, TH); |
| 134 |
T1x = FNMS(T6, Te, T1w); |
| 135 |
T3D = FMA(T5, Ti, T2g); |
| 136 |
T2l = FMA(T5, Te, T2k); |
| 137 |
T3X = FMA(T6, Te, T1w); |
| 138 |
T2d = FNMS(T6, TL, T2c); |
| 139 |
T1M = FMA(Tc, Te, T1L); |
| 140 |
T4B = FNMS(Tc, TL, T4A); |
| 141 |
T4x = FMA(Tc, TP, T4w); |
| 142 |
T4T = FNMS(T3i, Ti, T3h); |
| 143 |
T2h = FNMS(T5, Ti, T2g); |
| 144 |
T29 = FMA(T6, TP, T28); |
| 145 |
T5r = T3g * TL; |
| 146 |
T5s = FMA(T3i, TP, T5r); |
| 147 |
T80 = T7 * TP; |
| 148 |
T81 = FNMS(Tb, TL, T80); |
| 149 |
{
|
| 150 |
E T5v, T7W, T7M, T7g, T63; |
| 151 |
T5v = T3g * TP; |
| 152 |
T5w = FNMS(T3i, TL, T5v); |
| 153 |
T7W = T7 * TL; |
| 154 |
T7X = FMA(Tb, TP, T7W); |
| 155 |
T7M = TG * TL; |
| 156 |
T7N = FMA(TJ, TP, T7M); |
| 157 |
T7g = T10 * TL; |
| 158 |
T7h = FMA(T14, TP, T7g); |
| 159 |
T63 = T3a * TP; |
| 160 |
T64 = FNMS(T3d, TL, T63); |
| 161 |
} |
| 162 |
{
|
| 163 |
E T69, T6d, T7k, T5Z, T7Q, T5z; |
| 164 |
T69 = Tr * TL; |
| 165 |
T6a = FMA(Tt, TP, T69); |
| 166 |
T6d = Tr * TP; |
| 167 |
T6e = FNMS(Tt, TL, T6d); |
| 168 |
T7k = T10 * TP; |
| 169 |
T7l = FNMS(T14, TL, T7k); |
| 170 |
T5Z = T3a * TL; |
| 171 |
T60 = FMA(T3d, TP, T5Z); |
| 172 |
T7Q = TG * TP; |
| 173 |
T7R = FNMS(TJ, TL, T7Q); |
| 174 |
T5z = Tr * Te; |
| 175 |
T5A = FMA(Tt, Ti, T5z); |
| 176 |
T6h = FNMS(Tt, Ti, T5z); |
| 177 |
} |
| 178 |
{
|
| 179 |
E T6I, T5D, T6M, T6s, T6w; |
| 180 |
T6I = T7 * Te; |
| 181 |
T6J = FNMS(Tb, Ti, T6I); |
| 182 |
T7o = FMA(Tb, Ti, T6I); |
| 183 |
T5D = Tr * Ti; |
| 184 |
T5E = FNMS(Tt, Te, T5D); |
| 185 |
T6k = FMA(Tt, Te, T5D); |
| 186 |
T6M = T7 * Ti; |
| 187 |
T6N = FMA(Tb, Te, T6M); |
| 188 |
T7r = FNMS(Tb, Te, T6M); |
| 189 |
T6s = T2U * TL; |
| 190 |
T6w = T2U * TP; |
| 191 |
T2X = FNMS(Tc, Te, T1L); |
| 192 |
T6t = FMA(T2X, TP, T6s); |
| 193 |
T6x = FNMS(T2X, TL, T6w); |
| 194 |
{
|
| 195 |
E TN, TM, TT, T2w, T2v, T2B; |
| 196 |
TN = TG * Ti; |
| 197 |
TO = FNMS(TJ, Te, TN); |
| 198 |
TK = FMA(TJ, Ti, TH); |
| 199 |
TM = TK * TL; |
| 200 |
TT = TK * TP; |
| 201 |
TQ = FMA(TO, TP, TM); |
| 202 |
T7c = FMA(TJ, Te, TN); |
| 203 |
TU = FNMS(TO, TL, TT); |
| 204 |
T2w = T10 * Ti; |
| 205 |
T2x = FNMS(T14, Te, T2w); |
| 206 |
T2u = FMA(T14, Ti, T2t); |
| 207 |
T2v = T2u * TL; |
| 208 |
T2B = T2u * TP; |
| 209 |
T2y = FMA(T2x, TP, T2v); |
| 210 |
T7E = FMA(T14, Te, T2w); |
| 211 |
T2C = FNMS(T2x, TL, T2B); |
| 212 |
} |
| 213 |
} |
| 214 |
{
|
| 215 |
E T4a, T49, T4f, T3l, T3k, T3q; |
| 216 |
T4a = T3a * Ti; |
| 217 |
T4b = FNMS(T3d, Te, T4a); |
| 218 |
T48 = FMA(T3d, Ti, T47); |
| 219 |
T49 = T48 * TL; |
| 220 |
T4f = T48 * TP; |
| 221 |
T4c = FMA(T4b, TP, T49); |
| 222 |
T5R = FMA(T3d, Te, T4a); |
| 223 |
T4g = FNMS(T4b, TL, T4f); |
| 224 |
T3l = T3g * Ti; |
| 225 |
T3m = FNMS(T3i, Te, T3l); |
| 226 |
T3j = FMA(T3i, Ti, T3h); |
| 227 |
T3k = T3j * TL; |
| 228 |
T3q = T3j * TP; |
| 229 |
T3n = FMA(T3m, TP, T3k); |
| 230 |
T4W = FMA(T3i, Te, T3l); |
| 231 |
T3r = FNMS(T3m, TL, T3q); |
| 232 |
{
|
| 233 |
E T1Y, T22, Tv, TB, T6Z, T6V; |
| 234 |
T1Y = Tu * TL; |
| 235 |
T22 = Tu * TP; |
| 236 |
Tv = Tu * Te; |
| 237 |
TB = Tu * Ti; |
| 238 |
Tx = FMA(Tt, T8, Tw); |
| 239 |
Ty = FMA(Tx, Ti, Tv); |
| 240 |
TC = FNMS(Tx, Te, TB); |
| 241 |
T1Z = FMA(Tx, TP, T1Y); |
| 242 |
T23 = FNMS(Tx, TL, T22); |
| 243 |
T4s = FMA(Tx, Te, TB); |
| 244 |
T4p = FNMS(Tx, Ti, Tv); |
| 245 |
T6Z = Ty * TP; |
| 246 |
T70 = FNMS(TC, TL, T6Z); |
| 247 |
T6V = Ty * TL; |
| 248 |
T6W = FMA(TC, TP, T6V); |
| 249 |
} |
| 250 |
} |
| 251 |
{
|
| 252 |
E T30, T34, T18, T1d, T58, T54; |
| 253 |
T30 = T17 * TL; |
| 254 |
T34 = T17 * TP; |
| 255 |
T18 = T17 * Te; |
| 256 |
T1d = T17 * Ti; |
| 257 |
T19 = FMA(Tb, T8, Tg); |
| 258 |
T41 = FMA(T19, Ti, T18); |
| 259 |
T44 = FNMS(T19, Te, T1d); |
| 260 |
T1a = FNMS(T19, Ti, T18); |
| 261 |
T1e = FMA(T19, Te, T1d); |
| 262 |
T35 = FNMS(T19, TL, T34); |
| 263 |
T31 = FMA(T19, TP, T30); |
| 264 |
T58 = T41 * TP; |
| 265 |
T59 = FNMS(T44, TL, T58); |
| 266 |
T54 = T41 * TL; |
| 267 |
T55 = FMA(T44, TP, T54); |
| 268 |
} |
| 269 |
{
|
| 270 |
E T1j, T1o, T1Q, T1U, T8h, T8d; |
| 271 |
T1j = T1i * TL; |
| 272 |
T1o = T1i * TP; |
| 273 |
T1Q = T1i * Te; |
| 274 |
T1U = T1i * Ti; |
| 275 |
T1k = FNMS(Tt, T8, Tw); |
| 276 |
T1R = FMA(T1k, Ti, T1Q); |
| 277 |
T1V = FNMS(T1k, Te, T1U); |
| 278 |
T1l = FMA(T1k, TP, T1j); |
| 279 |
T1p = FNMS(T1k, TL, T1o); |
| 280 |
T2Q = FMA(T1k, Te, T1U); |
| 281 |
T2N = FNMS(T1k, Ti, T1Q); |
| 282 |
T8h = T1R * TP; |
| 283 |
T8i = FNMS(T1V, TL, T8h); |
| 284 |
T8d = T1R * TL; |
| 285 |
T8e = FMA(T1V, TP, T8d); |
| 286 |
} |
| 287 |
{
|
| 288 |
E T3v, T3z, Tf, Tm, T5m, T5i; |
| 289 |
T3v = Td * TL; |
| 290 |
T3z = Td * TP; |
| 291 |
Tf = Td * Te; |
| 292 |
Tm = Td * Ti; |
| 293 |
Th = FNMS(Tb, T8, Tg); |
| 294 |
T4E = FMA(Th, Ti, Tf); |
| 295 |
T4H = FNMS(Th, Te, Tm); |
| 296 |
Tj = FNMS(Th, Ti, Tf); |
| 297 |
Tn = FMA(Th, Te, Tm); |
| 298 |
T3A = FNMS(Th, TL, T3z); |
| 299 |
T3w = FMA(Th, TP, T3v); |
| 300 |
T5m = T4E * TP; |
| 301 |
T5n = FNMS(T4H, TL, T5m); |
| 302 |
T5i = T4E * TL; |
| 303 |
T5j = FMA(T4H, TP, T5i); |
| 304 |
} |
| 305 |
} |
| 306 |
{
|
| 307 |
E TY, Tg4, Tl9, TlD, T8w, TdS, Tkd, TkE, T2G, Tge, Tgh, TiK, T98, Te1, T9f; |
| 308 |
E Te0, T39, Tgq, Tgn, TiN, T9p, Te5, T9M, Te8, T74, Thr, Thc, Tja, TbI, TeE; |
| 309 |
E TcB, TeP, T1B, TkD, Tg7, Tk7, T8D, TdT, T8K, TdU, T27, Tg9, Tgc, TiJ, T8T; |
| 310 |
E TdY, T90, TdX, T4k, TgB, Tgy, TiT, T9Y, Tec, Tal, Tef, T5d, Th0, TgL, TiZ; |
| 311 |
E Taz, Tel, Tbs, Tew, T3K, Tgo, Tgt, TiO, T9E, Te9, T9P, Te6, T4L, Tgz, TgE; |
| 312 |
E TiU, Tad, Teg, Tao, Ted, T5I, TgM, Th3, Tj0, TaO, Tex, Tbv, Tem, T7v, Thd; |
| 313 |
E Thu, Tjb, TbX, TeQ, TcE, TeF, T68, Tj5, TgS, Th5, Tbj, Tez, Tbx, Teq, T6B; |
| 314 |
E Tj6, TgX, Th6, Tb4, TeA, Tby, Tet, T7V, Tjg, Thj, Thw, Tcs, TeS, TcG, TeJ; |
| 315 |
E T8m, Tjh, Tho, Thx, Tcd, TeT, TcH, TeM; |
| 316 |
{
|
| 317 |
E T1, Tkb, Tp, Tka, TE, T8s, TW, T8u; |
| 318 |
T1 = ri[0];
|
| 319 |
Tkb = ii[0];
|
| 320 |
{
|
| 321 |
E Tk, Tl, To, Tk9; |
| 322 |
Tk = ri[WS(rs, 32)];
|
| 323 |
Tl = Tj * Tk; |
| 324 |
To = ii[WS(rs, 32)];
|
| 325 |
Tk9 = Tj * To; |
| 326 |
Tp = FMA(Tn, To, Tl); |
| 327 |
Tka = FNMS(Tn, Tk, Tk9); |
| 328 |
} |
| 329 |
{
|
| 330 |
E Tz, TA, TD, T8r; |
| 331 |
Tz = ri[WS(rs, 16)];
|
| 332 |
TA = Ty * Tz; |
| 333 |
TD = ii[WS(rs, 16)];
|
| 334 |
T8r = Ty * TD; |
| 335 |
TE = FMA(TC, TD, TA); |
| 336 |
T8s = FNMS(TC, Tz, T8r); |
| 337 |
} |
| 338 |
{
|
| 339 |
E TR, TS, TV, T8t; |
| 340 |
TR = ri[WS(rs, 48)];
|
| 341 |
TS = TQ * TR; |
| 342 |
TV = ii[WS(rs, 48)];
|
| 343 |
T8t = TQ * TV; |
| 344 |
TW = FMA(TU, TV, TS); |
| 345 |
T8u = FNMS(TU, TR, T8t); |
| 346 |
} |
| 347 |
{
|
| 348 |
E Tq, TX, Tl7, Tl8; |
| 349 |
Tq = T1 + Tp; |
| 350 |
TX = TE + TW; |
| 351 |
TY = Tq + TX; |
| 352 |
Tg4 = Tq - TX; |
| 353 |
Tl7 = Tkb - Tka; |
| 354 |
Tl8 = TE - TW; |
| 355 |
Tl9 = Tl7 - Tl8; |
| 356 |
TlD = Tl8 + Tl7; |
| 357 |
} |
| 358 |
{
|
| 359 |
E T8q, T8v, Tk8, Tkc; |
| 360 |
T8q = T1 - Tp; |
| 361 |
T8v = T8s - T8u; |
| 362 |
T8w = T8q - T8v; |
| 363 |
TdS = T8q + T8v; |
| 364 |
Tk8 = T8s + T8u; |
| 365 |
Tkc = Tka + Tkb; |
| 366 |
Tkd = Tk8 + Tkc; |
| 367 |
TkE = Tkc - Tk8; |
| 368 |
} |
| 369 |
} |
| 370 |
{
|
| 371 |
E T2f, T93, T2E, T9d, T2n, T95, T2s, T9b; |
| 372 |
{
|
| 373 |
E T2a, T2b, T2e, T92; |
| 374 |
T2a = ri[WS(rs, 60)];
|
| 375 |
T2b = T29 * T2a; |
| 376 |
T2e = ii[WS(rs, 60)];
|
| 377 |
T92 = T29 * T2e; |
| 378 |
T2f = FMA(T2d, T2e, T2b); |
| 379 |
T93 = FNMS(T2d, T2a, T92); |
| 380 |
} |
| 381 |
{
|
| 382 |
E T2z, T2A, T2D, T9c; |
| 383 |
T2z = ri[WS(rs, 44)];
|
| 384 |
T2A = T2y * T2z; |
| 385 |
T2D = ii[WS(rs, 44)];
|
| 386 |
T9c = T2y * T2D; |
| 387 |
T2E = FMA(T2C, T2D, T2A); |
| 388 |
T9d = FNMS(T2C, T2z, T9c); |
| 389 |
} |
| 390 |
{
|
| 391 |
E T2i, T2j, T2m, T94; |
| 392 |
T2i = ri[WS(rs, 28)];
|
| 393 |
T2j = T2h * T2i; |
| 394 |
T2m = ii[WS(rs, 28)];
|
| 395 |
T94 = T2h * T2m; |
| 396 |
T2n = FMA(T2l, T2m, T2j); |
| 397 |
T95 = FNMS(T2l, T2i, T94); |
| 398 |
} |
| 399 |
{
|
| 400 |
E T2p, T2q, T2r, T9a; |
| 401 |
T2p = ri[WS(rs, 12)];
|
| 402 |
T2q = TG * T2p; |
| 403 |
T2r = ii[WS(rs, 12)];
|
| 404 |
T9a = TG * T2r; |
| 405 |
T2s = FMA(TJ, T2r, T2q); |
| 406 |
T9b = FNMS(TJ, T2p, T9a); |
| 407 |
} |
| 408 |
{
|
| 409 |
E T2o, T2F, Tgf, Tgg; |
| 410 |
T2o = T2f + T2n; |
| 411 |
T2F = T2s + T2E; |
| 412 |
T2G = T2o + T2F; |
| 413 |
Tge = T2o - T2F; |
| 414 |
Tgf = T93 + T95; |
| 415 |
Tgg = T9b + T9d; |
| 416 |
Tgh = Tgf - Tgg; |
| 417 |
TiK = Tgf + Tgg; |
| 418 |
} |
| 419 |
{
|
| 420 |
E T96, T97, T99, T9e; |
| 421 |
T96 = T93 - T95; |
| 422 |
T97 = T2s - T2E; |
| 423 |
T98 = T96 + T97; |
| 424 |
Te1 = T96 - T97; |
| 425 |
T99 = T2f - T2n; |
| 426 |
T9e = T9b - T9d; |
| 427 |
T9f = T99 - T9e; |
| 428 |
Te0 = T99 + T9e; |
| 429 |
} |
| 430 |
} |
| 431 |
{
|
| 432 |
E T2M, T9k, T37, T9K, T2S, T9m, T2Z, T9I; |
| 433 |
{
|
| 434 |
E T2J, T2K, T2L, T9j; |
| 435 |
T2J = ri[WS(rs, 2)];
|
| 436 |
T2K = Tr * T2J; |
| 437 |
T2L = ii[WS(rs, 2)];
|
| 438 |
T9j = Tr * T2L; |
| 439 |
T2M = FMA(Tt, T2L, T2K); |
| 440 |
T9k = FNMS(Tt, T2J, T9j); |
| 441 |
} |
| 442 |
{
|
| 443 |
E T32, T33, T36, T9J; |
| 444 |
T32 = ri[WS(rs, 50)];
|
| 445 |
T33 = T31 * T32; |
| 446 |
T36 = ii[WS(rs, 50)];
|
| 447 |
T9J = T31 * T36; |
| 448 |
T37 = FMA(T35, T36, T33); |
| 449 |
T9K = FNMS(T35, T32, T9J); |
| 450 |
} |
| 451 |
{
|
| 452 |
E T2O, T2P, T2R, T9l; |
| 453 |
T2O = ri[WS(rs, 34)];
|
| 454 |
T2P = T2N * T2O; |
| 455 |
T2R = ii[WS(rs, 34)];
|
| 456 |
T9l = T2N * T2R; |
| 457 |
T2S = FMA(T2Q, T2R, T2P); |
| 458 |
T9m = FNMS(T2Q, T2O, T9l); |
| 459 |
} |
| 460 |
{
|
| 461 |
E T2V, T2W, T2Y, T9H; |
| 462 |
T2V = ri[WS(rs, 18)];
|
| 463 |
T2W = T2U * T2V; |
| 464 |
T2Y = ii[WS(rs, 18)];
|
| 465 |
T9H = T2U * T2Y; |
| 466 |
T2Z = FMA(T2X, T2Y, T2W); |
| 467 |
T9I = FNMS(T2X, T2V, T9H); |
| 468 |
} |
| 469 |
{
|
| 470 |
E T2T, T38, Tgl, Tgm; |
| 471 |
T2T = T2M + T2S; |
| 472 |
T38 = T2Z + T37; |
| 473 |
T39 = T2T + T38; |
| 474 |
Tgq = T2T - T38; |
| 475 |
Tgl = T9k + T9m; |
| 476 |
Tgm = T9I + T9K; |
| 477 |
Tgn = Tgl - Tgm; |
| 478 |
TiN = Tgl + Tgm; |
| 479 |
} |
| 480 |
{
|
| 481 |
E T9n, T9o, T9G, T9L; |
| 482 |
T9n = T9k - T9m; |
| 483 |
T9o = T2Z - T37; |
| 484 |
T9p = T9n + T9o; |
| 485 |
Te5 = T9n - T9o; |
| 486 |
T9G = T2M - T2S; |
| 487 |
T9L = T9I - T9K; |
| 488 |
T9M = T9G - T9L; |
| 489 |
Te8 = T9G + T9L; |
| 490 |
} |
| 491 |
} |
| 492 |
{
|
| 493 |
E T6H, TbD, T72, Tcz, T6P, TbF, T6U, Tcx; |
| 494 |
{
|
| 495 |
E T6E, T6F, T6G, TbC; |
| 496 |
T6E = ri[WS(rs, 63)];
|
| 497 |
T6F = TL * T6E; |
| 498 |
T6G = ii[WS(rs, 63)];
|
| 499 |
TbC = TL * T6G; |
| 500 |
T6H = FMA(TP, T6G, T6F); |
| 501 |
TbD = FNMS(TP, T6E, TbC); |
| 502 |
} |
| 503 |
{
|
| 504 |
E T6X, T6Y, T71, Tcy; |
| 505 |
T6X = ri[WS(rs, 47)];
|
| 506 |
T6Y = T6W * T6X; |
| 507 |
T71 = ii[WS(rs, 47)];
|
| 508 |
Tcy = T6W * T71; |
| 509 |
T72 = FMA(T70, T71, T6Y); |
| 510 |
Tcz = FNMS(T70, T6X, Tcy); |
| 511 |
} |
| 512 |
{
|
| 513 |
E T6K, T6L, T6O, TbE; |
| 514 |
T6K = ri[WS(rs, 31)];
|
| 515 |
T6L = T6J * T6K; |
| 516 |
T6O = ii[WS(rs, 31)];
|
| 517 |
TbE = T6J * T6O; |
| 518 |
T6P = FMA(T6N, T6O, T6L); |
| 519 |
TbF = FNMS(T6N, T6K, TbE); |
| 520 |
} |
| 521 |
{
|
| 522 |
E T6R, T6S, T6T, Tcw; |
| 523 |
T6R = ri[WS(rs, 15)];
|
| 524 |
T6S = TK * T6R; |
| 525 |
T6T = ii[WS(rs, 15)];
|
| 526 |
Tcw = TK * T6T; |
| 527 |
T6U = FMA(TO, T6T, T6S); |
| 528 |
Tcx = FNMS(TO, T6R, Tcw); |
| 529 |
} |
| 530 |
{
|
| 531 |
E T6Q, T73, Tha, Thb; |
| 532 |
T6Q = T6H + T6P; |
| 533 |
T73 = T6U + T72; |
| 534 |
T74 = T6Q + T73; |
| 535 |
Thr = T6Q - T73; |
| 536 |
Tha = TbD + TbF; |
| 537 |
Thb = Tcx + Tcz; |
| 538 |
Thc = Tha - Thb; |
| 539 |
Tja = Tha + Thb; |
| 540 |
} |
| 541 |
{
|
| 542 |
E TbG, TbH, Tcv, TcA; |
| 543 |
TbG = TbD - TbF; |
| 544 |
TbH = T6U - T72; |
| 545 |
TbI = TbG + TbH; |
| 546 |
TeE = TbG - TbH; |
| 547 |
Tcv = T6H - T6P; |
| 548 |
TcA = Tcx - Tcz; |
| 549 |
TcB = Tcv - TcA; |
| 550 |
TeP = Tcv + TcA; |
| 551 |
} |
| 552 |
} |
| 553 |
{
|
| 554 |
E T16, T8y, T1z, T8I, T1g, T8A, T1r, T8G; |
| 555 |
{
|
| 556 |
E T11, T12, T15, T8x; |
| 557 |
T11 = ri[WS(rs, 8)];
|
| 558 |
T12 = T10 * T11; |
| 559 |
T15 = ii[WS(rs, 8)];
|
| 560 |
T8x = T10 * T15; |
| 561 |
T16 = FMA(T14, T15, T12); |
| 562 |
T8y = FNMS(T14, T11, T8x); |
| 563 |
} |
| 564 |
{
|
| 565 |
E T1u, T1v, T1y, T8H; |
| 566 |
T1u = ri[WS(rs, 24)];
|
| 567 |
T1v = T1t * T1u; |
| 568 |
T1y = ii[WS(rs, 24)];
|
| 569 |
T8H = T1t * T1y; |
| 570 |
T1z = FMA(T1x, T1y, T1v); |
| 571 |
T8I = FNMS(T1x, T1u, T8H); |
| 572 |
} |
| 573 |
{
|
| 574 |
E T1b, T1c, T1f, T8z; |
| 575 |
T1b = ri[WS(rs, 40)];
|
| 576 |
T1c = T1a * T1b; |
| 577 |
T1f = ii[WS(rs, 40)];
|
| 578 |
T8z = T1a * T1f; |
| 579 |
T1g = FMA(T1e, T1f, T1c); |
| 580 |
T8A = FNMS(T1e, T1b, T8z); |
| 581 |
} |
| 582 |
{
|
| 583 |
E T1m, T1n, T1q, T8F; |
| 584 |
T1m = ri[WS(rs, 56)];
|
| 585 |
T1n = T1l * T1m; |
| 586 |
T1q = ii[WS(rs, 56)];
|
| 587 |
T8F = T1l * T1q; |
| 588 |
T1r = FMA(T1p, T1q, T1n); |
| 589 |
T8G = FNMS(T1p, T1m, T8F); |
| 590 |
} |
| 591 |
{
|
| 592 |
E T1h, T1A, Tg5, Tg6; |
| 593 |
T1h = T16 + T1g; |
| 594 |
T1A = T1r + T1z; |
| 595 |
T1B = T1h + T1A; |
| 596 |
TkD = T1A - T1h; |
| 597 |
Tg5 = T8y + T8A; |
| 598 |
Tg6 = T8G + T8I; |
| 599 |
Tg7 = Tg5 - Tg6; |
| 600 |
Tk7 = Tg5 + Tg6; |
| 601 |
} |
| 602 |
{
|
| 603 |
E T8B, T8C, T8E, T8J; |
| 604 |
T8B = T8y - T8A; |
| 605 |
T8C = T16 - T1g; |
| 606 |
T8D = T8B - T8C; |
| 607 |
TdT = T8C + T8B; |
| 608 |
T8E = T1r - T1z; |
| 609 |
T8J = T8G - T8I; |
| 610 |
T8K = T8E + T8J; |
| 611 |
TdU = T8E - T8J; |
| 612 |
} |
| 613 |
} |
| 614 |
{
|
| 615 |
E T1G, T8O, T25, T8Y, T1O, T8Q, T1X, T8W; |
| 616 |
{
|
| 617 |
E T1D, T1E, T1F, T8N; |
| 618 |
T1D = ri[WS(rs, 4)];
|
| 619 |
T1E = T7 * T1D; |
| 620 |
T1F = ii[WS(rs, 4)];
|
| 621 |
T8N = T7 * T1F; |
| 622 |
T1G = FMA(Tb, T1F, T1E); |
| 623 |
T8O = FNMS(Tb, T1D, T8N); |
| 624 |
} |
| 625 |
{
|
| 626 |
E T20, T21, T24, T8X; |
| 627 |
T20 = ri[WS(rs, 52)];
|
| 628 |
T21 = T1Z * T20; |
| 629 |
T24 = ii[WS(rs, 52)];
|
| 630 |
T8X = T1Z * T24; |
| 631 |
T25 = FMA(T23, T24, T21); |
| 632 |
T8Y = FNMS(T23, T20, T8X); |
| 633 |
} |
| 634 |
{
|
| 635 |
E T1J, T1K, T1N, T8P; |
| 636 |
T1J = ri[WS(rs, 36)];
|
| 637 |
T1K = T1I * T1J; |
| 638 |
T1N = ii[WS(rs, 36)];
|
| 639 |
T8P = T1I * T1N; |
| 640 |
T1O = FMA(T1M, T1N, T1K); |
| 641 |
T8Q = FNMS(T1M, T1J, T8P); |
| 642 |
} |
| 643 |
{
|
| 644 |
E T1S, T1T, T1W, T8V; |
| 645 |
T1S = ri[WS(rs, 20)];
|
| 646 |
T1T = T1R * T1S; |
| 647 |
T1W = ii[WS(rs, 20)];
|
| 648 |
T8V = T1R * T1W; |
| 649 |
T1X = FMA(T1V, T1W, T1T); |
| 650 |
T8W = FNMS(T1V, T1S, T8V); |
| 651 |
} |
| 652 |
{
|
| 653 |
E T1P, T26, Tga, Tgb; |
| 654 |
T1P = T1G + T1O; |
| 655 |
T26 = T1X + T25; |
| 656 |
T27 = T1P + T26; |
| 657 |
Tg9 = T1P - T26; |
| 658 |
Tga = T8O + T8Q; |
| 659 |
Tgb = T8W + T8Y; |
| 660 |
Tgc = Tga - Tgb; |
| 661 |
TiJ = Tga + Tgb; |
| 662 |
} |
| 663 |
{
|
| 664 |
E T8R, T8S, T8U, T8Z; |
| 665 |
T8R = T8O - T8Q; |
| 666 |
T8S = T1X - T25; |
| 667 |
T8T = T8R + T8S; |
| 668 |
TdY = T8R - T8S; |
| 669 |
T8U = T1G - T1O; |
| 670 |
T8Z = T8W - T8Y; |
| 671 |
T90 = T8U - T8Z; |
| 672 |
TdX = T8U + T8Z; |
| 673 |
} |
| 674 |
} |
| 675 |
{
|
| 676 |
E T3T, T9T, T4i, Taj, T3Z, T9V, T46, Tah; |
| 677 |
{
|
| 678 |
E T3O, T3P, T3S, T9S; |
| 679 |
T3O = ri[WS(rs, 62)];
|
| 680 |
T3P = T3N * T3O; |
| 681 |
T3S = ii[WS(rs, 62)];
|
| 682 |
T9S = T3N * T3S; |
| 683 |
T3T = FMA(T3R, T3S, T3P); |
| 684 |
T9T = FNMS(T3R, T3O, T9S); |
| 685 |
} |
| 686 |
{
|
| 687 |
E T4d, T4e, T4h, Tai; |
| 688 |
T4d = ri[WS(rs, 46)];
|
| 689 |
T4e = T4c * T4d; |
| 690 |
T4h = ii[WS(rs, 46)];
|
| 691 |
Tai = T4c * T4h; |
| 692 |
T4i = FMA(T4g, T4h, T4e); |
| 693 |
Taj = FNMS(T4g, T4d, Tai); |
| 694 |
} |
| 695 |
{
|
| 696 |
E T3V, T3W, T3Y, T9U; |
| 697 |
T3V = ri[WS(rs, 30)];
|
| 698 |
T3W = T3U * T3V; |
| 699 |
T3Y = ii[WS(rs, 30)];
|
| 700 |
T9U = T3U * T3Y; |
| 701 |
T3Z = FMA(T3X, T3Y, T3W); |
| 702 |
T9V = FNMS(T3X, T3V, T9U); |
| 703 |
} |
| 704 |
{
|
| 705 |
E T42, T43, T45, Tag; |
| 706 |
T42 = ri[WS(rs, 14)];
|
| 707 |
T43 = T41 * T42; |
| 708 |
T45 = ii[WS(rs, 14)];
|
| 709 |
Tag = T41 * T45; |
| 710 |
T46 = FMA(T44, T45, T43); |
| 711 |
Tah = FNMS(T44, T42, Tag); |
| 712 |
} |
| 713 |
{
|
| 714 |
E T40, T4j, Tgw, Tgx; |
| 715 |
T40 = T3T + T3Z; |
| 716 |
T4j = T46 + T4i; |
| 717 |
T4k = T40 + T4j; |
| 718 |
TgB = T40 - T4j; |
| 719 |
Tgw = T9T + T9V; |
| 720 |
Tgx = Tah + Taj; |
| 721 |
Tgy = Tgw - Tgx; |
| 722 |
TiT = Tgw + Tgx; |
| 723 |
} |
| 724 |
{
|
| 725 |
E T9W, T9X, Taf, Tak; |
| 726 |
T9W = T9T - T9V; |
| 727 |
T9X = T46 - T4i; |
| 728 |
T9Y = T9W + T9X; |
| 729 |
Tec = T9W - T9X; |
| 730 |
Taf = T3T - T3Z; |
| 731 |
Tak = Tah - Taj; |
| 732 |
Tal = Taf - Tak; |
| 733 |
Tef = Taf + Tak; |
| 734 |
} |
| 735 |
} |
| 736 |
{
|
| 737 |
E T4S, Tau, T5b, Tbq, T4Y, Taw, T53, Tbo; |
| 738 |
{
|
| 739 |
E T4P, T4Q, T4R, Tat; |
| 740 |
T4P = ri[WS(rs, 1)];
|
| 741 |
T4Q = T2 * T4P; |
| 742 |
T4R = ii[WS(rs, 1)];
|
| 743 |
Tat = T2 * T4R; |
| 744 |
T4S = FMA(T5, T4R, T4Q); |
| 745 |
Tau = FNMS(T5, T4P, Tat); |
| 746 |
} |
| 747 |
{
|
| 748 |
E T56, T57, T5a, Tbp; |
| 749 |
T56 = ri[WS(rs, 49)];
|
| 750 |
T57 = T55 * T56; |
| 751 |
T5a = ii[WS(rs, 49)];
|
| 752 |
Tbp = T55 * T5a; |
| 753 |
T5b = FMA(T59, T5a, T57); |
| 754 |
Tbq = FNMS(T59, T56, Tbp); |
| 755 |
} |
| 756 |
{
|
| 757 |
E T4U, T4V, T4X, Tav; |
| 758 |
T4U = ri[WS(rs, 33)];
|
| 759 |
T4V = T4T * T4U; |
| 760 |
T4X = ii[WS(rs, 33)];
|
| 761 |
Tav = T4T * T4X; |
| 762 |
T4Y = FMA(T4W, T4X, T4V); |
| 763 |
Taw = FNMS(T4W, T4U, Tav); |
| 764 |
} |
| 765 |
{
|
| 766 |
E T50, T51, T52, Tbn; |
| 767 |
T50 = ri[WS(rs, 17)];
|
| 768 |
T51 = T48 * T50; |
| 769 |
T52 = ii[WS(rs, 17)];
|
| 770 |
Tbn = T48 * T52; |
| 771 |
T53 = FMA(T4b, T52, T51); |
| 772 |
Tbo = FNMS(T4b, T50, Tbn); |
| 773 |
} |
| 774 |
{
|
| 775 |
E T4Z, T5c, TgJ, TgK; |
| 776 |
T4Z = T4S + T4Y; |
| 777 |
T5c = T53 + T5b; |
| 778 |
T5d = T4Z + T5c; |
| 779 |
Th0 = T4Z - T5c; |
| 780 |
TgJ = Tau + Taw; |
| 781 |
TgK = Tbo + Tbq; |
| 782 |
TgL = TgJ - TgK; |
| 783 |
TiZ = TgJ + TgK; |
| 784 |
} |
| 785 |
{
|
| 786 |
E Tax, Tay, Tbm, Tbr; |
| 787 |
Tax = Tau - Taw; |
| 788 |
Tay = T53 - T5b; |
| 789 |
Taz = Tax + Tay; |
| 790 |
Tel = Tax - Tay; |
| 791 |
Tbm = T4S - T4Y; |
| 792 |
Tbr = Tbo - Tbq; |
| 793 |
Tbs = Tbm - Tbr; |
| 794 |
Tew = Tbm + Tbr; |
| 795 |
} |
| 796 |
} |
| 797 |
{
|
| 798 |
E T3f, T9s, T3I, T9B, T3t, T9u, T3C, T9z; |
| 799 |
{
|
| 800 |
E T3b, T3c, T3e, T9r; |
| 801 |
T3b = ri[WS(rs, 10)];
|
| 802 |
T3c = T3a * T3b; |
| 803 |
T3e = ii[WS(rs, 10)];
|
| 804 |
T9r = T3a * T3e; |
| 805 |
T3f = FMA(T3d, T3e, T3c); |
| 806 |
T9s = FNMS(T3d, T3b, T9r); |
| 807 |
} |
| 808 |
{
|
| 809 |
E T3E, T3F, T3H, T9A; |
| 810 |
T3E = ri[WS(rs, 26)];
|
| 811 |
T3F = T3D * T3E; |
| 812 |
T3H = ii[WS(rs, 26)];
|
| 813 |
T9A = T3D * T3H; |
| 814 |
T3I = FMA(T3G, T3H, T3F); |
| 815 |
T9B = FNMS(T3G, T3E, T9A); |
| 816 |
} |
| 817 |
{
|
| 818 |
E T3o, T3p, T3s, T9t; |
| 819 |
T3o = ri[WS(rs, 42)];
|
| 820 |
T3p = T3n * T3o; |
| 821 |
T3s = ii[WS(rs, 42)];
|
| 822 |
T9t = T3n * T3s; |
| 823 |
T3t = FMA(T3r, T3s, T3p); |
| 824 |
T9u = FNMS(T3r, T3o, T9t); |
| 825 |
} |
| 826 |
{
|
| 827 |
E T3x, T3y, T3B, T9y; |
| 828 |
T3x = ri[WS(rs, 58)];
|
| 829 |
T3y = T3w * T3x; |
| 830 |
T3B = ii[WS(rs, 58)];
|
| 831 |
T9y = T3w * T3B; |
| 832 |
T3C = FMA(T3A, T3B, T3y); |
| 833 |
T9z = FNMS(T3A, T3x, T9y); |
| 834 |
} |
| 835 |
{
|
| 836 |
E T3u, T3J, Tgr, Tgs; |
| 837 |
T3u = T3f + T3t; |
| 838 |
T3J = T3C + T3I; |
| 839 |
T3K = T3u + T3J; |
| 840 |
Tgo = T3J - T3u; |
| 841 |
Tgr = T9s + T9u; |
| 842 |
Tgs = T9z + T9B; |
| 843 |
Tgt = Tgr - Tgs; |
| 844 |
TiO = Tgr + Tgs; |
| 845 |
{
|
| 846 |
E T9w, T9O, T9D, T9N; |
| 847 |
{
|
| 848 |
E T9q, T9v, T9x, T9C; |
| 849 |
T9q = T3f - T3t; |
| 850 |
T9v = T9s - T9u; |
| 851 |
T9w = T9q + T9v; |
| 852 |
T9O = T9v - T9q; |
| 853 |
T9x = T3C - T3I; |
| 854 |
T9C = T9z - T9B; |
| 855 |
T9D = T9x - T9C; |
| 856 |
T9N = T9x + T9C; |
| 857 |
} |
| 858 |
T9E = T9w - T9D; |
| 859 |
Te9 = T9w + T9D; |
| 860 |
T9P = T9N - T9O; |
| 861 |
Te6 = T9O + T9N; |
| 862 |
} |
| 863 |
} |
| 864 |
} |
| 865 |
{
|
| 866 |
E T4o, Ta1, T4J, Taa, T4u, Ta3, T4D, Ta8; |
| 867 |
{
|
| 868 |
E T4l, T4m, T4n, Ta0; |
| 869 |
T4l = ri[WS(rs, 6)];
|
| 870 |
T4m = T3g * T4l; |
| 871 |
T4n = ii[WS(rs, 6)];
|
| 872 |
Ta0 = T3g * T4n; |
| 873 |
T4o = FMA(T3i, T4n, T4m); |
| 874 |
Ta1 = FNMS(T3i, T4l, Ta0); |
| 875 |
} |
| 876 |
{
|
| 877 |
E T4F, T4G, T4I, Ta9; |
| 878 |
T4F = ri[WS(rs, 22)];
|
| 879 |
T4G = T4E * T4F; |
| 880 |
T4I = ii[WS(rs, 22)];
|
| 881 |
Ta9 = T4E * T4I; |
| 882 |
T4J = FMA(T4H, T4I, T4G); |
| 883 |
Taa = FNMS(T4H, T4F, Ta9); |
| 884 |
} |
| 885 |
{
|
| 886 |
E T4q, T4r, T4t, Ta2; |
| 887 |
T4q = ri[WS(rs, 38)];
|
| 888 |
T4r = T4p * T4q; |
| 889 |
T4t = ii[WS(rs, 38)];
|
| 890 |
Ta2 = T4p * T4t; |
| 891 |
T4u = FMA(T4s, T4t, T4r); |
| 892 |
Ta3 = FNMS(T4s, T4q, Ta2); |
| 893 |
} |
| 894 |
{
|
| 895 |
E T4y, T4z, T4C, Ta7; |
| 896 |
T4y = ri[WS(rs, 54)];
|
| 897 |
T4z = T4x * T4y; |
| 898 |
T4C = ii[WS(rs, 54)];
|
| 899 |
Ta7 = T4x * T4C; |
| 900 |
T4D = FMA(T4B, T4C, T4z); |
| 901 |
Ta8 = FNMS(T4B, T4y, Ta7); |
| 902 |
} |
| 903 |
{
|
| 904 |
E T4v, T4K, TgC, TgD; |
| 905 |
T4v = T4o + T4u; |
| 906 |
T4K = T4D + T4J; |
| 907 |
T4L = T4v + T4K; |
| 908 |
Tgz = T4K - T4v; |
| 909 |
TgC = Ta1 + Ta3; |
| 910 |
TgD = Ta8 + Taa; |
| 911 |
TgE = TgC - TgD; |
| 912 |
TiU = TgC + TgD; |
| 913 |
{
|
| 914 |
E Ta5, Tan, Tac, Tam; |
| 915 |
{
|
| 916 |
E T9Z, Ta4, Ta6, Tab; |
| 917 |
T9Z = T4o - T4u; |
| 918 |
Ta4 = Ta1 - Ta3; |
| 919 |
Ta5 = T9Z + Ta4; |
| 920 |
Tan = Ta4 - T9Z; |
| 921 |
Ta6 = T4D - T4J; |
| 922 |
Tab = Ta8 - Taa; |
| 923 |
Tac = Ta6 - Tab; |
| 924 |
Tam = Ta6 + Tab; |
| 925 |
} |
| 926 |
Tad = Ta5 - Tac; |
| 927 |
Teg = Ta5 + Tac; |
| 928 |
Tao = Tam - Tan; |
| 929 |
Ted = Tan + Tam; |
| 930 |
} |
| 931 |
} |
| 932 |
} |
| 933 |
{
|
| 934 |
E T5h, TaC, T5G, TaL, T5p, TaE, T5y, TaJ; |
| 935 |
{
|
| 936 |
E T5e, T5f, T5g, TaB; |
| 937 |
T5e = ri[WS(rs, 9)];
|
| 938 |
T5f = T8 * T5e; |
| 939 |
T5g = ii[WS(rs, 9)];
|
| 940 |
TaB = T8 * T5g; |
| 941 |
T5h = FMA(Tc, T5g, T5f); |
| 942 |
TaC = FNMS(Tc, T5e, TaB); |
| 943 |
} |
| 944 |
{
|
| 945 |
E T5B, T5C, T5F, TaK; |
| 946 |
T5B = ri[WS(rs, 25)];
|
| 947 |
T5C = T5A * T5B; |
| 948 |
T5F = ii[WS(rs, 25)];
|
| 949 |
TaK = T5A * T5F; |
| 950 |
T5G = FMA(T5E, T5F, T5C); |
| 951 |
TaL = FNMS(T5E, T5B, TaK); |
| 952 |
} |
| 953 |
{
|
| 954 |
E T5k, T5l, T5o, TaD; |
| 955 |
T5k = ri[WS(rs, 41)];
|
| 956 |
T5l = T5j * T5k; |
| 957 |
T5o = ii[WS(rs, 41)];
|
| 958 |
TaD = T5j * T5o; |
| 959 |
T5p = FMA(T5n, T5o, T5l); |
| 960 |
TaE = FNMS(T5n, T5k, TaD); |
| 961 |
} |
| 962 |
{
|
| 963 |
E T5t, T5u, T5x, TaI; |
| 964 |
T5t = ri[WS(rs, 57)];
|
| 965 |
T5u = T5s * T5t; |
| 966 |
T5x = ii[WS(rs, 57)];
|
| 967 |
TaI = T5s * T5x; |
| 968 |
T5y = FMA(T5w, T5x, T5u); |
| 969 |
TaJ = FNMS(T5w, T5t, TaI); |
| 970 |
} |
| 971 |
{
|
| 972 |
E T5q, T5H, Th1, Th2; |
| 973 |
T5q = T5h + T5p; |
| 974 |
T5H = T5y + T5G; |
| 975 |
T5I = T5q + T5H; |
| 976 |
TgM = T5H - T5q; |
| 977 |
Th1 = TaC + TaE; |
| 978 |
Th2 = TaJ + TaL; |
| 979 |
Th3 = Th1 - Th2; |
| 980 |
Tj0 = Th1 + Th2; |
| 981 |
{
|
| 982 |
E TaG, Tbu, TaN, Tbt; |
| 983 |
{
|
| 984 |
E TaA, TaF, TaH, TaM; |
| 985 |
TaA = T5h - T5p; |
| 986 |
TaF = TaC - TaE; |
| 987 |
TaG = TaA + TaF; |
| 988 |
Tbu = TaF - TaA; |
| 989 |
TaH = T5y - T5G; |
| 990 |
TaM = TaJ - TaL; |
| 991 |
TaN = TaH - TaM; |
| 992 |
Tbt = TaH + TaM; |
| 993 |
} |
| 994 |
TaO = TaG - TaN; |
| 995 |
Tex = TaG + TaN; |
| 996 |
Tbv = Tbt - Tbu; |
| 997 |
Tem = Tbu + Tbt; |
| 998 |
} |
| 999 |
} |
| 1000 |
} |
| 1001 |
{
|
| 1002 |
E T78, TbL, T7t, TbU, T7e, TbN, T7n, TbS; |
| 1003 |
{
|
| 1004 |
E T75, T76, T77, TbK; |
| 1005 |
T75 = ri[WS(rs, 7)];
|
| 1006 |
T76 = T1i * T75; |
| 1007 |
T77 = ii[WS(rs, 7)];
|
| 1008 |
TbK = T1i * T77; |
| 1009 |
T78 = FMA(T1k, T77, T76); |
| 1010 |
TbL = FNMS(T1k, T75, TbK); |
| 1011 |
} |
| 1012 |
{
|
| 1013 |
E T7p, T7q, T7s, TbT; |
| 1014 |
T7p = ri[WS(rs, 23)];
|
| 1015 |
T7q = T7o * T7p; |
| 1016 |
T7s = ii[WS(rs, 23)];
|
| 1017 |
TbT = T7o * T7s; |
| 1018 |
T7t = FMA(T7r, T7s, T7q); |
| 1019 |
TbU = FNMS(T7r, T7p, TbT); |
| 1020 |
} |
| 1021 |
{
|
| 1022 |
E T7a, T7b, T7d, TbM; |
| 1023 |
T7a = ri[WS(rs, 39)];
|
| 1024 |
T7b = T79 * T7a; |
| 1025 |
T7d = ii[WS(rs, 39)];
|
| 1026 |
TbM = T79 * T7d; |
| 1027 |
T7e = FMA(T7c, T7d, T7b); |
| 1028 |
TbN = FNMS(T7c, T7a, TbM); |
| 1029 |
} |
| 1030 |
{
|
| 1031 |
E T7i, T7j, T7m, TbR; |
| 1032 |
T7i = ri[WS(rs, 55)];
|
| 1033 |
T7j = T7h * T7i; |
| 1034 |
T7m = ii[WS(rs, 55)];
|
| 1035 |
TbR = T7h * T7m; |
| 1036 |
T7n = FMA(T7l, T7m, T7j); |
| 1037 |
TbS = FNMS(T7l, T7i, TbR); |
| 1038 |
} |
| 1039 |
{
|
| 1040 |
E T7f, T7u, Ths, Tht; |
| 1041 |
T7f = T78 + T7e; |
| 1042 |
T7u = T7n + T7t; |
| 1043 |
T7v = T7f + T7u; |
| 1044 |
Thd = T7u - T7f; |
| 1045 |
Ths = TbL + TbN; |
| 1046 |
Tht = TbS + TbU; |
| 1047 |
Thu = Ths - Tht; |
| 1048 |
Tjb = Ths + Tht; |
| 1049 |
{
|
| 1050 |
E TbP, TcD, TbW, TcC; |
| 1051 |
{
|
| 1052 |
E TbJ, TbO, TbQ, TbV; |
| 1053 |
TbJ = T78 - T7e; |
| 1054 |
TbO = TbL - TbN; |
| 1055 |
TbP = TbJ + TbO; |
| 1056 |
TcD = TbO - TbJ; |
| 1057 |
TbQ = T7n - T7t; |
| 1058 |
TbV = TbS - TbU; |
| 1059 |
TbW = TbQ - TbV; |
| 1060 |
TcC = TbQ + TbV; |
| 1061 |
} |
| 1062 |
TbX = TbP - TbW; |
| 1063 |
TeQ = TbP + TbW; |
| 1064 |
TcE = TcC - TcD; |
| 1065 |
TeF = TcD + TcC; |
| 1066 |
} |
| 1067 |
} |
| 1068 |
} |
| 1069 |
{
|
| 1070 |
E T5N, Tbd, T66, Tb9, T5T, Tbf, T5Y, Tb7; |
| 1071 |
{
|
| 1072 |
E T5K, T5L, T5M, Tbc; |
| 1073 |
T5K = ri[WS(rs, 5)];
|
| 1074 |
T5L = Td * T5K; |
| 1075 |
T5M = ii[WS(rs, 5)];
|
| 1076 |
Tbc = Td * T5M; |
| 1077 |
T5N = FMA(Th, T5M, T5L); |
| 1078 |
Tbd = FNMS(Th, T5K, Tbc); |
| 1079 |
} |
| 1080 |
{
|
| 1081 |
E T61, T62, T65, Tb8; |
| 1082 |
T61 = ri[WS(rs, 53)];
|
| 1083 |
T62 = T60 * T61; |
| 1084 |
T65 = ii[WS(rs, 53)];
|
| 1085 |
Tb8 = T60 * T65; |
| 1086 |
T66 = FMA(T64, T65, T62); |
| 1087 |
Tb9 = FNMS(T64, T61, Tb8); |
| 1088 |
} |
| 1089 |
{
|
| 1090 |
E T5P, T5Q, T5S, Tbe; |
| 1091 |
T5P = ri[WS(rs, 37)];
|
| 1092 |
T5Q = T5O * T5P; |
| 1093 |
T5S = ii[WS(rs, 37)];
|
| 1094 |
Tbe = T5O * T5S; |
| 1095 |
T5T = FMA(T5R, T5S, T5Q); |
| 1096 |
Tbf = FNMS(T5R, T5P, Tbe); |
| 1097 |
} |
| 1098 |
{
|
| 1099 |
E T5V, T5W, T5X, Tb6; |
| 1100 |
T5V = ri[WS(rs, 21)];
|
| 1101 |
T5W = T3j * T5V; |
| 1102 |
T5X = ii[WS(rs, 21)];
|
| 1103 |
Tb6 = T3j * T5X; |
| 1104 |
T5Y = FMA(T3m, T5X, T5W); |
| 1105 |
Tb7 = FNMS(T3m, T5V, Tb6); |
| 1106 |
} |
| 1107 |
{
|
| 1108 |
E T5U, T67, TgR, TgO, TgP, TgQ; |
| 1109 |
T5U = T5N + T5T; |
| 1110 |
T67 = T5Y + T66; |
| 1111 |
TgR = T5U - T67; |
| 1112 |
TgO = Tbd + Tbf; |
| 1113 |
TgP = Tb7 + Tb9; |
| 1114 |
TgQ = TgO - TgP; |
| 1115 |
T68 = T5U + T67; |
| 1116 |
Tj5 = TgO + TgP; |
| 1117 |
TgS = TgQ - TgR; |
| 1118 |
Th5 = TgR + TgQ; |
| 1119 |
} |
| 1120 |
{
|
| 1121 |
E Tbb, Tep, Tbi, Teo; |
| 1122 |
{
|
| 1123 |
E Tb5, Tba, Tbg, Tbh; |
| 1124 |
Tb5 = T5N - T5T; |
| 1125 |
Tba = Tb7 - Tb9; |
| 1126 |
Tbb = Tb5 - Tba; |
| 1127 |
Tep = Tb5 + Tba; |
| 1128 |
Tbg = Tbd - Tbf; |
| 1129 |
Tbh = T5Y - T66; |
| 1130 |
Tbi = Tbg + Tbh; |
| 1131 |
Teo = Tbg - Tbh; |
| 1132 |
} |
| 1133 |
Tbj = FNMS(KP414213562, Tbi, Tbb); |
| 1134 |
Tez = FMA(KP414213562, Teo, Tep); |
| 1135 |
Tbx = FMA(KP414213562, Tbb, Tbi); |
| 1136 |
Teq = FNMS(KP414213562, Tep, Teo); |
| 1137 |
} |
| 1138 |
} |
| 1139 |
{
|
| 1140 |
E T6g, TaY, T6z, TaU, T6m, Tb0, T6r, TaS; |
| 1141 |
{
|
| 1142 |
E T6b, T6c, T6f, TaX; |
| 1143 |
T6b = ri[WS(rs, 61)];
|
| 1144 |
T6c = T6a * T6b; |
| 1145 |
T6f = ii[WS(rs, 61)];
|
| 1146 |
TaX = T6a * T6f; |
| 1147 |
T6g = FMA(T6e, T6f, T6c); |
| 1148 |
TaY = FNMS(T6e, T6b, TaX); |
| 1149 |
} |
| 1150 |
{
|
| 1151 |
E T6u, T6v, T6y, TaT; |
| 1152 |
T6u = ri[WS(rs, 45)];
|
| 1153 |
T6v = T6t * T6u; |
| 1154 |
T6y = ii[WS(rs, 45)];
|
| 1155 |
TaT = T6t * T6y; |
| 1156 |
T6z = FMA(T6x, T6y, T6v); |
| 1157 |
TaU = FNMS(T6x, T6u, TaT); |
| 1158 |
} |
| 1159 |
{
|
| 1160 |
E T6i, T6j, T6l, TaZ; |
| 1161 |
T6i = ri[WS(rs, 29)];
|
| 1162 |
T6j = T6h * T6i; |
| 1163 |
T6l = ii[WS(rs, 29)];
|
| 1164 |
TaZ = T6h * T6l; |
| 1165 |
T6m = FMA(T6k, T6l, T6j); |
| 1166 |
Tb0 = FNMS(T6k, T6i, TaZ); |
| 1167 |
} |
| 1168 |
{
|
| 1169 |
E T6o, T6p, T6q, TaR; |
| 1170 |
T6o = ri[WS(rs, 13)];
|
| 1171 |
T6p = T17 * T6o; |
| 1172 |
T6q = ii[WS(rs, 13)];
|
| 1173 |
TaR = T17 * T6q; |
| 1174 |
T6r = FMA(T19, T6q, T6p); |
| 1175 |
TaS = FNMS(T19, T6o, TaR); |
| 1176 |
} |
| 1177 |
{
|
| 1178 |
E T6n, T6A, TgT, TgU, TgV, TgW; |
| 1179 |
T6n = T6g + T6m; |
| 1180 |
T6A = T6r + T6z; |
| 1181 |
TgT = T6n - T6A; |
| 1182 |
TgU = TaY + Tb0; |
| 1183 |
TgV = TaS + TaU; |
| 1184 |
TgW = TgU - TgV; |
| 1185 |
T6B = T6n + T6A; |
| 1186 |
Tj6 = TgU + TgV; |
| 1187 |
TgX = TgT + TgW; |
| 1188 |
Th6 = TgT - TgW; |
| 1189 |
} |
| 1190 |
{
|
| 1191 |
E TaW, Tes, Tb3, Ter; |
| 1192 |
{
|
| 1193 |
E TaQ, TaV, Tb1, Tb2; |
| 1194 |
TaQ = T6g - T6m; |
| 1195 |
TaV = TaS - TaU; |
| 1196 |
TaW = TaQ - TaV; |
| 1197 |
Tes = TaQ + TaV; |
| 1198 |
Tb1 = TaY - Tb0; |
| 1199 |
Tb2 = T6r - T6z; |
| 1200 |
Tb3 = Tb1 + Tb2; |
| 1201 |
Ter = Tb1 - Tb2; |
| 1202 |
} |
| 1203 |
Tb4 = FMA(KP414213562, Tb3, TaW); |
| 1204 |
TeA = FNMS(KP414213562, Ter, Tes); |
| 1205 |
Tby = FNMS(KP414213562, TaW, Tb3); |
| 1206 |
Tet = FMA(KP414213562, Tes, Ter); |
| 1207 |
} |
| 1208 |
} |
| 1209 |
{
|
| 1210 |
E T7A, Tcm, T7T, Tci, T7G, Tco, T7L, Tcg; |
| 1211 |
{
|
| 1212 |
E T7x, T7y, T7z, Tcl; |
| 1213 |
T7x = ri[WS(rs, 3)];
|
| 1214 |
T7y = T3 * T7x; |
| 1215 |
T7z = ii[WS(rs, 3)];
|
| 1216 |
Tcl = T3 * T7z; |
| 1217 |
T7A = FMA(T6, T7z, T7y); |
| 1218 |
Tcm = FNMS(T6, T7x, Tcl); |
| 1219 |
} |
| 1220 |
{
|
| 1221 |
E T7O, T7P, T7S, Tch; |
| 1222 |
T7O = ri[WS(rs, 51)];
|
| 1223 |
T7P = T7N * T7O; |
| 1224 |
T7S = ii[WS(rs, 51)];
|
| 1225 |
Tch = T7N * T7S; |
| 1226 |
T7T = FMA(T7R, T7S, T7P); |
| 1227 |
Tci = FNMS(T7R, T7O, Tch); |
| 1228 |
} |
| 1229 |
{
|
| 1230 |
E T7C, T7D, T7F, Tcn; |
| 1231 |
T7C = ri[WS(rs, 35)];
|
| 1232 |
T7D = T7B * T7C; |
| 1233 |
T7F = ii[WS(rs, 35)];
|
| 1234 |
Tcn = T7B * T7F; |
| 1235 |
T7G = FMA(T7E, T7F, T7D); |
| 1236 |
Tco = FNMS(T7E, T7C, Tcn); |
| 1237 |
} |
| 1238 |
{
|
| 1239 |
E T7I, T7J, T7K, Tcf; |
| 1240 |
T7I = ri[WS(rs, 19)];
|
| 1241 |
T7J = T2u * T7I; |
| 1242 |
T7K = ii[WS(rs, 19)];
|
| 1243 |
Tcf = T2u * T7K; |
| 1244 |
T7L = FMA(T2x, T7K, T7J); |
| 1245 |
Tcg = FNMS(T2x, T7I, Tcf); |
| 1246 |
} |
| 1247 |
{
|
| 1248 |
E T7H, T7U, Thi, Thf, Thg, Thh; |
| 1249 |
T7H = T7A + T7G; |
| 1250 |
T7U = T7L + T7T; |
| 1251 |
Thi = T7H - T7U; |
| 1252 |
Thf = Tcm + Tco; |
| 1253 |
Thg = Tcg + Tci; |
| 1254 |
Thh = Thf - Thg; |
| 1255 |
T7V = T7H + T7U; |
| 1256 |
Tjg = Thf + Thg; |
| 1257 |
Thj = Thh - Thi; |
| 1258 |
Thw = Thi + Thh; |
| 1259 |
} |
| 1260 |
{
|
| 1261 |
E Tck, TeI, Tcr, TeH; |
| 1262 |
{
|
| 1263 |
E Tce, Tcj, Tcp, Tcq; |
| 1264 |
Tce = T7A - T7G; |
| 1265 |
Tcj = Tcg - Tci; |
| 1266 |
Tck = Tce - Tcj; |
| 1267 |
TeI = Tce + Tcj; |
| 1268 |
Tcp = Tcm - Tco; |
| 1269 |
Tcq = T7L - T7T; |
| 1270 |
Tcr = Tcp + Tcq; |
| 1271 |
TeH = Tcp - Tcq; |
| 1272 |
} |
| 1273 |
Tcs = FNMS(KP414213562, Tcr, Tck); |
| 1274 |
TeS = FMA(KP414213562, TeH, TeI); |
| 1275 |
TcG = FMA(KP414213562, Tck, Tcr); |
| 1276 |
TeJ = FNMS(KP414213562, TeI, TeH); |
| 1277 |
} |
| 1278 |
} |
| 1279 |
{
|
| 1280 |
E T83, Tc7, T8k, Tc3, T87, Tc9, T8c, Tc1; |
| 1281 |
{
|
| 1282 |
E T7Y, T7Z, T82, Tc6; |
| 1283 |
T7Y = ri[WS(rs, 59)];
|
| 1284 |
T7Z = T7X * T7Y; |
| 1285 |
T82 = ii[WS(rs, 59)];
|
| 1286 |
Tc6 = T7X * T82; |
| 1287 |
T83 = FMA(T81, T82, T7Z); |
| 1288 |
Tc7 = FNMS(T81, T7Y, Tc6); |
| 1289 |
} |
| 1290 |
{
|
| 1291 |
E T8f, T8g, T8j, Tc2; |
| 1292 |
T8f = ri[WS(rs, 43)];
|
| 1293 |
T8g = T8e * T8f; |
| 1294 |
T8j = ii[WS(rs, 43)];
|
| 1295 |
Tc2 = T8e * T8j; |
| 1296 |
T8k = FMA(T8i, T8j, T8g); |
| 1297 |
Tc3 = FNMS(T8i, T8f, Tc2); |
| 1298 |
} |
| 1299 |
{
|
| 1300 |
E T84, T85, T86, Tc8; |
| 1301 |
T84 = ri[WS(rs, 27)];
|
| 1302 |
T85 = Te * T84; |
| 1303 |
T86 = ii[WS(rs, 27)];
|
| 1304 |
Tc8 = Te * T86; |
| 1305 |
T87 = FMA(Ti, T86, T85); |
| 1306 |
Tc9 = FNMS(Ti, T84, Tc8); |
| 1307 |
} |
| 1308 |
{
|
| 1309 |
E T89, T8a, T8b, Tc0; |
| 1310 |
T89 = ri[WS(rs, 11)];
|
| 1311 |
T8a = Tu * T89; |
| 1312 |
T8b = ii[WS(rs, 11)];
|
| 1313 |
Tc0 = Tu * T8b; |
| 1314 |
T8c = FMA(Tx, T8b, T8a); |
| 1315 |
Tc1 = FNMS(Tx, T89, Tc0); |
| 1316 |
} |
| 1317 |
{
|
| 1318 |
E T88, T8l, Thk, Thl, Thm, Thn; |
| 1319 |
T88 = T83 + T87; |
| 1320 |
T8l = T8c + T8k; |
| 1321 |
Thk = T88 - T8l; |
| 1322 |
Thl = Tc7 + Tc9; |
| 1323 |
Thm = Tc1 + Tc3; |
| 1324 |
Thn = Thl - Thm; |
| 1325 |
T8m = T88 + T8l; |
| 1326 |
Tjh = Thl + Thm; |
| 1327 |
Tho = Thk + Thn; |
| 1328 |
Thx = Thk - Thn; |
| 1329 |
} |
| 1330 |
{
|
| 1331 |
E Tc5, TeL, Tcc, TeK; |
| 1332 |
{
|
| 1333 |
E TbZ, Tc4, Tca, Tcb; |
| 1334 |
TbZ = T83 - T87; |
| 1335 |
Tc4 = Tc1 - Tc3; |
| 1336 |
Tc5 = TbZ - Tc4; |
| 1337 |
TeL = TbZ + Tc4; |
| 1338 |
Tca = Tc7 - Tc9; |
| 1339 |
Tcb = T8c - T8k; |
| 1340 |
Tcc = Tca + Tcb; |
| 1341 |
TeK = Tca - Tcb; |
| 1342 |
} |
| 1343 |
Tcd = FMA(KP414213562, Tcc, Tc5); |
| 1344 |
TeT = FNMS(KP414213562, TeK, TeL); |
| 1345 |
TcH = FNMS(KP414213562, Tc5, Tcc); |
| 1346 |
TeM = FMA(KP414213562, TeL, TeK); |
| 1347 |
} |
| 1348 |
} |
| 1349 |
{
|
| 1350 |
E T2I, TjG, T4N, Tkj, Tkf, Tkk, TjJ, Tk5, T8o, Tk2, TjU, TjY, T6D, Tk1, TjP; |
| 1351 |
E TjX; |
| 1352 |
{
|
| 1353 |
E T1C, T2H, TjH, TjI; |
| 1354 |
T1C = TY + T1B; |
| 1355 |
T2H = T27 + T2G; |
| 1356 |
T2I = T1C + T2H; |
| 1357 |
TjG = T1C - T2H; |
| 1358 |
{
|
| 1359 |
E T3L, T4M, Tk6, Tke; |
| 1360 |
T3L = T39 + T3K; |
| 1361 |
T4M = T4k + T4L; |
| 1362 |
T4N = T3L + T4M; |
| 1363 |
Tkj = T4M - T3L; |
| 1364 |
Tk6 = TiJ + TiK; |
| 1365 |
Tke = Tk7 + Tkd; |
| 1366 |
Tkf = Tk6 + Tke; |
| 1367 |
Tkk = Tke - Tk6; |
| 1368 |
} |
| 1369 |
TjH = TiN + TiO; |
| 1370 |
TjI = TiT + TiU; |
| 1371 |
TjJ = TjH - TjI; |
| 1372 |
Tk5 = TjH + TjI; |
| 1373 |
{
|
| 1374 |
E T7w, T8n, TjQ, TjR, TjS, TjT; |
| 1375 |
T7w = T74 + T7v; |
| 1376 |
T8n = T7V + T8m; |
| 1377 |
TjQ = T7w - T8n; |
| 1378 |
TjR = Tja + Tjb; |
| 1379 |
TjS = Tjg + Tjh; |
| 1380 |
TjT = TjR - TjS; |
| 1381 |
T8o = T7w + T8n; |
| 1382 |
Tk2 = TjR + TjS; |
| 1383 |
TjU = TjQ - TjT; |
| 1384 |
TjY = TjQ + TjT; |
| 1385 |
} |
| 1386 |
{
|
| 1387 |
E T5J, T6C, TjL, TjM, TjN, TjO; |
| 1388 |
T5J = T5d + T5I; |
| 1389 |
T6C = T68 + T6B; |
| 1390 |
TjL = T5J - T6C; |
| 1391 |
TjM = TiZ + Tj0; |
| 1392 |
TjN = Tj5 + Tj6; |
| 1393 |
TjO = TjM - TjN; |
| 1394 |
T6D = T5J + T6C; |
| 1395 |
Tk1 = TjM + TjN; |
| 1396 |
TjP = TjL + TjO; |
| 1397 |
TjX = TjO - TjL; |
| 1398 |
} |
| 1399 |
} |
| 1400 |
{
|
| 1401 |
E T4O, T8p, Tk4, Tkg; |
| 1402 |
T4O = T2I + T4N; |
| 1403 |
T8p = T6D + T8o; |
| 1404 |
ri[WS(rs, 32)] = T4O - T8p;
|
| 1405 |
ri[0] = T4O + T8p;
|
| 1406 |
Tk4 = Tk1 + Tk2; |
| 1407 |
Tkg = Tk5 + Tkf; |
| 1408 |
ii[0] = Tk4 + Tkg;
|
| 1409 |
ii[WS(rs, 32)] = Tkg - Tk4;
|
| 1410 |
} |
| 1411 |
{
|
| 1412 |
E TjK, TjV, Tkl, Tkm; |
| 1413 |
TjK = TjG + TjJ; |
| 1414 |
TjV = TjP + TjU; |
| 1415 |
ri[WS(rs, 40)] = FNMS(KP707106781, TjV, TjK);
|
| 1416 |
ri[WS(rs, 8)] = FMA(KP707106781, TjV, TjK);
|
| 1417 |
Tkl = Tkj + Tkk; |
| 1418 |
Tkm = TjX + TjY; |
| 1419 |
ii[WS(rs, 8)] = FMA(KP707106781, Tkm, Tkl);
|
| 1420 |
ii[WS(rs, 40)] = FNMS(KP707106781, Tkm, Tkl);
|
| 1421 |
} |
| 1422 |
{
|
| 1423 |
E TjW, TjZ, Tkn, Tko; |
| 1424 |
TjW = TjG - TjJ; |
| 1425 |
TjZ = TjX - TjY; |
| 1426 |
ri[WS(rs, 56)] = FNMS(KP707106781, TjZ, TjW);
|
| 1427 |
ri[WS(rs, 24)] = FMA(KP707106781, TjZ, TjW);
|
| 1428 |
Tkn = Tkk - Tkj; |
| 1429 |
Tko = TjU - TjP; |
| 1430 |
ii[WS(rs, 24)] = FMA(KP707106781, Tko, Tkn);
|
| 1431 |
ii[WS(rs, 56)] = FNMS(KP707106781, Tko, Tkn);
|
| 1432 |
} |
| 1433 |
{
|
| 1434 |
E Tk0, Tk3, Tkh, Tki; |
| 1435 |
Tk0 = T2I - T4N; |
| 1436 |
Tk3 = Tk1 - Tk2; |
| 1437 |
ri[WS(rs, 48)] = Tk0 - Tk3;
|
| 1438 |
ri[WS(rs, 16)] = Tk0 + Tk3;
|
| 1439 |
Tkh = T8o - T6D; |
| 1440 |
Tki = Tkf - Tk5; |
| 1441 |
ii[WS(rs, 16)] = Tkh + Tki;
|
| 1442 |
ii[WS(rs, 48)] = Tki - Tkh;
|
| 1443 |
} |
| 1444 |
} |
| 1445 |
{
|
| 1446 |
E TiM, Tjq, Tkr, Tkx, TiX, Tky, Tjt, Tks, Tj9, TjD, Tjn, Tjx, Tjk, TjE, Tjo; |
| 1447 |
E TjA; |
| 1448 |
{
|
| 1449 |
E TiI, TiL, Tkp, Tkq; |
| 1450 |
TiI = TY - T1B; |
| 1451 |
TiL = TiJ - TiK; |
| 1452 |
TiM = TiI - TiL; |
| 1453 |
Tjq = TiI + TiL; |
| 1454 |
Tkp = T2G - T27; |
| 1455 |
Tkq = Tkd - Tk7; |
| 1456 |
Tkr = Tkp + Tkq; |
| 1457 |
Tkx = Tkq - Tkp; |
| 1458 |
} |
| 1459 |
{
|
| 1460 |
E TiR, Tjr, TiW, Tjs; |
| 1461 |
{
|
| 1462 |
E TiP, TiQ, TiS, TiV; |
| 1463 |
TiP = TiN - TiO; |
| 1464 |
TiQ = T39 - T3K; |
| 1465 |
TiR = TiP - TiQ; |
| 1466 |
Tjr = TiQ + TiP; |
| 1467 |
TiS = T4k - T4L; |
| 1468 |
TiV = TiT - TiU; |
| 1469 |
TiW = TiS + TiV; |
| 1470 |
Tjs = TiS - TiV; |
| 1471 |
} |
| 1472 |
TiX = TiR - TiW; |
| 1473 |
Tky = Tjs - Tjr; |
| 1474 |
Tjt = Tjr + Tjs; |
| 1475 |
Tks = TiR + TiW; |
| 1476 |
} |
| 1477 |
{
|
| 1478 |
E Tj3, Tjw, Tj8, Tjv; |
| 1479 |
{
|
| 1480 |
E Tj1, Tj2, Tj4, Tj7; |
| 1481 |
Tj1 = TiZ - Tj0; |
| 1482 |
Tj2 = T6B - T68; |
| 1483 |
Tj3 = Tj1 - Tj2; |
| 1484 |
Tjw = Tj1 + Tj2; |
| 1485 |
Tj4 = T5d - T5I; |
| 1486 |
Tj7 = Tj5 - Tj6; |
| 1487 |
Tj8 = Tj4 - Tj7; |
| 1488 |
Tjv = Tj4 + Tj7; |
| 1489 |
} |
| 1490 |
Tj9 = FMA(KP414213562, Tj8, Tj3); |
| 1491 |
TjD = FNMS(KP414213562, Tjv, Tjw); |
| 1492 |
Tjn = FNMS(KP414213562, Tj3, Tj8); |
| 1493 |
Tjx = FMA(KP414213562, Tjw, Tjv); |
| 1494 |
} |
| 1495 |
{
|
| 1496 |
E Tje, Tjz, Tjj, Tjy; |
| 1497 |
{
|
| 1498 |
E Tjc, Tjd, Tjf, Tji; |
| 1499 |
Tjc = Tja - Tjb; |
| 1500 |
Tjd = T8m - T7V; |
| 1501 |
Tje = Tjc - Tjd; |
| 1502 |
Tjz = Tjc + Tjd; |
| 1503 |
Tjf = T74 - T7v; |
| 1504 |
Tji = Tjg - Tjh; |
| 1505 |
Tjj = Tjf - Tji; |
| 1506 |
Tjy = Tjf + Tji; |
| 1507 |
} |
| 1508 |
Tjk = FNMS(KP414213562, Tjj, Tje); |
| 1509 |
TjE = FMA(KP414213562, Tjy, Tjz); |
| 1510 |
Tjo = FMA(KP414213562, Tje, Tjj); |
| 1511 |
TjA = FNMS(KP414213562, Tjz, Tjy); |
| 1512 |
} |
| 1513 |
{
|
| 1514 |
E TiY, Tjl, Tkz, TkA; |
| 1515 |
TiY = FMA(KP707106781, TiX, TiM); |
| 1516 |
Tjl = Tj9 - Tjk; |
| 1517 |
ri[WS(rs, 44)] = FNMS(KP923879532, Tjl, TiY);
|
| 1518 |
ri[WS(rs, 12)] = FMA(KP923879532, Tjl, TiY);
|
| 1519 |
Tkz = FMA(KP707106781, Tky, Tkx); |
| 1520 |
TkA = Tjo - Tjn; |
| 1521 |
ii[WS(rs, 12)] = FMA(KP923879532, TkA, Tkz);
|
| 1522 |
ii[WS(rs, 44)] = FNMS(KP923879532, TkA, Tkz);
|
| 1523 |
} |
| 1524 |
{
|
| 1525 |
E Tjm, Tjp, TkB, TkC; |
| 1526 |
Tjm = FNMS(KP707106781, TiX, TiM); |
| 1527 |
Tjp = Tjn + Tjo; |
| 1528 |
ri[WS(rs, 28)] = FNMS(KP923879532, Tjp, Tjm);
|
| 1529 |
ri[WS(rs, 60)] = FMA(KP923879532, Tjp, Tjm);
|
| 1530 |
TkB = FNMS(KP707106781, Tky, Tkx); |
| 1531 |
TkC = Tj9 + Tjk; |
| 1532 |
ii[WS(rs, 28)] = FNMS(KP923879532, TkC, TkB);
|
| 1533 |
ii[WS(rs, 60)] = FMA(KP923879532, TkC, TkB);
|
| 1534 |
} |
| 1535 |
{
|
| 1536 |
E Tju, TjB, Tkt, Tku; |
| 1537 |
Tju = FMA(KP707106781, Tjt, Tjq); |
| 1538 |
TjB = Tjx + TjA; |
| 1539 |
ri[WS(rs, 36)] = FNMS(KP923879532, TjB, Tju);
|
| 1540 |
ri[WS(rs, 4)] = FMA(KP923879532, TjB, Tju);
|
| 1541 |
Tkt = FMA(KP707106781, Tks, Tkr); |
| 1542 |
Tku = TjD + TjE; |
| 1543 |
ii[WS(rs, 4)] = FMA(KP923879532, Tku, Tkt);
|
| 1544 |
ii[WS(rs, 36)] = FNMS(KP923879532, Tku, Tkt);
|
| 1545 |
} |
| 1546 |
{
|
| 1547 |
E TjC, TjF, Tkv, Tkw; |
| 1548 |
TjC = FNMS(KP707106781, Tjt, Tjq); |
| 1549 |
TjF = TjD - TjE; |
| 1550 |
ri[WS(rs, 52)] = FNMS(KP923879532, TjF, TjC);
|
| 1551 |
ri[WS(rs, 20)] = FMA(KP923879532, TjF, TjC);
|
| 1552 |
Tkv = FNMS(KP707106781, Tks, Tkr); |
| 1553 |
Tkw = TjA - Tjx; |
| 1554 |
ii[WS(rs, 20)] = FMA(KP923879532, Tkw, Tkv);
|
| 1555 |
ii[WS(rs, 52)] = FNMS(KP923879532, Tkw, Tkv);
|
| 1556 |
} |
| 1557 |
} |
| 1558 |
{
|
| 1559 |
E Tgk, Tl1, ThG, TkV, Ti0, TkN, Tis, TkH, TgH, TkO, ThJ, TkI, Tim, TiG, Tiq; |
| 1560 |
E TiC, Th9, ThT, ThD, ThN, Ti7, Tl2, Tiv, TkW, Tif, TiF, Tip, Tiz, ThA, ThU; |
| 1561 |
E ThE, ThQ; |
| 1562 |
{
|
| 1563 |
E Tg8, TkT, Tgj, TkU, Tgd, Tgi; |
| 1564 |
Tg8 = Tg4 + Tg7; |
| 1565 |
TkT = TkE - TkD; |
| 1566 |
Tgd = Tg9 + Tgc; |
| 1567 |
Tgi = Tge - Tgh; |
| 1568 |
Tgj = Tgd + Tgi; |
| 1569 |
TkU = Tgi - Tgd; |
| 1570 |
Tgk = FNMS(KP707106781, Tgj, Tg8); |
| 1571 |
Tl1 = FNMS(KP707106781, TkU, TkT); |
| 1572 |
ThG = FMA(KP707106781, Tgj, Tg8); |
| 1573 |
TkV = FMA(KP707106781, TkU, TkT); |
| 1574 |
} |
| 1575 |
{
|
| 1576 |
E ThW, TkF, ThZ, TkG, ThX, ThY; |
| 1577 |
ThW = Tg4 - Tg7; |
| 1578 |
TkF = TkD + TkE; |
| 1579 |
ThX = Tgc - Tg9; |
| 1580 |
ThY = Tge + Tgh; |
| 1581 |
ThZ = ThX - ThY; |
| 1582 |
TkG = ThX + ThY; |
| 1583 |
Ti0 = FMA(KP707106781, ThZ, ThW); |
| 1584 |
TkN = FNMS(KP707106781, TkG, TkF); |
| 1585 |
Tis = FNMS(KP707106781, ThZ, ThW); |
| 1586 |
TkH = FMA(KP707106781, TkG, TkF); |
| 1587 |
} |
| 1588 |
{
|
| 1589 |
E Tgv, ThH, TgG, ThI; |
| 1590 |
{
|
| 1591 |
E Tgp, Tgu, TgA, TgF; |
| 1592 |
Tgp = Tgn + Tgo; |
| 1593 |
Tgu = Tgq + Tgt; |
| 1594 |
Tgv = FNMS(KP414213562, Tgu, Tgp); |
| 1595 |
ThH = FMA(KP414213562, Tgp, Tgu); |
| 1596 |
TgA = Tgy + Tgz; |
| 1597 |
TgF = TgB + TgE; |
| 1598 |
TgG = FMA(KP414213562, TgF, TgA); |
| 1599 |
ThI = FNMS(KP414213562, TgA, TgF); |
| 1600 |
} |
| 1601 |
TgH = Tgv - TgG; |
| 1602 |
TkO = ThI - ThH; |
| 1603 |
ThJ = ThH + ThI; |
| 1604 |
TkI = Tgv + TgG; |
| 1605 |
} |
| 1606 |
{
|
| 1607 |
E Tii, TiB, Til, TiA; |
| 1608 |
{
|
| 1609 |
E Tig, Tih, Tij, Tik; |
| 1610 |
Tig = Thr - Thu; |
| 1611 |
Tih = Tho - Thj; |
| 1612 |
Tii = FNMS(KP707106781, Tih, Tig); |
| 1613 |
TiB = FMA(KP707106781, Tih, Tig); |
| 1614 |
Tij = Thc - Thd; |
| 1615 |
Tik = Thw - Thx; |
| 1616 |
Til = FNMS(KP707106781, Tik, Tij); |
| 1617 |
TiA = FMA(KP707106781, Tik, Tij); |
| 1618 |
} |
| 1619 |
Tim = FNMS(KP668178637, Til, Tii); |
| 1620 |
TiG = FMA(KP198912367, TiA, TiB); |
| 1621 |
Tiq = FMA(KP668178637, Tii, Til); |
| 1622 |
TiC = FNMS(KP198912367, TiB, TiA); |
| 1623 |
} |
| 1624 |
{
|
| 1625 |
E TgZ, ThM, Th8, ThL; |
| 1626 |
{
|
| 1627 |
E TgN, TgY, Th4, Th7; |
| 1628 |
TgN = TgL + TgM; |
| 1629 |
TgY = TgS + TgX; |
| 1630 |
TgZ = FNMS(KP707106781, TgY, TgN); |
| 1631 |
ThM = FMA(KP707106781, TgY, TgN); |
| 1632 |
Th4 = Th0 + Th3; |
| 1633 |
Th7 = Th5 + Th6; |
| 1634 |
Th8 = FNMS(KP707106781, Th7, Th4); |
| 1635 |
ThL = FMA(KP707106781, Th7, Th4); |
| 1636 |
} |
| 1637 |
Th9 = FMA(KP668178637, Th8, TgZ); |
| 1638 |
ThT = FNMS(KP198912367, ThL, ThM); |
| 1639 |
ThD = FNMS(KP668178637, TgZ, Th8); |
| 1640 |
ThN = FMA(KP198912367, ThM, ThL); |
| 1641 |
} |
| 1642 |
{
|
| 1643 |
E Ti3, Tit, Ti6, Tiu; |
| 1644 |
{
|
| 1645 |
E Ti1, Ti2, Ti4, Ti5; |
| 1646 |
Ti1 = Tgn - Tgo; |
| 1647 |
Ti2 = Tgq - Tgt; |
| 1648 |
Ti3 = FMA(KP414213562, Ti2, Ti1); |
| 1649 |
Tit = FNMS(KP414213562, Ti1, Ti2); |
| 1650 |
Ti4 = Tgy - Tgz; |
| 1651 |
Ti5 = TgB - TgE; |
| 1652 |
Ti6 = FNMS(KP414213562, Ti5, Ti4); |
| 1653 |
Tiu = FMA(KP414213562, Ti4, Ti5); |
| 1654 |
} |
| 1655 |
Ti7 = Ti3 - Ti6; |
| 1656 |
Tl2 = Ti3 + Ti6; |
| 1657 |
Tiv = Tit + Tiu; |
| 1658 |
TkW = Tiu - Tit; |
| 1659 |
} |
| 1660 |
{
|
| 1661 |
E Tib, Tiy, Tie, Tix; |
| 1662 |
{
|
| 1663 |
E Ti9, Tia, Tic, Tid; |
| 1664 |
Ti9 = Th0 - Th3; |
| 1665 |
Tia = TgX - TgS; |
| 1666 |
Tib = FNMS(KP707106781, Tia, Ti9); |
| 1667 |
Tiy = FMA(KP707106781, Tia, Ti9); |
| 1668 |
Tic = TgL - TgM; |
| 1669 |
Tid = Th5 - Th6; |
| 1670 |
Tie = FNMS(KP707106781, Tid, Tic); |
| 1671 |
Tix = FMA(KP707106781, Tid, Tic); |
| 1672 |
} |
| 1673 |
Tif = FMA(KP668178637, Tie, Tib); |
| 1674 |
TiF = FNMS(KP198912367, Tix, Tiy); |
| 1675 |
Tip = FNMS(KP668178637, Tib, Tie); |
| 1676 |
Tiz = FMA(KP198912367, Tiy, Tix); |
| 1677 |
} |
| 1678 |
{
|
| 1679 |
E Thq, ThP, Thz, ThO; |
| 1680 |
{
|
| 1681 |
E The, Thp, Thv, Thy; |
| 1682 |
The = Thc + Thd; |
| 1683 |
Thp = Thj + Tho; |
| 1684 |
Thq = FNMS(KP707106781, Thp, The); |
| 1685 |
ThP = FMA(KP707106781, Thp, The); |
| 1686 |
Thv = Thr + Thu; |
| 1687 |
Thy = Thw + Thx; |
| 1688 |
Thz = FNMS(KP707106781, Thy, Thv); |
| 1689 |
ThO = FMA(KP707106781, Thy, Thv); |
| 1690 |
} |
| 1691 |
ThA = FNMS(KP668178637, Thz, Thq); |
| 1692 |
ThU = FMA(KP198912367, ThO, ThP); |
| 1693 |
ThE = FMA(KP668178637, Thq, Thz); |
| 1694 |
ThQ = FNMS(KP198912367, ThP, ThO); |
| 1695 |
} |
| 1696 |
{
|
| 1697 |
E TgI, ThB, TkP, TkQ; |
| 1698 |
TgI = FMA(KP923879532, TgH, Tgk); |
| 1699 |
ThB = Th9 - ThA; |
| 1700 |
ri[WS(rs, 42)] = FNMS(KP831469612, ThB, TgI);
|
| 1701 |
ri[WS(rs, 10)] = FMA(KP831469612, ThB, TgI);
|
| 1702 |
TkP = FMA(KP923879532, TkO, TkN); |
| 1703 |
TkQ = ThE - ThD; |
| 1704 |
ii[WS(rs, 10)] = FMA(KP831469612, TkQ, TkP);
|
| 1705 |
ii[WS(rs, 42)] = FNMS(KP831469612, TkQ, TkP);
|
| 1706 |
} |
| 1707 |
{
|
| 1708 |
E ThC, ThF, TkR, TkS; |
| 1709 |
ThC = FNMS(KP923879532, TgH, Tgk); |
| 1710 |
ThF = ThD + ThE; |
| 1711 |
ri[WS(rs, 26)] = FNMS(KP831469612, ThF, ThC);
|
| 1712 |
ri[WS(rs, 58)] = FMA(KP831469612, ThF, ThC);
|
| 1713 |
TkR = FNMS(KP923879532, TkO, TkN); |
| 1714 |
TkS = Th9 + ThA; |
| 1715 |
ii[WS(rs, 26)] = FNMS(KP831469612, TkS, TkR);
|
| 1716 |
ii[WS(rs, 58)] = FMA(KP831469612, TkS, TkR);
|
| 1717 |
} |
| 1718 |
{
|
| 1719 |
E ThK, ThR, TkJ, TkK; |
| 1720 |
ThK = FMA(KP923879532, ThJ, ThG); |
| 1721 |
ThR = ThN + ThQ; |
| 1722 |
ri[WS(rs, 34)] = FNMS(KP980785280, ThR, ThK);
|
| 1723 |
ri[WS(rs, 2)] = FMA(KP980785280, ThR, ThK);
|
| 1724 |
TkJ = FMA(KP923879532, TkI, TkH); |
| 1725 |
TkK = ThT + ThU; |
| 1726 |
ii[WS(rs, 2)] = FMA(KP980785280, TkK, TkJ);
|
| 1727 |
ii[WS(rs, 34)] = FNMS(KP980785280, TkK, TkJ);
|
| 1728 |
} |
| 1729 |
{
|
| 1730 |
E ThS, ThV, TkL, TkM; |
| 1731 |
ThS = FNMS(KP923879532, ThJ, ThG); |
| 1732 |
ThV = ThT - ThU; |
| 1733 |
ri[WS(rs, 50)] = FNMS(KP980785280, ThV, ThS);
|
| 1734 |
ri[WS(rs, 18)] = FMA(KP980785280, ThV, ThS);
|
| 1735 |
TkL = FNMS(KP923879532, TkI, TkH); |
| 1736 |
TkM = ThQ - ThN; |
| 1737 |
ii[WS(rs, 18)] = FMA(KP980785280, TkM, TkL);
|
| 1738 |
ii[WS(rs, 50)] = FNMS(KP980785280, TkM, TkL);
|
| 1739 |
} |
| 1740 |
{
|
| 1741 |
E Ti8, Tin, TkX, TkY; |
| 1742 |
Ti8 = FMA(KP923879532, Ti7, Ti0); |
| 1743 |
Tin = Tif + Tim; |
| 1744 |
ri[WS(rs, 38)] = FNMS(KP831469612, Tin, Ti8);
|
| 1745 |
ri[WS(rs, 6)] = FMA(KP831469612, Tin, Ti8);
|
| 1746 |
TkX = FMA(KP923879532, TkW, TkV); |
| 1747 |
TkY = Tip + Tiq; |
| 1748 |
ii[WS(rs, 6)] = FMA(KP831469612, TkY, TkX);
|
| 1749 |
ii[WS(rs, 38)] = FNMS(KP831469612, TkY, TkX);
|
| 1750 |
} |
| 1751 |
{
|
| 1752 |
E Tio, Tir, TkZ, Tl0; |
| 1753 |
Tio = FNMS(KP923879532, Ti7, Ti0); |
| 1754 |
Tir = Tip - Tiq; |
| 1755 |
ri[WS(rs, 54)] = FNMS(KP831469612, Tir, Tio);
|
| 1756 |
ri[WS(rs, 22)] = FMA(KP831469612, Tir, Tio);
|
| 1757 |
TkZ = FNMS(KP923879532, TkW, TkV); |
| 1758 |
Tl0 = Tim - Tif; |
| 1759 |
ii[WS(rs, 22)] = FMA(KP831469612, Tl0, TkZ);
|
| 1760 |
ii[WS(rs, 54)] = FNMS(KP831469612, Tl0, TkZ);
|
| 1761 |
} |
| 1762 |
{
|
| 1763 |
E Tiw, TiD, Tl3, Tl4; |
| 1764 |
Tiw = FNMS(KP923879532, Tiv, Tis); |
| 1765 |
TiD = Tiz - TiC; |
| 1766 |
ri[WS(rs, 46)] = FNMS(KP980785280, TiD, Tiw);
|
| 1767 |
ri[WS(rs, 14)] = FMA(KP980785280, TiD, Tiw);
|
| 1768 |
Tl3 = FNMS(KP923879532, Tl2, Tl1); |
| 1769 |
Tl4 = TiG - TiF; |
| 1770 |
ii[WS(rs, 14)] = FMA(KP980785280, Tl4, Tl3);
|
| 1771 |
ii[WS(rs, 46)] = FNMS(KP980785280, Tl4, Tl3);
|
| 1772 |
} |
| 1773 |
{
|
| 1774 |
E TiE, TiH, Tl5, Tl6; |
| 1775 |
TiE = FMA(KP923879532, Tiv, Tis); |
| 1776 |
TiH = TiF + TiG; |
| 1777 |
ri[WS(rs, 30)] = FNMS(KP980785280, TiH, TiE);
|
| 1778 |
ri[WS(rs, 62)] = FMA(KP980785280, TiH, TiE);
|
| 1779 |
Tl5 = FMA(KP923879532, Tl2, Tl1); |
| 1780 |
Tl6 = Tiz + TiC; |
| 1781 |
ii[WS(rs, 30)] = FNMS(KP980785280, Tl6, Tl5);
|
| 1782 |
ii[WS(rs, 62)] = FMA(KP980785280, Tl6, Tl5);
|
| 1783 |
} |
| 1784 |
} |
| 1785 |
{
|
| 1786 |
E Tar, TlO, TcT, TlI, TbB, Td3, TcN, TcX, Tdw, TdQ, TdA, TdM, Tdp, TdP, Tdz; |
| 1787 |
E TdJ, Tdh, Tm2, TdF, TlW, TcK, Td4, TcO, Td0, T9i, TlV, Tm1, TcQ, Tda, TlH; |
| 1788 |
E TlN, TdC; |
| 1789 |
{
|
| 1790 |
E T9R, TcR, Taq, TcS; |
| 1791 |
{
|
| 1792 |
E T9F, T9Q, Tae, Tap; |
| 1793 |
T9F = FNMS(KP707106781, T9E, T9p); |
| 1794 |
T9Q = FNMS(KP707106781, T9P, T9M); |
| 1795 |
T9R = FNMS(KP668178637, T9Q, T9F); |
| 1796 |
TcR = FMA(KP668178637, T9F, T9Q); |
| 1797 |
Tae = FNMS(KP707106781, Tad, T9Y); |
| 1798 |
Tap = FNMS(KP707106781, Tao, Tal); |
| 1799 |
Taq = FMA(KP668178637, Tap, Tae); |
| 1800 |
TcS = FNMS(KP668178637, Tae, Tap); |
| 1801 |
} |
| 1802 |
Tar = T9R - Taq; |
| 1803 |
TlO = TcS - TcR; |
| 1804 |
TcT = TcR + TcS; |
| 1805 |
TlI = T9R + Taq; |
| 1806 |
} |
| 1807 |
{
|
| 1808 |
E Tbl, TcW, TbA, TcV; |
| 1809 |
{
|
| 1810 |
E TaP, Tbk, Tbw, Tbz; |
| 1811 |
TaP = FNMS(KP707106781, TaO, Taz); |
| 1812 |
Tbk = Tb4 - Tbj; |
| 1813 |
Tbl = FNMS(KP923879532, Tbk, TaP); |
| 1814 |
TcW = FMA(KP923879532, Tbk, TaP); |
| 1815 |
Tbw = FNMS(KP707106781, Tbv, Tbs); |
| 1816 |
Tbz = Tbx - Tby; |
| 1817 |
TbA = FNMS(KP923879532, Tbz, Tbw); |
| 1818 |
TcV = FMA(KP923879532, Tbz, Tbw); |
| 1819 |
} |
| 1820 |
TbB = FMA(KP534511135, TbA, Tbl); |
| 1821 |
Td3 = FNMS(KP303346683, TcV, TcW); |
| 1822 |
TcN = FNMS(KP534511135, Tbl, TbA); |
| 1823 |
TcX = FMA(KP303346683, TcW, TcV); |
| 1824 |
} |
| 1825 |
{
|
| 1826 |
E Tds, TdL, Tdv, TdK; |
| 1827 |
{
|
| 1828 |
E Tdq, Tdr, Tdt, Tdu; |
| 1829 |
Tdq = FMA(KP707106781, TcE, TcB); |
| 1830 |
Tdr = Tcs + Tcd; |
| 1831 |
Tds = FNMS(KP923879532, Tdr, Tdq); |
| 1832 |
TdL = FMA(KP923879532, Tdr, Tdq); |
| 1833 |
Tdt = FMA(KP707106781, TbX, TbI); |
| 1834 |
Tdu = TcG + TcH; |
| 1835 |
Tdv = FNMS(KP923879532, Tdu, Tdt); |
| 1836 |
TdK = FMA(KP923879532, Tdu, Tdt); |
| 1837 |
} |
| 1838 |
Tdw = FNMS(KP820678790, Tdv, Tds); |
| 1839 |
TdQ = FMA(KP098491403, TdK, TdL); |
| 1840 |
TdA = FMA(KP820678790, Tds, Tdv); |
| 1841 |
TdM = FNMS(KP098491403, TdL, TdK); |
| 1842 |
} |
| 1843 |
{
|
| 1844 |
E Tdl, TdI, Tdo, TdH; |
| 1845 |
{
|
| 1846 |
E Tdj, Tdk, Tdm, Tdn; |
| 1847 |
Tdj = FMA(KP707106781, Tbv, Tbs); |
| 1848 |
Tdk = Tbj + Tb4; |
| 1849 |
Tdl = FNMS(KP923879532, Tdk, Tdj); |
| 1850 |
TdI = FMA(KP923879532, Tdk, Tdj); |
| 1851 |
Tdm = FMA(KP707106781, TaO, Taz); |
| 1852 |
Tdn = Tbx + Tby; |
| 1853 |
Tdo = FNMS(KP923879532, Tdn, Tdm); |
| 1854 |
TdH = FMA(KP923879532, Tdn, Tdm); |
| 1855 |
} |
| 1856 |
Tdp = FMA(KP820678790, Tdo, Tdl); |
| 1857 |
TdP = FNMS(KP098491403, TdH, TdI); |
| 1858 |
Tdz = FNMS(KP820678790, Tdl, Tdo); |
| 1859 |
TdJ = FMA(KP098491403, TdI, TdH); |
| 1860 |
} |
| 1861 |
{
|
| 1862 |
E Tdd, TdD, Tdg, TdE; |
| 1863 |
{
|
| 1864 |
E Tdb, Tdc, Tde, Tdf; |
| 1865 |
Tdb = FMA(KP707106781, T9E, T9p); |
| 1866 |
Tdc = FMA(KP707106781, T9P, T9M); |
| 1867 |
Tdd = FMA(KP198912367, Tdc, Tdb); |
| 1868 |
TdD = FNMS(KP198912367, Tdb, Tdc); |
| 1869 |
Tde = FMA(KP707106781, Tad, T9Y); |
| 1870 |
Tdf = FMA(KP707106781, Tao, Tal); |
| 1871 |
Tdg = FNMS(KP198912367, Tdf, Tde); |
| 1872 |
TdE = FMA(KP198912367, Tde, Tdf); |
| 1873 |
} |
| 1874 |
Tdh = Tdd - Tdg; |
| 1875 |
Tm2 = Tdd + Tdg; |
| 1876 |
TdF = TdD + TdE; |
| 1877 |
TlW = TdE - TdD; |
| 1878 |
} |
| 1879 |
{
|
| 1880 |
E Tcu, TcZ, TcJ, TcY; |
| 1881 |
{
|
| 1882 |
E TbY, Tct, TcF, TcI; |
| 1883 |
TbY = FNMS(KP707106781, TbX, TbI); |
| 1884 |
Tct = Tcd - Tcs; |
| 1885 |
Tcu = FNMS(KP923879532, Tct, TbY); |
| 1886 |
TcZ = FMA(KP923879532, Tct, TbY); |
| 1887 |
TcF = FNMS(KP707106781, TcE, TcB); |
| 1888 |
TcI = TcG - TcH; |
| 1889 |
TcJ = FNMS(KP923879532, TcI, TcF); |
| 1890 |
TcY = FMA(KP923879532, TcI, TcF); |
| 1891 |
} |
| 1892 |
TcK = FNMS(KP534511135, TcJ, Tcu); |
| 1893 |
Td4 = FMA(KP303346683, TcY, TcZ); |
| 1894 |
TcO = FMA(KP534511135, Tcu, TcJ); |
| 1895 |
Td0 = FNMS(KP303346683, TcZ, TcY); |
| 1896 |
} |
| 1897 |
{
|
| 1898 |
E T8M, Td6, TlF, TlT, T9h, TlU, Td9, TlG, T8L, TlE; |
| 1899 |
T8L = T8D - T8K; |
| 1900 |
T8M = FMA(KP707106781, T8L, T8w); |
| 1901 |
Td6 = FNMS(KP707106781, T8L, T8w); |
| 1902 |
TlE = TdU - TdT; |
| 1903 |
TlF = FMA(KP707106781, TlE, TlD); |
| 1904 |
TlT = FNMS(KP707106781, TlE, TlD); |
| 1905 |
{
|
| 1906 |
E T91, T9g, Td7, Td8; |
| 1907 |
T91 = FMA(KP414213562, T90, T8T); |
| 1908 |
T9g = FNMS(KP414213562, T9f, T98); |
| 1909 |
T9h = T91 - T9g; |
| 1910 |
TlU = T91 + T9g; |
| 1911 |
Td7 = FNMS(KP414213562, T8T, T90); |
| 1912 |
Td8 = FMA(KP414213562, T98, T9f); |
| 1913 |
Td9 = Td7 + Td8; |
| 1914 |
TlG = Td8 - Td7; |
| 1915 |
} |
| 1916 |
T9i = FNMS(KP923879532, T9h, T8M); |
| 1917 |
TlV = FNMS(KP923879532, TlU, TlT); |
| 1918 |
Tm1 = FMA(KP923879532, TlU, TlT); |
| 1919 |
TcQ = FMA(KP923879532, T9h, T8M); |
| 1920 |
Tda = FNMS(KP923879532, Td9, Td6); |
| 1921 |
TlH = FMA(KP923879532, TlG, TlF); |
| 1922 |
TlN = FNMS(KP923879532, TlG, TlF); |
| 1923 |
TdC = FMA(KP923879532, Td9, Td6); |
| 1924 |
} |
| 1925 |
{
|
| 1926 |
E Tas, TcL, TlP, TlQ; |
| 1927 |
Tas = FMA(KP831469612, Tar, T9i); |
| 1928 |
TcL = TbB - TcK; |
| 1929 |
ri[WS(rs, 43)] = FNMS(KP881921264, TcL, Tas);
|
| 1930 |
ri[WS(rs, 11)] = FMA(KP881921264, TcL, Tas);
|
| 1931 |
TlP = FMA(KP831469612, TlO, TlN); |
| 1932 |
TlQ = TcO - TcN; |
| 1933 |
ii[WS(rs, 11)] = FMA(KP881921264, TlQ, TlP);
|
| 1934 |
ii[WS(rs, 43)] = FNMS(KP881921264, TlQ, TlP);
|
| 1935 |
} |
| 1936 |
{
|
| 1937 |
E TcM, TcP, TlR, TlS; |
| 1938 |
TcM = FNMS(KP831469612, Tar, T9i); |
| 1939 |
TcP = TcN + TcO; |
| 1940 |
ri[WS(rs, 27)] = FNMS(KP881921264, TcP, TcM);
|
| 1941 |
ri[WS(rs, 59)] = FMA(KP881921264, TcP, TcM);
|
| 1942 |
TlR = FNMS(KP831469612, TlO, TlN); |
| 1943 |
TlS = TbB + TcK; |
| 1944 |
ii[WS(rs, 27)] = FNMS(KP881921264, TlS, TlR);
|
| 1945 |
ii[WS(rs, 59)] = FMA(KP881921264, TlS, TlR);
|
| 1946 |
} |
| 1947 |
{
|
| 1948 |
E TcU, Td1, TlJ, TlK; |
| 1949 |
TcU = FMA(KP831469612, TcT, TcQ); |
| 1950 |
Td1 = TcX + Td0; |
| 1951 |
ri[WS(rs, 35)] = FNMS(KP956940335, Td1, TcU);
|
| 1952 |
ri[WS(rs, 3)] = FMA(KP956940335, Td1, TcU);
|
| 1953 |
TlJ = FMA(KP831469612, TlI, TlH); |
| 1954 |
TlK = Td3 + Td4; |
| 1955 |
ii[WS(rs, 3)] = FMA(KP956940335, TlK, TlJ);
|
| 1956 |
ii[WS(rs, 35)] = FNMS(KP956940335, TlK, TlJ);
|
| 1957 |
} |
| 1958 |
{
|
| 1959 |
E Td2, Td5, TlL, TlM; |
| 1960 |
Td2 = FNMS(KP831469612, TcT, TcQ); |
| 1961 |
Td5 = Td3 - Td4; |
| 1962 |
ri[WS(rs, 51)] = FNMS(KP956940335, Td5, Td2);
|
| 1963 |
ri[WS(rs, 19)] = FMA(KP956940335, Td5, Td2);
|
| 1964 |
TlL = FNMS(KP831469612, TlI, TlH); |
| 1965 |
TlM = Td0 - TcX; |
| 1966 |
ii[WS(rs, 19)] = FMA(KP956940335, TlM, TlL);
|
| 1967 |
ii[WS(rs, 51)] = FNMS(KP956940335, TlM, TlL);
|
| 1968 |
} |
| 1969 |
{
|
| 1970 |
E Tdi, Tdx, TlX, TlY; |
| 1971 |
Tdi = FMA(KP980785280, Tdh, Tda); |
| 1972 |
Tdx = Tdp + Tdw; |
| 1973 |
ri[WS(rs, 39)] = FNMS(KP773010453, Tdx, Tdi);
|
| 1974 |
ri[WS(rs, 7)] = FMA(KP773010453, Tdx, Tdi);
|
| 1975 |
TlX = FMA(KP980785280, TlW, TlV); |
| 1976 |
TlY = Tdz + TdA; |
| 1977 |
ii[WS(rs, 7)] = FMA(KP773010453, TlY, TlX);
|
| 1978 |
ii[WS(rs, 39)] = FNMS(KP773010453, TlY, TlX);
|
| 1979 |
} |
| 1980 |
{
|
| 1981 |
E Tdy, TdB, TlZ, Tm0; |
| 1982 |
Tdy = FNMS(KP980785280, Tdh, Tda); |
| 1983 |
TdB = Tdz - TdA; |
| 1984 |
ri[WS(rs, 55)] = FNMS(KP773010453, TdB, Tdy);
|
| 1985 |
ri[WS(rs, 23)] = FMA(KP773010453, TdB, Tdy);
|
| 1986 |
TlZ = FNMS(KP980785280, TlW, TlV); |
| 1987 |
Tm0 = Tdw - Tdp; |
| 1988 |
ii[WS(rs, 23)] = FMA(KP773010453, Tm0, TlZ);
|
| 1989 |
ii[WS(rs, 55)] = FNMS(KP773010453, Tm0, TlZ);
|
| 1990 |
} |
| 1991 |
{
|
| 1992 |
E TdG, TdN, Tm3, Tm4; |
| 1993 |
TdG = FNMS(KP980785280, TdF, TdC); |
| 1994 |
TdN = TdJ - TdM; |
| 1995 |
ri[WS(rs, 47)] = FNMS(KP995184726, TdN, TdG);
|
| 1996 |
ri[WS(rs, 15)] = FMA(KP995184726, TdN, TdG);
|
| 1997 |
Tm3 = FNMS(KP980785280, Tm2, Tm1); |
| 1998 |
Tm4 = TdQ - TdP; |
| 1999 |
ii[WS(rs, 15)] = FMA(KP995184726, Tm4, Tm3);
|
| 2000 |
ii[WS(rs, 47)] = FNMS(KP995184726, Tm4, Tm3);
|
| 2001 |
} |
| 2002 |
{
|
| 2003 |
E TdO, TdR, Tm5, Tm6; |
| 2004 |
TdO = FMA(KP980785280, TdF, TdC); |
| 2005 |
TdR = TdP + TdQ; |
| 2006 |
ri[WS(rs, 31)] = FNMS(KP995184726, TdR, TdO);
|
| 2007 |
ri[WS(rs, 63)] = FMA(KP995184726, TdR, TdO);
|
| 2008 |
Tm5 = FMA(KP980785280, Tm2, Tm1); |
| 2009 |
Tm6 = TdJ + TdM; |
| 2010 |
ii[WS(rs, 31)] = FNMS(KP995184726, Tm6, Tm5);
|
| 2011 |
ii[WS(rs, 63)] = FMA(KP995184726, Tm6, Tm5);
|
| 2012 |
} |
| 2013 |
} |
| 2014 |
{
|
| 2015 |
E Tej, Tlk, Tf5, Tle, TeD, Tff, TeZ, Tf9, TfI, Tg2, TfM, TfY, TfB, Tg1, TfL; |
| 2016 |
E TfV, Tft, Tly, TfR, Tls, TeW, Tfg, Tf0, Tfc, Te4, Tlr, Tlx, Tf2, Tfm, Tld; |
| 2017 |
E Tlj, TfO; |
| 2018 |
{
|
| 2019 |
E Teb, Tf3, Tei, Tf4; |
| 2020 |
{
|
| 2021 |
E Te7, Tea, Tee, Teh; |
| 2022 |
Te7 = FMA(KP707106781, Te6, Te5); |
| 2023 |
Tea = FMA(KP707106781, Te9, Te8); |
| 2024 |
Teb = FNMS(KP198912367, Tea, Te7); |
| 2025 |
Tf3 = FMA(KP198912367, Te7, Tea); |
| 2026 |
Tee = FMA(KP707106781, Ted, Tec); |
| 2027 |
Teh = FMA(KP707106781, Teg, Tef); |
| 2028 |
Tei = FMA(KP198912367, Teh, Tee); |
| 2029 |
Tf4 = FNMS(KP198912367, Tee, Teh); |
| 2030 |
} |
| 2031 |
Tej = Teb - Tei; |
| 2032 |
Tlk = Tf4 - Tf3; |
| 2033 |
Tf5 = Tf3 + Tf4; |
| 2034 |
Tle = Teb + Tei; |
| 2035 |
} |
| 2036 |
{
|
| 2037 |
E Tev, Tf8, TeC, Tf7; |
| 2038 |
{
|
| 2039 |
E Ten, Teu, Tey, TeB; |
| 2040 |
Ten = FMA(KP707106781, Tem, Tel); |
| 2041 |
Teu = Teq + Tet; |
| 2042 |
Tev = FNMS(KP923879532, Teu, Ten); |
| 2043 |
Tf8 = FMA(KP923879532, Teu, Ten); |
| 2044 |
Tey = FMA(KP707106781, Tex, Tew); |
| 2045 |
TeB = Tez + TeA; |
| 2046 |
TeC = FNMS(KP923879532, TeB, Tey); |
| 2047 |
Tf7 = FMA(KP923879532, TeB, Tey); |
| 2048 |
} |
| 2049 |
TeD = FMA(KP820678790, TeC, Tev); |
| 2050 |
Tff = FNMS(KP098491403, Tf7, Tf8); |
| 2051 |
TeZ = FNMS(KP820678790, Tev, TeC); |
| 2052 |
Tf9 = FMA(KP098491403, Tf8, Tf7); |
| 2053 |
} |
| 2054 |
{
|
| 2055 |
E TfE, TfX, TfH, TfW; |
| 2056 |
{
|
| 2057 |
E TfC, TfD, TfF, TfG; |
| 2058 |
TfC = FNMS(KP707106781, TeQ, TeP); |
| 2059 |
TfD = TeM - TeJ; |
| 2060 |
TfE = FNMS(KP923879532, TfD, TfC); |
| 2061 |
TfX = FMA(KP923879532, TfD, TfC); |
| 2062 |
TfF = FNMS(KP707106781, TeF, TeE); |
| 2063 |
TfG = TeS - TeT; |
| 2064 |
TfH = FNMS(KP923879532, TfG, TfF); |
| 2065 |
TfW = FMA(KP923879532, TfG, TfF); |
| 2066 |
} |
| 2067 |
TfI = FNMS(KP534511135, TfH, TfE); |
| 2068 |
Tg2 = FMA(KP303346683, TfW, TfX); |
| 2069 |
TfM = FMA(KP534511135, TfE, TfH); |
| 2070 |
TfY = FNMS(KP303346683, TfX, TfW); |
| 2071 |
} |
| 2072 |
{
|
| 2073 |
E Tfx, TfU, TfA, TfT; |
| 2074 |
{
|
| 2075 |
E Tfv, Tfw, Tfy, Tfz; |
| 2076 |
Tfv = FNMS(KP707106781, Tex, Tew); |
| 2077 |
Tfw = Tet - Teq; |
| 2078 |
Tfx = FNMS(KP923879532, Tfw, Tfv); |
| 2079 |
TfU = FMA(KP923879532, Tfw, Tfv); |
| 2080 |
Tfy = FNMS(KP707106781, Tem, Tel); |
| 2081 |
Tfz = Tez - TeA; |
| 2082 |
TfA = FNMS(KP923879532, Tfz, Tfy); |
| 2083 |
TfT = FMA(KP923879532, Tfz, Tfy); |
| 2084 |
} |
| 2085 |
TfB = FMA(KP534511135, TfA, Tfx); |
| 2086 |
Tg1 = FNMS(KP303346683, TfT, TfU); |
| 2087 |
TfL = FNMS(KP534511135, Tfx, TfA); |
| 2088 |
TfV = FMA(KP303346683, TfU, TfT); |
| 2089 |
} |
| 2090 |
{
|
| 2091 |
E Tfp, TfP, Tfs, TfQ; |
| 2092 |
{
|
| 2093 |
E Tfn, Tfo, Tfq, Tfr; |
| 2094 |
Tfn = FNMS(KP707106781, Te6, Te5); |
| 2095 |
Tfo = FNMS(KP707106781, Te9, Te8); |
| 2096 |
Tfp = FMA(KP668178637, Tfo, Tfn); |
| 2097 |
TfP = FNMS(KP668178637, Tfn, Tfo); |
| 2098 |
Tfq = FNMS(KP707106781, Ted, Tec); |
| 2099 |
Tfr = FNMS(KP707106781, Teg, Tef); |
| 2100 |
Tfs = FNMS(KP668178637, Tfr, Tfq); |
| 2101 |
TfQ = FMA(KP668178637, Tfq, Tfr); |
| 2102 |
} |
| 2103 |
Tft = Tfp - Tfs; |
| 2104 |
Tly = Tfp + Tfs; |
| 2105 |
TfR = TfP + TfQ; |
| 2106 |
Tls = TfQ - TfP; |
| 2107 |
} |
| 2108 |
{
|
| 2109 |
E TeO, Tfb, TeV, Tfa; |
| 2110 |
{
|
| 2111 |
E TeG, TeN, TeR, TeU; |
| 2112 |
TeG = FMA(KP707106781, TeF, TeE); |
| 2113 |
TeN = TeJ + TeM; |
| 2114 |
TeO = FNMS(KP923879532, TeN, TeG); |
| 2115 |
Tfb = FMA(KP923879532, TeN, TeG); |
| 2116 |
TeR = FMA(KP707106781, TeQ, TeP); |
| 2117 |
TeU = TeS + TeT; |
| 2118 |
TeV = FNMS(KP923879532, TeU, TeR); |
| 2119 |
Tfa = FMA(KP923879532, TeU, TeR); |
| 2120 |
} |
| 2121 |
TeW = FNMS(KP820678790, TeV, TeO); |
| 2122 |
Tfg = FMA(KP098491403, Tfa, Tfb); |
| 2123 |
Tf0 = FMA(KP820678790, TeO, TeV); |
| 2124 |
Tfc = FNMS(KP098491403, Tfb, Tfa); |
| 2125 |
} |
| 2126 |
{
|
| 2127 |
E TdW, Tfi, Tlb, Tlp, Te3, Tlq, Tfl, Tlc, TdV, Tla; |
| 2128 |
TdV = TdT + TdU; |
| 2129 |
TdW = FMA(KP707106781, TdV, TdS); |
| 2130 |
Tfi = FNMS(KP707106781, TdV, TdS); |
| 2131 |
Tla = T8D + T8K; |
| 2132 |
Tlb = FMA(KP707106781, Tla, Tl9); |
| 2133 |
Tlp = FNMS(KP707106781, Tla, Tl9); |
| 2134 |
{
|
| 2135 |
E TdZ, Te2, Tfj, Tfk; |
| 2136 |
TdZ = FMA(KP414213562, TdY, TdX); |
| 2137 |
Te2 = FNMS(KP414213562, Te1, Te0); |
| 2138 |
Te3 = TdZ + Te2; |
| 2139 |
Tlq = Te2 - TdZ; |
| 2140 |
Tfj = FNMS(KP414213562, TdX, TdY); |
| 2141 |
Tfk = FMA(KP414213562, Te0, Te1); |
| 2142 |
Tfl = Tfj - Tfk; |
| 2143 |
Tlc = Tfj + Tfk; |
| 2144 |
} |
| 2145 |
Te4 = FNMS(KP923879532, Te3, TdW); |
| 2146 |
Tlr = FMA(KP923879532, Tlq, Tlp); |
| 2147 |
Tlx = FNMS(KP923879532, Tlq, Tlp); |
| 2148 |
Tf2 = FMA(KP923879532, Te3, TdW); |
| 2149 |
Tfm = FMA(KP923879532, Tfl, Tfi); |
| 2150 |
Tld = FMA(KP923879532, Tlc, Tlb); |
| 2151 |
Tlj = FNMS(KP923879532, Tlc, Tlb); |
| 2152 |
TfO = FNMS(KP923879532, Tfl, Tfi); |
| 2153 |
} |
| 2154 |
{
|
| 2155 |
E Tek, TeX, Tll, Tlm; |
| 2156 |
Tek = FMA(KP980785280, Tej, Te4); |
| 2157 |
TeX = TeD - TeW; |
| 2158 |
ri[WS(rs, 41)] = FNMS(KP773010453, TeX, Tek);
|
| 2159 |
ri[WS(rs, 9)] = FMA(KP773010453, TeX, Tek);
|
| 2160 |
Tll = FMA(KP980785280, Tlk, Tlj); |
| 2161 |
Tlm = Tf0 - TeZ; |
| 2162 |
ii[WS(rs, 9)] = FMA(KP773010453, Tlm, Tll);
|
| 2163 |
ii[WS(rs, 41)] = FNMS(KP773010453, Tlm, Tll);
|
| 2164 |
} |
| 2165 |
{
|
| 2166 |
E TeY, Tf1, Tln, Tlo; |
| 2167 |
TeY = FNMS(KP980785280, Tej, Te4); |
| 2168 |
Tf1 = TeZ + Tf0; |
| 2169 |
ri[WS(rs, 25)] = FNMS(KP773010453, Tf1, TeY);
|
| 2170 |
ri[WS(rs, 57)] = FMA(KP773010453, Tf1, TeY);
|
| 2171 |
Tln = FNMS(KP980785280, Tlk, Tlj); |
| 2172 |
Tlo = TeD + TeW; |
| 2173 |
ii[WS(rs, 25)] = FNMS(KP773010453, Tlo, Tln);
|
| 2174 |
ii[WS(rs, 57)] = FMA(KP773010453, Tlo, Tln);
|
| 2175 |
} |
| 2176 |
{
|
| 2177 |
E Tf6, Tfd, Tlf, Tlg; |
| 2178 |
Tf6 = FMA(KP980785280, Tf5, Tf2); |
| 2179 |
Tfd = Tf9 + Tfc; |
| 2180 |
ri[WS(rs, 33)] = FNMS(KP995184726, Tfd, Tf6);
|
| 2181 |
ri[WS(rs, 1)] = FMA(KP995184726, Tfd, Tf6);
|
| 2182 |
Tlf = FMA(KP980785280, Tle, Tld); |
| 2183 |
Tlg = Tff + Tfg; |
| 2184 |
ii[WS(rs, 1)] = FMA(KP995184726, Tlg, Tlf);
|
| 2185 |
ii[WS(rs, 33)] = FNMS(KP995184726, Tlg, Tlf);
|
| 2186 |
} |
| 2187 |
{
|
| 2188 |
E Tfe, Tfh, Tlh, Tli; |
| 2189 |
Tfe = FNMS(KP980785280, Tf5, Tf2); |
| 2190 |
Tfh = Tff - Tfg; |
| 2191 |
ri[WS(rs, 49)] = FNMS(KP995184726, Tfh, Tfe);
|
| 2192 |
ri[WS(rs, 17)] = FMA(KP995184726, Tfh, Tfe);
|
| 2193 |
Tlh = FNMS(KP980785280, Tle, Tld); |
| 2194 |
Tli = Tfc - Tf9; |
| 2195 |
ii[WS(rs, 17)] = FMA(KP995184726, Tli, Tlh);
|
| 2196 |
ii[WS(rs, 49)] = FNMS(KP995184726, Tli, Tlh);
|
| 2197 |
} |
| 2198 |
{
|
| 2199 |
E Tfu, TfJ, Tlt, Tlu; |
| 2200 |
Tfu = FMA(KP831469612, Tft, Tfm); |
| 2201 |
TfJ = TfB + TfI; |
| 2202 |
ri[WS(rs, 37)] = FNMS(KP881921264, TfJ, Tfu);
|
| 2203 |
ri[WS(rs, 5)] = FMA(KP881921264, TfJ, Tfu);
|
| 2204 |
Tlt = FMA(KP831469612, Tls, Tlr); |
| 2205 |
Tlu = TfL + TfM; |
| 2206 |
ii[WS(rs, 5)] = FMA(KP881921264, Tlu, Tlt);
|
| 2207 |
ii[WS(rs, 37)] = FNMS(KP881921264, Tlu, Tlt);
|
| 2208 |
} |
| 2209 |
{
|
| 2210 |
E TfK, TfN, Tlv, Tlw; |
| 2211 |
TfK = FNMS(KP831469612, Tft, Tfm); |
| 2212 |
TfN = TfL - TfM; |
| 2213 |
ri[WS(rs, 53)] = FNMS(KP881921264, TfN, TfK);
|
| 2214 |
ri[WS(rs, 21)] = FMA(KP881921264, TfN, TfK);
|
| 2215 |
Tlv = FNMS(KP831469612, Tls, Tlr); |
| 2216 |
Tlw = TfI - TfB; |
| 2217 |
ii[WS(rs, 21)] = FMA(KP881921264, Tlw, Tlv);
|
| 2218 |
ii[WS(rs, 53)] = FNMS(KP881921264, Tlw, Tlv);
|
| 2219 |
} |
| 2220 |
{
|
| 2221 |
E TfS, TfZ, Tlz, TlA; |
| 2222 |
TfS = FNMS(KP831469612, TfR, TfO); |
| 2223 |
TfZ = TfV - TfY; |
| 2224 |
ri[WS(rs, 45)] = FNMS(KP956940335, TfZ, TfS);
|
| 2225 |
ri[WS(rs, 13)] = FMA(KP956940335, TfZ, TfS);
|
| 2226 |
Tlz = FNMS(KP831469612, Tly, Tlx); |
| 2227 |
TlA = Tg2 - Tg1; |
| 2228 |
ii[WS(rs, 13)] = FMA(KP956940335, TlA, Tlz);
|
| 2229 |
ii[WS(rs, 45)] = FNMS(KP956940335, TlA, Tlz);
|
| 2230 |
} |
| 2231 |
{
|
| 2232 |
E Tg0, Tg3, TlB, TlC; |
| 2233 |
Tg0 = FMA(KP831469612, TfR, TfO); |
| 2234 |
Tg3 = Tg1 + Tg2; |
| 2235 |
ri[WS(rs, 29)] = FNMS(KP956940335, Tg3, Tg0);
|
| 2236 |
ri[WS(rs, 61)] = FMA(KP956940335, Tg3, Tg0);
|
| 2237 |
TlB = FMA(KP831469612, Tly, Tlx); |
| 2238 |
TlC = TfV + TfY; |
| 2239 |
ii[WS(rs, 29)] = FNMS(KP956940335, TlC, TlB);
|
| 2240 |
ii[WS(rs, 61)] = FMA(KP956940335, TlC, TlB);
|
| 2241 |
} |
| 2242 |
} |
| 2243 |
} |
| 2244 |
} |
| 2245 |
} |
| 2246 |
} |
| 2247 |
|
| 2248 |
static const tw_instr twinstr[] = { |
| 2249 |
{TW_CEXP, 0, 1},
|
| 2250 |
{TW_CEXP, 0, 3},
|
| 2251 |
{TW_CEXP, 0, 9},
|
| 2252 |
{TW_CEXP, 0, 27},
|
| 2253 |
{TW_CEXP, 0, 63},
|
| 2254 |
{TW_NEXT, 1, 0}
|
| 2255 |
}; |
| 2256 |
|
| 2257 |
static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {520, 206, 634, 0}, 0, 0, 0 }; |
| 2258 |
|
| 2259 |
void X(codelet_t2_64) (planner *p) {
|
| 2260 |
X(kdft_dit_register) (p, t2_64, &desc); |
| 2261 |
} |
| 2262 |
#else
|
| 2263 |
|
| 2264 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 64 -name t2_64 -include dft/scalar/t.h */
|
| 2265 |
|
| 2266 |
/*
|
| 2267 |
* This function contains 1154 FP additions, 660 FP multiplications,
|
| 2268 |
* (or, 880 additions, 386 multiplications, 274 fused multiply/add),
|
| 2269 |
* 302 stack variables, 15 constants, and 256 memory accesses
|
| 2270 |
*/
|
| 2271 |
#include "dft/scalar/t.h" |
| 2272 |
|
| 2273 |
static void t2_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 2274 |
{
|
| 2275 |
DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
| 2276 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 2277 |
DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
| 2278 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 2279 |
DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
| 2280 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 2281 |
DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
| 2282 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 2283 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 2284 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 2285 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 2286 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 2287 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 2288 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 2289 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 2290 |
{
|
| 2291 |
INT m; |
| 2292 |
for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(128, rs)) { |
| 2293 |
E T2, T5, T3, T6, Te, T9, TP, T3e, T1e, T39, T3c, TT, T1a, T37, T8; |
| 2294 |
E Tw, Td, Ty, Tm, Th, T1C, T3K, T1V, T3x, T3I, T1G, T1R, T3v, T2m, T2q; |
| 2295 |
E T5Y, T6u, T53, T5B, T62, T6w, T57, T5D, T2V, T2X, Tg, TE, T3Y, T3V, T3j; |
| 2296 |
E Tl, TA, T3g, T1j, T1t, TV, T2C, T2z, T1u, TZ, T1h, To, T1p, T6j, T6H; |
| 2297 |
E Ts, T1l, T6l, T6F, T2P, T4b, T4x, T5i, T2R, T49, T4z, T5g, TG, T4k, T4m; |
| 2298 |
E TK, T21, T3O, T3Q, T25, TW, T10, T11, T79, T6X, T5M, T6b, T1v, T30, T69; |
| 2299 |
E T77, T13, T2F, T2D, T6p, T6O, T1x, T2a, T2f, T6V, T28, T6r, T2h, T6Q, T32; |
| 2300 |
E T5K, T5w, T4G, T4Q, T3m, T4h, T4I, T5y, T3k, T4f, T41, T4S, T4Y, T3q, T3D; |
| 2301 |
E T3F, T5r, T3s, T4W, T3Z, T5p; |
| 2302 |
{
|
| 2303 |
E Ta, Tj, Tx, TC, Tf, Tk, Tz, TD, T1B, T1E, T2o, T2l, T1T, T1Q, T1A; |
| 2304 |
E T1F, T2p, T2k, T1U, T1P; |
| 2305 |
{
|
| 2306 |
E T4, T1d, T19, Tb, T1c, T7, Tc, T18, TR, TO, TS, TN; |
| 2307 |
T2 = W[0];
|
| 2308 |
T5 = W[1];
|
| 2309 |
T3 = W[2];
|
| 2310 |
T6 = W[3];
|
| 2311 |
Te = W[5];
|
| 2312 |
T9 = W[4];
|
| 2313 |
T4 = T2 * T3; |
| 2314 |
T1d = T5 * T9; |
| 2315 |
T19 = T5 * Te; |
| 2316 |
Tb = T2 * T6; |
| 2317 |
T1c = T2 * Te; |
| 2318 |
T7 = T5 * T6; |
| 2319 |
Tc = T5 * T3; |
| 2320 |
T18 = T2 * T9; |
| 2321 |
TR = T3 * Te; |
| 2322 |
TO = T6 * Te; |
| 2323 |
TS = T6 * T9; |
| 2324 |
TN = T3 * T9; |
| 2325 |
TP = TN - TO; |
| 2326 |
T3e = TR - TS; |
| 2327 |
T1e = T1c - T1d; |
| 2328 |
T39 = T1c + T1d; |
| 2329 |
T3c = TN + TO; |
| 2330 |
TT = TR + TS; |
| 2331 |
T1a = T18 + T19; |
| 2332 |
T37 = T18 - T19; |
| 2333 |
T8 = T4 - T7; |
| 2334 |
Ta = T8 * T9; |
| 2335 |
Tj = T8 * Te; |
| 2336 |
Tw = T4 + T7; |
| 2337 |
Tx = Tw * T9; |
| 2338 |
TC = Tw * Te; |
| 2339 |
Td = Tb + Tc; |
| 2340 |
Tf = Td * Te; |
| 2341 |
Tk = Td * T9; |
| 2342 |
Ty = Tb - Tc; |
| 2343 |
Tz = Ty * Te; |
| 2344 |
TD = Ty * T9; |
| 2345 |
Tm = W[7];
|
| 2346 |
T1B = T6 * Tm; |
| 2347 |
T1E = T3 * Tm; |
| 2348 |
T2o = T2 * Tm; |
| 2349 |
T2l = T5 * Tm; |
| 2350 |
T1T = T9 * Tm; |
| 2351 |
T1Q = Te * Tm; |
| 2352 |
Th = W[6];
|
| 2353 |
T1A = T3 * Th; |
| 2354 |
T1F = T6 * Th; |
| 2355 |
T2p = T5 * Th; |
| 2356 |
T2k = T2 * Th; |
| 2357 |
T1U = Te * Th; |
| 2358 |
T1P = T9 * Th; |
| 2359 |
} |
| 2360 |
T1C = T1A + T1B; |
| 2361 |
T3K = T1E + T1F; |
| 2362 |
T1V = T1T + T1U; |
| 2363 |
T3x = T2o - T2p; |
| 2364 |
T3I = T1A - T1B; |
| 2365 |
T1G = T1E - T1F; |
| 2366 |
T1R = T1P - T1Q; |
| 2367 |
{
|
| 2368 |
E T5W, T5X, T55, T56; |
| 2369 |
T3v = T2k + T2l; |
| 2370 |
T2m = T2k - T2l; |
| 2371 |
T2q = T2o + T2p; |
| 2372 |
T5W = T8 * Th; |
| 2373 |
T5X = Td * Tm; |
| 2374 |
T5Y = T5W - T5X; |
| 2375 |
T6u = T5W + T5X; |
| 2376 |
{
|
| 2377 |
E T51, T52, T60, T61; |
| 2378 |
T51 = Tw * Th; |
| 2379 |
T52 = Ty * Tm; |
| 2380 |
T53 = T51 + T52; |
| 2381 |
T5B = T51 - T52; |
| 2382 |
T60 = T8 * Tm; |
| 2383 |
T61 = Td * Th; |
| 2384 |
T62 = T60 + T61; |
| 2385 |
T6w = T60 - T61; |
| 2386 |
} |
| 2387 |
T55 = Tw * Tm; |
| 2388 |
T56 = Ty * Th; |
| 2389 |
T57 = T55 - T56; |
| 2390 |
T5D = T55 + T56; |
| 2391 |
{
|
| 2392 |
E Ti, Tq, TF, TJ, T3W, T3X, T3T, T3U, T3h, T3i, Tn, Tr, TB, TI, T3d; |
| 2393 |
E T3f, T1k, T1o, T1Z, T23, TQ, TU, T2A, T2B, T2x, T2y, T20, T24, TX, TY; |
| 2394 |
E T1i, T1n; |
| 2395 |
T2V = T1P + T1Q; |
| 2396 |
T2X = T1T - T1U; |
| 2397 |
Tg = Ta + Tf; |
| 2398 |
Ti = Tg * Th; |
| 2399 |
Tq = Tg * Tm; |
| 2400 |
TE = TC + TD; |
| 2401 |
TF = TE * Tm; |
| 2402 |
TJ = TE * Th; |
| 2403 |
T3W = T37 * Tm; |
| 2404 |
T3X = T39 * Th; |
| 2405 |
T3Y = T3W - T3X; |
| 2406 |
T3T = T37 * Th; |
| 2407 |
T3U = T39 * Tm; |
| 2408 |
T3V = T3T + T3U; |
| 2409 |
T3h = T3c * Tm; |
| 2410 |
T3i = T3e * Th; |
| 2411 |
T3j = T3h - T3i; |
| 2412 |
Tl = Tj - Tk; |
| 2413 |
Tn = Tl * Tm; |
| 2414 |
Tr = Tl * Th; |
| 2415 |
TA = Tx - Tz; |
| 2416 |
TB = TA * Th; |
| 2417 |
TI = TA * Tm; |
| 2418 |
T3d = T3c * Th; |
| 2419 |
T3f = T3e * Tm; |
| 2420 |
T3g = T3d + T3f; |
| 2421 |
T1j = Tj + Tk; |
| 2422 |
T1k = T1j * Tm; |
| 2423 |
T1o = T1j * Th; |
| 2424 |
T1t = Tx + Tz; |
| 2425 |
T1Z = T1t * Th; |
| 2426 |
T23 = T1t * Tm; |
| 2427 |
TQ = TP * Th; |
| 2428 |
TU = TT * Tm; |
| 2429 |
TV = TQ + TU; |
| 2430 |
T2A = T1a * Tm; |
| 2431 |
T2B = T1e * Th; |
| 2432 |
T2C = T2A - T2B; |
| 2433 |
T2x = T1a * Th; |
| 2434 |
T2y = T1e * Tm; |
| 2435 |
T2z = T2x + T2y; |
| 2436 |
T1u = TC - TD; |
| 2437 |
T20 = T1u * Tm; |
| 2438 |
T24 = T1u * Th; |
| 2439 |
TX = TP * Tm; |
| 2440 |
TY = TT * Th; |
| 2441 |
TZ = TX - TY; |
| 2442 |
T1h = Ta - Tf; |
| 2443 |
T1i = T1h * Th; |
| 2444 |
T1n = T1h * Tm; |
| 2445 |
To = Ti - Tn; |
| 2446 |
T1p = T1n + T1o; |
| 2447 |
T6j = TQ - TU; |
| 2448 |
T6H = T2A + T2B; |
| 2449 |
Ts = Tq + Tr; |
| 2450 |
T1l = T1i - T1k; |
| 2451 |
T6l = TX + TY; |
| 2452 |
T6F = T2x - T2y; |
| 2453 |
T2P = T1Z - T20; |
| 2454 |
T4b = TI + TJ; |
| 2455 |
T4x = T3d - T3f; |
| 2456 |
T5i = T3W + T3X; |
| 2457 |
T2R = T23 + T24; |
| 2458 |
T49 = TB - TF; |
| 2459 |
T4z = T3h + T3i; |
| 2460 |
T5g = T3T - T3U; |
| 2461 |
TG = TB + TF; |
| 2462 |
T4k = Ti + Tn; |
| 2463 |
T4m = Tq - Tr; |
| 2464 |
TK = TI - TJ; |
| 2465 |
T21 = T1Z + T20; |
| 2466 |
T3O = T1i + T1k; |
| 2467 |
T3Q = T1n - T1o; |
| 2468 |
T25 = T23 - T24; |
| 2469 |
TW = W[8];
|
| 2470 |
T10 = W[9];
|
| 2471 |
T11 = FMA(TV, TW, TZ * T10); |
| 2472 |
T79 = FNMS(T25, TW, T21 * T10); |
| 2473 |
T6X = FNMS(Td, TW, T8 * T10); |
| 2474 |
T5M = FNMS(T2X, TW, T2V * T10); |
| 2475 |
T6b = FNMS(TK, TW, TG * T10); |
| 2476 |
T1v = FMA(T1t, TW, T1u * T10); |
| 2477 |
T30 = FMA(T1h, TW, T1j * T10); |
| 2478 |
T69 = FMA(TG, TW, TK * T10); |
| 2479 |
T77 = FMA(T21, TW, T25 * T10); |
| 2480 |
T13 = FNMS(TZ, TW, TV * T10); |
| 2481 |
T2F = FNMS(T2C, TW, T2z * T10); |
| 2482 |
T2D = FMA(T2z, TW, T2C * T10); |
| 2483 |
T6p = FMA(T1a, TW, T1e * T10); |
| 2484 |
T6O = FMA(TP, TW, TT * T10); |
| 2485 |
T1x = FNMS(T1u, TW, T1t * T10); |
| 2486 |
T2a = FNMS(TE, TW, TA * T10); |
| 2487 |
T2f = FMA(T3, TW, T6 * T10); |
| 2488 |
T6V = FMA(T8, TW, Td * T10); |
| 2489 |
T28 = FMA(TA, TW, TE * T10); |
| 2490 |
T6r = FNMS(T1e, TW, T1a * T10); |
| 2491 |
T2h = FNMS(T6, TW, T3 * T10); |
| 2492 |
T6Q = FNMS(TT, TW, TP * T10); |
| 2493 |
T32 = FNMS(T1j, TW, T1h * T10); |
| 2494 |
T5K = FMA(T2V, TW, T2X * T10); |
| 2495 |
T5w = FMA(Tw, TW, Ty * T10); |
| 2496 |
T4G = FMA(T3O, TW, T3Q * T10); |
| 2497 |
T4Q = FMA(T4k, TW, T4m * T10); |
| 2498 |
T3m = FNMS(T3j, TW, T3g * T10); |
| 2499 |
T4h = FNMS(Te, TW, T9 * T10); |
| 2500 |
T4I = FNMS(T3Q, TW, T3O * T10); |
| 2501 |
T5y = FNMS(Ty, TW, Tw * T10); |
| 2502 |
T3k = FMA(T3g, TW, T3j * T10); |
| 2503 |
T4f = FMA(T9, TW, Te * T10); |
| 2504 |
T41 = FNMS(T3Y, TW, T3V * T10); |
| 2505 |
T4S = FNMS(T4m, TW, T4k * T10); |
| 2506 |
T4Y = FNMS(T3e, TW, T3c * T10); |
| 2507 |
T3q = FMA(Tg, TW, Tl * T10); |
| 2508 |
T3D = FMA(T2, TW, T5 * T10); |
| 2509 |
T3F = FNMS(T5, TW, T2 * T10); |
| 2510 |
T5r = FNMS(T39, TW, T37 * T10); |
| 2511 |
T3s = FNMS(Tl, TW, Tg * T10); |
| 2512 |
T4W = FMA(T3c, TW, T3e * T10); |
| 2513 |
T3Z = FMA(T3V, TW, T3Y * T10); |
| 2514 |
T5p = FMA(T37, TW, T39 * T10); |
| 2515 |
} |
| 2516 |
} |
| 2517 |
} |
| 2518 |
{
|
| 2519 |
E T17, TdV, Tj3, Tjx, T7l, TbJ, Ti3, Tix, T1K, Tiw, TdY, ThY, T7w, Tj0, TbM; |
| 2520 |
E Tjw, T2e, TgA, T7I, TaY, TbQ, Tda, Te4, TfO, T2J, TgB, T7T, TaZ, TbT, Tdb; |
| 2521 |
E Te9, TfP, T36, T3B, TgH, TgE, TgF, TgG, T80, TbW, Tel, TfT, T8b, Tc0, T8k; |
| 2522 |
E TbX, Teg, TfS, T8h, TbZ, T45, T4q, TgJ, TgK, TgL, TgM, T8r, Tc6, Tew, TfW; |
| 2523 |
E T8C, Tc4, T8L, Tc7, Ter, TfV, T8I, Tc3, T6B, Th1, Tfm, Tga, Th8, ThI, T9N; |
| 2524 |
E Tcv, T9Y, TcH, Tav, Tcw, Tf5, Tg7, Tas, TcG, T5c, TgV, TeV, Tg0, TgS, ThD; |
| 2525 |
E T8U, Tcc, T95, Tco, T9C, Tcd, TeE, Tg3, T9z, Tcn, T5R, TgT, TeO, TeW, TgY; |
| 2526 |
E ThE, T9h, T9F, T9s, T9E, Tck, Tcq, TeJ, TeX, Tch, Tcr, T7e, Th9, Tff, Tfn; |
| 2527 |
E Th4, ThJ, Taa, Tay, Tal, Tax, TcD, TcJ, Tfa, Tfo, TcA, TcK; |
| 2528 |
{
|
| 2529 |
E T1, Ti1, Tu, Ti0, TM, T7i, T15, T7j, Tp, Tt; |
| 2530 |
T1 = ri[0];
|
| 2531 |
Ti1 = ii[0];
|
| 2532 |
Tp = ri[WS(rs, 32)];
|
| 2533 |
Tt = ii[WS(rs, 32)];
|
| 2534 |
Tu = FMA(To, Tp, Ts * Tt); |
| 2535 |
Ti0 = FNMS(Ts, Tp, To * Tt); |
| 2536 |
{
|
| 2537 |
E TH, TL, T12, T14; |
| 2538 |
TH = ri[WS(rs, 16)];
|
| 2539 |
TL = ii[WS(rs, 16)];
|
| 2540 |
TM = FMA(TG, TH, TK * TL); |
| 2541 |
T7i = FNMS(TK, TH, TG * TL); |
| 2542 |
T12 = ri[WS(rs, 48)];
|
| 2543 |
T14 = ii[WS(rs, 48)];
|
| 2544 |
T15 = FMA(T11, T12, T13 * T14); |
| 2545 |
T7j = FNMS(T13, T12, T11 * T14); |
| 2546 |
} |
| 2547 |
{
|
| 2548 |
E Tv, T16, Tj1, Tj2; |
| 2549 |
Tv = T1 + Tu; |
| 2550 |
T16 = TM + T15; |
| 2551 |
T17 = Tv + T16; |
| 2552 |
TdV = Tv - T16; |
| 2553 |
Tj1 = Ti1 - Ti0; |
| 2554 |
Tj2 = TM - T15; |
| 2555 |
Tj3 = Tj1 - Tj2; |
| 2556 |
Tjx = Tj2 + Tj1; |
| 2557 |
} |
| 2558 |
{
|
| 2559 |
E T7h, T7k, ThZ, Ti2; |
| 2560 |
T7h = T1 - Tu; |
| 2561 |
T7k = T7i - T7j; |
| 2562 |
T7l = T7h - T7k; |
| 2563 |
TbJ = T7h + T7k; |
| 2564 |
ThZ = T7i + T7j; |
| 2565 |
Ti2 = Ti0 + Ti1; |
| 2566 |
Ti3 = ThZ + Ti2; |
| 2567 |
Tix = Ti2 - ThZ; |
| 2568 |
} |
| 2569 |
} |
| 2570 |
{
|
| 2571 |
E T1g, T7m, T1r, T7n, T7o, T7p, T1z, T7s, T1I, T7t, T7r, T7u; |
| 2572 |
{
|
| 2573 |
E T1b, T1f, T1m, T1q; |
| 2574 |
T1b = ri[WS(rs, 8)];
|
| 2575 |
T1f = ii[WS(rs, 8)];
|
| 2576 |
T1g = FMA(T1a, T1b, T1e * T1f); |
| 2577 |
T7m = FNMS(T1e, T1b, T1a * T1f); |
| 2578 |
T1m = ri[WS(rs, 40)];
|
| 2579 |
T1q = ii[WS(rs, 40)];
|
| 2580 |
T1r = FMA(T1l, T1m, T1p * T1q); |
| 2581 |
T7n = FNMS(T1p, T1m, T1l * T1q); |
| 2582 |
} |
| 2583 |
T7o = T7m - T7n; |
| 2584 |
T7p = T1g - T1r; |
| 2585 |
{
|
| 2586 |
E T1w, T1y, T1D, T1H; |
| 2587 |
T1w = ri[WS(rs, 56)];
|
| 2588 |
T1y = ii[WS(rs, 56)];
|
| 2589 |
T1z = FMA(T1v, T1w, T1x * T1y); |
| 2590 |
T7s = FNMS(T1x, T1w, T1v * T1y); |
| 2591 |
T1D = ri[WS(rs, 24)];
|
| 2592 |
T1H = ii[WS(rs, 24)];
|
| 2593 |
T1I = FMA(T1C, T1D, T1G * T1H); |
| 2594 |
T7t = FNMS(T1G, T1D, T1C * T1H); |
| 2595 |
} |
| 2596 |
T7r = T1z - T1I; |
| 2597 |
T7u = T7s - T7t; |
| 2598 |
{
|
| 2599 |
E T1s, T1J, TdW, TdX; |
| 2600 |
T1s = T1g + T1r; |
| 2601 |
T1J = T1z + T1I; |
| 2602 |
T1K = T1s + T1J; |
| 2603 |
Tiw = T1J - T1s; |
| 2604 |
TdW = T7m + T7n; |
| 2605 |
TdX = T7s + T7t; |
| 2606 |
TdY = TdW - TdX; |
| 2607 |
ThY = TdW + TdX; |
| 2608 |
} |
| 2609 |
{
|
| 2610 |
E T7q, T7v, TbK, TbL; |
| 2611 |
T7q = T7o - T7p; |
| 2612 |
T7v = T7r + T7u; |
| 2613 |
T7w = KP707106781 * (T7q - T7v); |
| 2614 |
Tj0 = KP707106781 * (T7q + T7v); |
| 2615 |
TbK = T7p + T7o; |
| 2616 |
TbL = T7r - T7u; |
| 2617 |
TbM = KP707106781 * (TbK + TbL); |
| 2618 |
Tjw = KP707106781 * (TbL - TbK); |
| 2619 |
} |
| 2620 |
} |
| 2621 |
{
|
| 2622 |
E T1Y, Te0, T7A, T7D, T2d, Te1, T7B, T7G, T7C, T7H; |
| 2623 |
{
|
| 2624 |
E T1O, T7y, T1X, T7z; |
| 2625 |
{
|
| 2626 |
E T1M, T1N, T1S, T1W; |
| 2627 |
T1M = ri[WS(rs, 4)];
|
| 2628 |
T1N = ii[WS(rs, 4)];
|
| 2629 |
T1O = FMA(T8, T1M, Td * T1N); |
| 2630 |
T7y = FNMS(Td, T1M, T8 * T1N); |
| 2631 |
T1S = ri[WS(rs, 36)];
|
| 2632 |
T1W = ii[WS(rs, 36)];
|
| 2633 |
T1X = FMA(T1R, T1S, T1V * T1W); |
| 2634 |
T7z = FNMS(T1V, T1S, T1R * T1W); |
| 2635 |
} |
| 2636 |
T1Y = T1O + T1X; |
| 2637 |
Te0 = T7y + T7z; |
| 2638 |
T7A = T7y - T7z; |
| 2639 |
T7D = T1O - T1X; |
| 2640 |
} |
| 2641 |
{
|
| 2642 |
E T27, T7E, T2c, T7F; |
| 2643 |
{
|
| 2644 |
E T22, T26, T29, T2b; |
| 2645 |
T22 = ri[WS(rs, 20)];
|
| 2646 |
T26 = ii[WS(rs, 20)];
|
| 2647 |
T27 = FMA(T21, T22, T25 * T26); |
| 2648 |
T7E = FNMS(T25, T22, T21 * T26); |
| 2649 |
T29 = ri[WS(rs, 52)];
|
| 2650 |
T2b = ii[WS(rs, 52)];
|
| 2651 |
T2c = FMA(T28, T29, T2a * T2b); |
| 2652 |
T7F = FNMS(T2a, T29, T28 * T2b); |
| 2653 |
} |
| 2654 |
T2d = T27 + T2c; |
| 2655 |
Te1 = T7E + T7F; |
| 2656 |
T7B = T27 - T2c; |
| 2657 |
T7G = T7E - T7F; |
| 2658 |
} |
| 2659 |
T2e = T1Y + T2d; |
| 2660 |
TgA = Te0 + Te1; |
| 2661 |
T7C = T7A + T7B; |
| 2662 |
T7H = T7D - T7G; |
| 2663 |
T7I = FNMS(KP923879532, T7H, KP382683432 * T7C); |
| 2664 |
TaY = FMA(KP923879532, T7C, KP382683432 * T7H); |
| 2665 |
{
|
| 2666 |
E TbO, TbP, Te2, Te3; |
| 2667 |
TbO = T7A - T7B; |
| 2668 |
TbP = T7D + T7G; |
| 2669 |
TbQ = FNMS(KP382683432, TbP, KP923879532 * TbO); |
| 2670 |
Tda = FMA(KP382683432, TbO, KP923879532 * TbP); |
| 2671 |
Te2 = Te0 - Te1; |
| 2672 |
Te3 = T1Y - T2d; |
| 2673 |
Te4 = Te2 - Te3; |
| 2674 |
TfO = Te3 + Te2; |
| 2675 |
} |
| 2676 |
} |
| 2677 |
{
|
| 2678 |
E T2t, Te6, T7L, T7O, T2I, Te7, T7M, T7R, T7N, T7S; |
| 2679 |
{
|
| 2680 |
E T2j, T7J, T2s, T7K; |
| 2681 |
{
|
| 2682 |
E T2g, T2i, T2n, T2r; |
| 2683 |
T2g = ri[WS(rs, 60)];
|
| 2684 |
T2i = ii[WS(rs, 60)];
|
| 2685 |
T2j = FMA(T2f, T2g, T2h * T2i); |
| 2686 |
T7J = FNMS(T2h, T2g, T2f * T2i); |
| 2687 |
T2n = ri[WS(rs, 28)];
|
| 2688 |
T2r = ii[WS(rs, 28)];
|
| 2689 |
T2s = FMA(T2m, T2n, T2q * T2r); |
| 2690 |
T7K = FNMS(T2q, T2n, T2m * T2r); |
| 2691 |
} |
| 2692 |
T2t = T2j + T2s; |
| 2693 |
Te6 = T7J + T7K; |
| 2694 |
T7L = T7J - T7K; |
| 2695 |
T7O = T2j - T2s; |
| 2696 |
} |
| 2697 |
{
|
| 2698 |
E T2w, T7P, T2H, T7Q; |
| 2699 |
{
|
| 2700 |
E T2u, T2v, T2E, T2G; |
| 2701 |
T2u = ri[WS(rs, 12)];
|
| 2702 |
T2v = ii[WS(rs, 12)];
|
| 2703 |
T2w = FMA(TP, T2u, TT * T2v); |
| 2704 |
T7P = FNMS(TT, T2u, TP * T2v); |
| 2705 |
T2E = ri[WS(rs, 44)];
|
| 2706 |
T2G = ii[WS(rs, 44)];
|
| 2707 |
T2H = FMA(T2D, T2E, T2F * T2G); |
| 2708 |
T7Q = FNMS(T2F, T2E, T2D * T2G); |
| 2709 |
} |
| 2710 |
T2I = T2w + T2H; |
| 2711 |
Te7 = T7P + T7Q; |
| 2712 |
T7M = T2w - T2H; |
| 2713 |
T7R = T7P - T7Q; |
| 2714 |
} |
| 2715 |
T2J = T2t + T2I; |
| 2716 |
TgB = Te6 + Te7; |
| 2717 |
T7N = T7L + T7M; |
| 2718 |
T7S = T7O - T7R; |
| 2719 |
T7T = FMA(KP382683432, T7N, KP923879532 * T7S); |
| 2720 |
TaZ = FNMS(KP923879532, T7N, KP382683432 * T7S); |
| 2721 |
{
|
| 2722 |
E TbR, TbS, Te5, Te8; |
| 2723 |
TbR = T7L - T7M; |
| 2724 |
TbS = T7O + T7R; |
| 2725 |
TbT = FMA(KP923879532, TbR, KP382683432 * TbS); |
| 2726 |
Tdb = FNMS(KP382683432, TbR, KP923879532 * TbS); |
| 2727 |
Te5 = T2t - T2I; |
| 2728 |
Te8 = Te6 - Te7; |
| 2729 |
Te9 = Te5 + Te8; |
| 2730 |
TfP = Te5 - Te8; |
| 2731 |
} |
| 2732 |
} |
| 2733 |
{
|
| 2734 |
E T2O, T7W, T2T, T7X, T2U, Tec, T2Z, T8e, T34, T8f, T35, Ted, T3p, Tei, T86; |
| 2735 |
E T89, T3A, Tej, T81, T84; |
| 2736 |
{
|
| 2737 |
E T2M, T2N, T2Q, T2S; |
| 2738 |
T2M = ri[WS(rs, 2)];
|
| 2739 |
T2N = ii[WS(rs, 2)];
|
| 2740 |
T2O = FMA(Tw, T2M, Ty * T2N); |
| 2741 |
T7W = FNMS(Ty, T2M, Tw * T2N); |
| 2742 |
T2Q = ri[WS(rs, 34)];
|
| 2743 |
T2S = ii[WS(rs, 34)];
|
| 2744 |
T2T = FMA(T2P, T2Q, T2R * T2S); |
| 2745 |
T7X = FNMS(T2R, T2Q, T2P * T2S); |
| 2746 |
} |
| 2747 |
T2U = T2O + T2T; |
| 2748 |
Tec = T7W + T7X; |
| 2749 |
{
|
| 2750 |
E T2W, T2Y, T31, T33; |
| 2751 |
T2W = ri[WS(rs, 18)];
|
| 2752 |
T2Y = ii[WS(rs, 18)];
|
| 2753 |
T2Z = FMA(T2V, T2W, T2X * T2Y); |
| 2754 |
T8e = FNMS(T2X, T2W, T2V * T2Y); |
| 2755 |
T31 = ri[WS(rs, 50)];
|
| 2756 |
T33 = ii[WS(rs, 50)];
|
| 2757 |
T34 = FMA(T30, T31, T32 * T33); |
| 2758 |
T8f = FNMS(T32, T31, T30 * T33); |
| 2759 |
} |
| 2760 |
T35 = T2Z + T34; |
| 2761 |
Ted = T8e + T8f; |
| 2762 |
{
|
| 2763 |
E T3b, T87, T3o, T88; |
| 2764 |
{
|
| 2765 |
E T38, T3a, T3l, T3n; |
| 2766 |
T38 = ri[WS(rs, 10)];
|
| 2767 |
T3a = ii[WS(rs, 10)];
|
| 2768 |
T3b = FMA(T37, T38, T39 * T3a); |
| 2769 |
T87 = FNMS(T39, T38, T37 * T3a); |
| 2770 |
T3l = ri[WS(rs, 42)];
|
| 2771 |
T3n = ii[WS(rs, 42)];
|
| 2772 |
T3o = FMA(T3k, T3l, T3m * T3n); |
| 2773 |
T88 = FNMS(T3m, T3l, T3k * T3n); |
| 2774 |
} |
| 2775 |
T3p = T3b + T3o; |
| 2776 |
Tei = T87 + T88; |
| 2777 |
T86 = T3b - T3o; |
| 2778 |
T89 = T87 - T88; |
| 2779 |
} |
| 2780 |
{
|
| 2781 |
E T3u, T82, T3z, T83; |
| 2782 |
{
|
| 2783 |
E T3r, T3t, T3w, T3y; |
| 2784 |
T3r = ri[WS(rs, 58)];
|
| 2785 |
T3t = ii[WS(rs, 58)];
|
| 2786 |
T3u = FMA(T3q, T3r, T3s * T3t); |
| 2787 |
T82 = FNMS(T3s, T3r, T3q * T3t); |
| 2788 |
T3w = ri[WS(rs, 26)];
|
| 2789 |
T3y = ii[WS(rs, 26)];
|
| 2790 |
T3z = FMA(T3v, T3w, T3x * T3y); |
| 2791 |
T83 = FNMS(T3x, T3w, T3v * T3y); |
| 2792 |
} |
| 2793 |
T3A = T3u + T3z; |
| 2794 |
Tej = T82 + T83; |
| 2795 |
T81 = T3u - T3z; |
| 2796 |
T84 = T82 - T83; |
| 2797 |
} |
| 2798 |
T36 = T2U + T35; |
| 2799 |
T3B = T3p + T3A; |
| 2800 |
TgH = T36 - T3B; |
| 2801 |
TgE = Tec + Ted; |
| 2802 |
TgF = Tei + Tej; |
| 2803 |
TgG = TgE - TgF; |
| 2804 |
{
|
| 2805 |
E T7Y, T7Z, Teh, Tek; |
| 2806 |
T7Y = T7W - T7X; |
| 2807 |
T7Z = T2Z - T34; |
| 2808 |
T80 = T7Y + T7Z; |
| 2809 |
TbW = T7Y - T7Z; |
| 2810 |
Teh = T2U - T35; |
| 2811 |
Tek = Tei - Tej; |
| 2812 |
Tel = Teh - Tek; |
| 2813 |
TfT = Teh + Tek; |
| 2814 |
} |
| 2815 |
{
|
| 2816 |
E T85, T8a, T8i, T8j; |
| 2817 |
T85 = T81 - T84; |
| 2818 |
T8a = T86 + T89; |
| 2819 |
T8b = KP707106781 * (T85 - T8a); |
| 2820 |
Tc0 = KP707106781 * (T8a + T85); |
| 2821 |
T8i = T89 - T86; |
| 2822 |
T8j = T81 + T84; |
| 2823 |
T8k = KP707106781 * (T8i - T8j); |
| 2824 |
TbX = KP707106781 * (T8i + T8j); |
| 2825 |
} |
| 2826 |
{
|
| 2827 |
E Tee, Tef, T8d, T8g; |
| 2828 |
Tee = Tec - Ted; |
| 2829 |
Tef = T3A - T3p; |
| 2830 |
Teg = Tee - Tef; |
| 2831 |
TfS = Tee + Tef; |
| 2832 |
T8d = T2O - T2T; |
| 2833 |
T8g = T8e - T8f; |
| 2834 |
T8h = T8d - T8g; |
| 2835 |
TbZ = T8d + T8g; |
| 2836 |
} |
| 2837 |
} |
| 2838 |
{
|
| 2839 |
E T3H, T8n, T3M, T8o, T3N, Ten, T3S, T8F, T43, T8G, T44, Teo, T4e, Tet, T8x; |
| 2840 |
E T8A, T4p, Teu, T8s, T8v; |
| 2841 |
{
|
| 2842 |
E T3E, T3G, T3J, T3L; |
| 2843 |
T3E = ri[WS(rs, 62)];
|
| 2844 |
T3G = ii[WS(rs, 62)];
|
| 2845 |
T3H = FMA(T3D, T3E, T3F * T3G); |
| 2846 |
T8n = FNMS(T3F, T3E, T3D * T3G); |
| 2847 |
T3J = ri[WS(rs, 30)];
|
| 2848 |
T3L = ii[WS(rs, 30)];
|
| 2849 |
T3M = FMA(T3I, T3J, T3K * T3L); |
| 2850 |
T8o = FNMS(T3K, T3J, T3I * T3L); |
| 2851 |
} |
| 2852 |
T3N = T3H + T3M; |
| 2853 |
Ten = T8n + T8o; |
| 2854 |
{
|
| 2855 |
E T3P, T3R, T40, T42; |
| 2856 |
T3P = ri[WS(rs, 14)];
|
| 2857 |
T3R = ii[WS(rs, 14)];
|
| 2858 |
T3S = FMA(T3O, T3P, T3Q * T3R); |
| 2859 |
T8F = FNMS(T3Q, T3P, T3O * T3R); |
| 2860 |
T40 = ri[WS(rs, 46)];
|
| 2861 |
T42 = ii[WS(rs, 46)];
|
| 2862 |
T43 = FMA(T3Z, T40, T41 * T42); |
| 2863 |
T8G = FNMS(T41, T40, T3Z * T42); |
| 2864 |
} |
| 2865 |
T44 = T3S + T43; |
| 2866 |
Teo = T8F + T8G; |
| 2867 |
{
|
| 2868 |
E T48, T8y, T4d, T8z; |
| 2869 |
{
|
| 2870 |
E T46, T47, T4a, T4c; |
| 2871 |
T46 = ri[WS(rs, 6)];
|
| 2872 |
T47 = ii[WS(rs, 6)];
|
| 2873 |
T48 = FMA(T3c, T46, T3e * T47); |
| 2874 |
T8y = FNMS(T3e, T46, T3c * T47); |
| 2875 |
T4a = ri[WS(rs, 38)];
|
| 2876 |
T4c = ii[WS(rs, 38)];
|
| 2877 |
T4d = FMA(T49, T4a, T4b * T4c); |
| 2878 |
T8z = FNMS(T4b, T4a, T49 * T4c); |
| 2879 |
} |
| 2880 |
T4e = T48 + T4d; |
| 2881 |
Tet = T8y + T8z; |
| 2882 |
T8x = T48 - T4d; |
| 2883 |
T8A = T8y - T8z; |
| 2884 |
} |
| 2885 |
{
|
| 2886 |
E T4j, T8t, T4o, T8u; |
| 2887 |
{
|
| 2888 |
E T4g, T4i, T4l, T4n; |
| 2889 |
T4g = ri[WS(rs, 54)];
|
| 2890 |
T4i = ii[WS(rs, 54)];
|
| 2891 |
T4j = FMA(T4f, T4g, T4h * T4i); |
| 2892 |
T8t = FNMS(T4h, T4g, T4f * T4i); |
| 2893 |
T4l = ri[WS(rs, 22)];
|
| 2894 |
T4n = ii[WS(rs, 22)];
|
| 2895 |
T4o = FMA(T4k, T4l, T4m * T4n); |
| 2896 |
T8u = FNMS(T4m, T4l, T4k * T4n); |
| 2897 |
} |
| 2898 |
T4p = T4j + T4o; |
| 2899 |
Teu = T8t + T8u; |
| 2900 |
T8s = T4j - T4o; |
| 2901 |
T8v = T8t - T8u; |
| 2902 |
} |
| 2903 |
T45 = T3N + T44; |
| 2904 |
T4q = T4e + T4p; |
| 2905 |
TgJ = T45 - T4q; |
| 2906 |
TgK = Ten + Teo; |
| 2907 |
TgL = Tet + Teu; |
| 2908 |
TgM = TgK - TgL; |
| 2909 |
{
|
| 2910 |
E T8p, T8q, Tes, Tev; |
| 2911 |
T8p = T8n - T8o; |
| 2912 |
T8q = T3S - T43; |
| 2913 |
T8r = T8p + T8q; |
| 2914 |
Tc6 = T8p - T8q; |
| 2915 |
Tes = T3N - T44; |
| 2916 |
Tev = Tet - Teu; |
| 2917 |
Tew = Tes - Tev; |
| 2918 |
TfW = Tes + Tev; |
| 2919 |
} |
| 2920 |
{
|
| 2921 |
E T8w, T8B, T8J, T8K; |
| 2922 |
T8w = T8s - T8v; |
| 2923 |
T8B = T8x + T8A; |
| 2924 |
T8C = KP707106781 * (T8w - T8B); |
| 2925 |
Tc4 = KP707106781 * (T8B + T8w); |
| 2926 |
T8J = T8A - T8x; |
| 2927 |
T8K = T8s + T8v; |
| 2928 |
T8L = KP707106781 * (T8J - T8K); |
| 2929 |
Tc7 = KP707106781 * (T8J + T8K); |
| 2930 |
} |
| 2931 |
{
|
| 2932 |
E Tep, Teq, T8E, T8H; |
| 2933 |
Tep = Ten - Teo; |
| 2934 |
Teq = T4p - T4e; |
| 2935 |
Ter = Tep - Teq; |
| 2936 |
TfV = Tep + Teq; |
| 2937 |
T8E = T3H - T3M; |
| 2938 |
T8H = T8F - T8G; |
| 2939 |
T8I = T8E - T8H; |
| 2940 |
Tc3 = T8E + T8H; |
| 2941 |
} |
| 2942 |
} |
| 2943 |
{
|
| 2944 |
E T5V, Tao, T64, Tap, T65, Tfi, T68, T9K, T6d, T9L, T6e, Tfj, T6o, Tf2, T9Q; |
| 2945 |
E T9R, T6z, Tf3, T9T, T9W; |
| 2946 |
{
|
| 2947 |
E T5T, T5U, T5Z, T63; |
| 2948 |
T5T = ri[WS(rs, 63)];
|
| 2949 |
T5U = ii[WS(rs, 63)];
|
| 2950 |
T5V = FMA(TW, T5T, T10 * T5U); |
| 2951 |
Tao = FNMS(T10, T5T, TW * T5U); |
| 2952 |
T5Z = ri[WS(rs, 31)];
|
| 2953 |
T63 = ii[WS(rs, 31)];
|
| 2954 |
T64 = FMA(T5Y, T5Z, T62 * T63); |
| 2955 |
Tap = FNMS(T62, T5Z, T5Y * T63); |
| 2956 |
} |
| 2957 |
T65 = T5V + T64; |
| 2958 |
Tfi = Tao + Tap; |
| 2959 |
{
|
| 2960 |
E T66, T67, T6a, T6c; |
| 2961 |
T66 = ri[WS(rs, 15)];
|
| 2962 |
T67 = ii[WS(rs, 15)];
|
| 2963 |
T68 = FMA(TV, T66, TZ * T67); |
| 2964 |
T9K = FNMS(TZ, T66, TV * T67); |
| 2965 |
T6a = ri[WS(rs, 47)];
|
| 2966 |
T6c = ii[WS(rs, 47)];
|
| 2967 |
T6d = FMA(T69, T6a, T6b * T6c); |
| 2968 |
T9L = FNMS(T6b, T6a, T69 * T6c); |
| 2969 |
} |
| 2970 |
T6e = T68 + T6d; |
| 2971 |
Tfj = T9K + T9L; |
| 2972 |
{
|
| 2973 |
E T6i, T9O, T6n, T9P; |
| 2974 |
{
|
| 2975 |
E T6g, T6h, T6k, T6m; |
| 2976 |
T6g = ri[WS(rs, 7)];
|
| 2977 |
T6h = ii[WS(rs, 7)];
|
| 2978 |
T6i = FMA(T1t, T6g, T1u * T6h); |
| 2979 |
T9O = FNMS(T1u, T6g, T1t * T6h); |
| 2980 |
T6k = ri[WS(rs, 39)];
|
| 2981 |
T6m = ii[WS(rs, 39)];
|
| 2982 |
T6n = FMA(T6j, T6k, T6l * T6m); |
| 2983 |
T9P = FNMS(T6l, T6k, T6j * T6m); |
| 2984 |
} |
| 2985 |
T6o = T6i + T6n; |
| 2986 |
Tf2 = T9O + T9P; |
| 2987 |
T9Q = T9O - T9P; |
| 2988 |
T9R = T6i - T6n; |
| 2989 |
} |
| 2990 |
{
|
| 2991 |
E T6t, T9U, T6y, T9V; |
| 2992 |
{
|
| 2993 |
E T6q, T6s, T6v, T6x; |
| 2994 |
T6q = ri[WS(rs, 55)];
|
| 2995 |
T6s = ii[WS(rs, 55)];
|
| 2996 |
T6t = FMA(T6p, T6q, T6r * T6s); |
| 2997 |
T9U = FNMS(T6r, T6q, T6p * T6s); |
| 2998 |
T6v = ri[WS(rs, 23)];
|
| 2999 |
T6x = ii[WS(rs, 23)];
|
| 3000 |
T6y = FMA(T6u, T6v, T6w * T6x); |
| 3001 |
T9V = FNMS(T6w, T6v, T6u * T6x); |
| 3002 |
} |
| 3003 |
T6z = T6t + T6y; |
| 3004 |
Tf3 = T9U + T9V; |
| 3005 |
T9T = T6t - T6y; |
| 3006 |
T9W = T9U - T9V; |
| 3007 |
} |
| 3008 |
{
|
| 3009 |
E T6f, T6A, Tfk, Tfl; |
| 3010 |
T6f = T65 + T6e; |
| 3011 |
T6A = T6o + T6z; |
| 3012 |
T6B = T6f + T6A; |
| 3013 |
Th1 = T6f - T6A; |
| 3014 |
Tfk = Tfi - Tfj; |
| 3015 |
Tfl = T6z - T6o; |
| 3016 |
Tfm = Tfk - Tfl; |
| 3017 |
Tga = Tfk + Tfl; |
| 3018 |
} |
| 3019 |
{
|
| 3020 |
E Th6, Th7, T9J, T9M; |
| 3021 |
Th6 = Tfi + Tfj; |
| 3022 |
Th7 = Tf2 + Tf3; |
| 3023 |
Th8 = Th6 - Th7; |
| 3024 |
ThI = Th6 + Th7; |
| 3025 |
T9J = T5V - T64; |
| 3026 |
T9M = T9K - T9L; |
| 3027 |
T9N = T9J - T9M; |
| 3028 |
Tcv = T9J + T9M; |
| 3029 |
} |
| 3030 |
{
|
| 3031 |
E T9S, T9X, Tat, Tau; |
| 3032 |
T9S = T9Q - T9R; |
| 3033 |
T9X = T9T + T9W; |
| 3034 |
T9Y = KP707106781 * (T9S - T9X); |
| 3035 |
TcH = KP707106781 * (T9S + T9X); |
| 3036 |
Tat = T9T - T9W; |
| 3037 |
Tau = T9R + T9Q; |
| 3038 |
Tav = KP707106781 * (Tat - Tau); |
| 3039 |
Tcw = KP707106781 * (Tau + Tat); |
| 3040 |
} |
| 3041 |
{
|
| 3042 |
E Tf1, Tf4, Taq, Tar; |
| 3043 |
Tf1 = T65 - T6e; |
| 3044 |
Tf4 = Tf2 - Tf3; |
| 3045 |
Tf5 = Tf1 - Tf4; |
| 3046 |
Tg7 = Tf1 + Tf4; |
| 3047 |
Taq = Tao - Tap; |
| 3048 |
Tar = T68 - T6d; |
| 3049 |
Tas = Taq + Tar; |
| 3050 |
TcG = Taq - Tar; |
| 3051 |
} |
| 3052 |
} |
| 3053 |
{
|
| 3054 |
E T4w, T8Q, T4B, T8R, T4C, TeA, T4F, T9w, T4K, T9x, T4L, TeB, T4V, TeS, T90; |
| 3055 |
E T93, T5a, TeT, T8V, T8Y; |
| 3056 |
{
|
| 3057 |
E T4u, T4v, T4y, T4A; |
| 3058 |
T4u = ri[WS(rs, 1)];
|
| 3059 |
T4v = ii[WS(rs, 1)];
|
| 3060 |
T4w = FMA(T2, T4u, T5 * T4v); |
| 3061 |
T8Q = FNMS(T5, T4u, T2 * T4v); |
| 3062 |
T4y = ri[WS(rs, 33)];
|
| 3063 |
T4A = ii[WS(rs, 33)];
|
| 3064 |
T4B = FMA(T4x, T4y, T4z * T4A); |
| 3065 |
T8R = FNMS(T4z, T4y, T4x * T4A); |
| 3066 |
} |
| 3067 |
T4C = T4w + T4B; |
| 3068 |
TeA = T8Q + T8R; |
| 3069 |
{
|
| 3070 |
E T4D, T4E, T4H, T4J; |
| 3071 |
T4D = ri[WS(rs, 17)];
|
| 3072 |
T4E = ii[WS(rs, 17)];
|
| 3073 |
T4F = FMA(T3V, T4D, T3Y * T4E); |
| 3074 |
T9w = FNMS(T3Y, T4D, T3V * T4E); |
| 3075 |
T4H = ri[WS(rs, 49)];
|
| 3076 |
T4J = ii[WS(rs, 49)];
|
| 3077 |
T4K = FMA(T4G, T4H, T4I * T4J); |
| 3078 |
T9x = FNMS(T4I, T4H, T4G * T4J); |
| 3079 |
} |
| 3080 |
T4L = T4F + T4K; |
| 3081 |
TeB = T9w + T9x; |
| 3082 |
{
|
| 3083 |
E T4P, T91, T4U, T92; |
| 3084 |
{
|
| 3085 |
E T4N, T4O, T4R, T4T; |
| 3086 |
T4N = ri[WS(rs, 9)];
|
| 3087 |
T4O = ii[WS(rs, 9)];
|
| 3088 |
T4P = FMA(T9, T4N, Te * T4O); |
| 3089 |
T91 = FNMS(Te, T4N, T9 * T4O); |
| 3090 |
T4R = ri[WS(rs, 41)];
|
| 3091 |
T4T = ii[WS(rs, 41)];
|
| 3092 |
T4U = FMA(T4Q, T4R, T4S * T4T); |
| 3093 |
T92 = FNMS(T4S, T4R, T4Q * T4T); |
| 3094 |
} |
| 3095 |
T4V = T4P + T4U; |
| 3096 |
TeS = T91 + T92; |
| 3097 |
T90 = T4P - T4U; |
| 3098 |
T93 = T91 - T92; |
| 3099 |
} |
| 3100 |
{
|
| 3101 |
E T50, T8W, T59, T8X; |
| 3102 |
{
|
| 3103 |
E T4X, T4Z, T54, T58; |
| 3104 |
T4X = ri[WS(rs, 57)];
|
| 3105 |
T4Z = ii[WS(rs, 57)];
|
| 3106 |
T50 = FMA(T4W, T4X, T4Y * T4Z); |
| 3107 |
T8W = FNMS(T4Y, T4X, T4W * T4Z); |
| 3108 |
T54 = ri[WS(rs, 25)];
|
| 3109 |
T58 = ii[WS(rs, 25)];
|
| 3110 |
T59 = FMA(T53, T54, T57 * T58); |
| 3111 |
T8X = FNMS(T57, T54, T53 * T58); |
| 3112 |
} |
| 3113 |
T5a = T50 + T59; |
| 3114 |
TeT = T8W + T8X; |
| 3115 |
T8V = T50 - T59; |
| 3116 |
T8Y = T8W - T8X; |
| 3117 |
} |
| 3118 |
{
|
| 3119 |
E T4M, T5b, TeR, TeU; |
| 3120 |
T4M = T4C + T4L; |
| 3121 |
T5b = T4V + T5a; |
| 3122 |
T5c = T4M + T5b; |
| 3123 |
TgV = T4M - T5b; |
| 3124 |
TeR = T4C - T4L; |
| 3125 |
TeU = TeS - TeT; |
| 3126 |
TeV = TeR - TeU; |
| 3127 |
Tg0 = TeR + TeU; |
| 3128 |
} |
| 3129 |
{
|
| 3130 |
E TgQ, TgR, T8S, T8T; |
| 3131 |
TgQ = TeA + TeB; |
| 3132 |
TgR = TeS + TeT; |
| 3133 |
TgS = TgQ - TgR; |
| 3134 |
ThD = TgQ + TgR; |
| 3135 |
T8S = T8Q - T8R; |
| 3136 |
T8T = T4F - T4K; |
| 3137 |
T8U = T8S + T8T; |
| 3138 |
Tcc = T8S - T8T; |
| 3139 |
} |
| 3140 |
{
|
| 3141 |
E T8Z, T94, T9A, T9B; |
| 3142 |
T8Z = T8V - T8Y; |
| 3143 |
T94 = T90 + T93; |
| 3144 |
T95 = KP707106781 * (T8Z - T94); |
| 3145 |
Tco = KP707106781 * (T94 + T8Z); |
| 3146 |
T9A = T93 - T90; |
| 3147 |
T9B = T8V + T8Y; |
| 3148 |
T9C = KP707106781 * (T9A - T9B); |
| 3149 |
Tcd = KP707106781 * (T9A + T9B); |
| 3150 |
} |
| 3151 |
{
|
| 3152 |
E TeC, TeD, T9v, T9y; |
| 3153 |
TeC = TeA - TeB; |
| 3154 |
TeD = T5a - T4V; |
| 3155 |
TeE = TeC - TeD; |
| 3156 |
Tg3 = TeC + TeD; |
| 3157 |
T9v = T4w - T4B; |
| 3158 |
T9y = T9w - T9x; |
| 3159 |
T9z = T9v - T9y; |
| 3160 |
Tcn = T9v + T9y; |
| 3161 |
} |
| 3162 |
} |
| 3163 |
{
|
| 3164 |
E T5l, TeL, T9k, T9n, T5P, TeH, T9a, T9f, T5u, TeM, T9l, T9q, T5G, TeG, T97; |
| 3165 |
E T9e; |
| 3166 |
{
|
| 3167 |
E T5f, T9i, T5k, T9j; |
| 3168 |
{
|
| 3169 |
E T5d, T5e, T5h, T5j; |
| 3170 |
T5d = ri[WS(rs, 5)];
|
| 3171 |
T5e = ii[WS(rs, 5)];
|
| 3172 |
T5f = FMA(Tg, T5d, Tl * T5e); |
| 3173 |
T9i = FNMS(Tl, T5d, Tg * T5e); |
| 3174 |
T5h = ri[WS(rs, 37)];
|
| 3175 |
T5j = ii[WS(rs, 37)];
|
| 3176 |
T5k = FMA(T5g, T5h, T5i * T5j); |
| 3177 |
T9j = FNMS(T5i, T5h, T5g * T5j); |
| 3178 |
} |
| 3179 |
T5l = T5f + T5k; |
| 3180 |
TeL = T9i + T9j; |
| 3181 |
T9k = T9i - T9j; |
| 3182 |
T9n = T5f - T5k; |
| 3183 |
} |
| 3184 |
{
|
| 3185 |
E T5J, T98, T5O, T99; |
| 3186 |
{
|
| 3187 |
E T5H, T5I, T5L, T5N; |
| 3188 |
T5H = ri[WS(rs, 13)];
|
| 3189 |
T5I = ii[WS(rs, 13)];
|
| 3190 |
T5J = FMA(T1h, T5H, T1j * T5I); |
| 3191 |
T98 = FNMS(T1j, T5H, T1h * T5I); |
| 3192 |
T5L = ri[WS(rs, 45)];
|
| 3193 |
T5N = ii[WS(rs, 45)];
|
| 3194 |
T5O = FMA(T5K, T5L, T5M * T5N); |
| 3195 |
T99 = FNMS(T5M, T5L, T5K * T5N); |
| 3196 |
} |
| 3197 |
T5P = T5J + T5O; |
| 3198 |
TeH = T98 + T99; |
| 3199 |
T9a = T98 - T99; |
| 3200 |
T9f = T5J - T5O; |
| 3201 |
} |
| 3202 |
{
|
| 3203 |
E T5o, T9o, T5t, T9p; |
| 3204 |
{
|
| 3205 |
E T5m, T5n, T5q, T5s; |
| 3206 |
T5m = ri[WS(rs, 21)];
|
| 3207 |
T5n = ii[WS(rs, 21)];
|
| 3208 |
T5o = FMA(T3g, T5m, T3j * T5n); |
| 3209 |
T9o = FNMS(T3j, T5m, T3g * T5n); |
| 3210 |
T5q = ri[WS(rs, 53)];
|
| 3211 |
T5s = ii[WS(rs, 53)];
|
| 3212 |
T5t = FMA(T5p, T5q, T5r * T5s); |
| 3213 |
T9p = FNMS(T5r, T5q, T5p * T5s); |
| 3214 |
} |
| 3215 |
T5u = T5o + T5t; |
| 3216 |
TeM = T9o + T9p; |
| 3217 |
T9l = T5o - T5t; |
| 3218 |
T9q = T9o - T9p; |
| 3219 |
} |
| 3220 |
{
|
| 3221 |
E T5A, T9c, T5F, T9d; |
| 3222 |
{
|
| 3223 |
E T5x, T5z, T5C, T5E; |
| 3224 |
T5x = ri[WS(rs, 61)];
|
| 3225 |
T5z = ii[WS(rs, 61)];
|
| 3226 |
T5A = FMA(T5w, T5x, T5y * T5z); |
| 3227 |
T9c = FNMS(T5y, T5x, T5w * T5z); |
| 3228 |
T5C = ri[WS(rs, 29)];
|
| 3229 |
T5E = ii[WS(rs, 29)];
|
| 3230 |
T5F = FMA(T5B, T5C, T5D * T5E); |
| 3231 |
T9d = FNMS(T5D, T5C, T5B * T5E); |
| 3232 |
} |
| 3233 |
T5G = T5A + T5F; |
| 3234 |
TeG = T9c + T9d; |
| 3235 |
T97 = T5A - T5F; |
| 3236 |
T9e = T9c - T9d; |
| 3237 |
} |
| 3238 |
{
|
| 3239 |
E T5v, T5Q, TeK, TeN; |
| 3240 |
T5v = T5l + T5u; |
| 3241 |
T5Q = T5G + T5P; |
| 3242 |
T5R = T5v + T5Q; |
| 3243 |
TgT = T5Q - T5v; |
| 3244 |
TeK = T5l - T5u; |
| 3245 |
TeN = TeL - TeM; |
| 3246 |
TeO = TeK + TeN; |
| 3247 |
TeW = TeN - TeK; |
| 3248 |
} |
| 3249 |
{
|
| 3250 |
E TgW, TgX, T9b, T9g; |
| 3251 |
TgW = TeL + TeM; |
| 3252 |
TgX = TeG + TeH; |
| 3253 |
TgY = TgW - TgX; |
| 3254 |
ThE = TgW + TgX; |
| 3255 |
T9b = T97 - T9a; |
| 3256 |
T9g = T9e + T9f; |
| 3257 |
T9h = FNMS(KP923879532, T9g, KP382683432 * T9b); |
| 3258 |
T9F = FMA(KP382683432, T9g, KP923879532 * T9b); |
| 3259 |
} |
| 3260 |
{
|
| 3261 |
E T9m, T9r, Tci, Tcj; |
| 3262 |
T9m = T9k + T9l; |
| 3263 |
T9r = T9n - T9q; |
| 3264 |
T9s = FMA(KP923879532, T9m, KP382683432 * T9r); |
| 3265 |
T9E = FNMS(KP923879532, T9r, KP382683432 * T9m); |
| 3266 |
Tci = T9k - T9l; |
| 3267 |
Tcj = T9n + T9q; |
| 3268 |
Tck = FMA(KP382683432, Tci, KP923879532 * Tcj); |
| 3269 |
Tcq = FNMS(KP382683432, Tcj, KP923879532 * Tci); |
| 3270 |
} |
| 3271 |
{
|
| 3272 |
E TeF, TeI, Tcf, Tcg; |
| 3273 |
TeF = T5G - T5P; |
| 3274 |
TeI = TeG - TeH; |
| 3275 |
TeJ = TeF - TeI; |
| 3276 |
TeX = TeF + TeI; |
| 3277 |
Tcf = T97 + T9a; |
| 3278 |
Tcg = T9e - T9f; |
| 3279 |
Tch = FNMS(KP382683432, Tcg, KP923879532 * Tcf); |
| 3280 |
Tcr = FMA(KP923879532, Tcg, KP382683432 * Tcf); |
| 3281 |
} |
| 3282 |
} |
| 3283 |
{
|
| 3284 |
E T6K, Tf6, Ta2, Ta5, T7c, Tfd, Tae, Taj, T6T, Tf7, Ta3, Ta8, T73, Tfc, Tad; |
| 3285 |
E Tag; |
| 3286 |
{
|
| 3287 |
E T6E, Ta0, T6J, Ta1; |
| 3288 |
{
|
| 3289 |
E T6C, T6D, T6G, T6I; |
| 3290 |
T6C = ri[WS(rs, 3)];
|
| 3291 |
T6D = ii[WS(rs, 3)];
|
| 3292 |
T6E = FMA(T3, T6C, T6 * T6D); |
| 3293 |
Ta0 = FNMS(T6, T6C, T3 * T6D); |
| 3294 |
T6G = ri[WS(rs, 35)];
|
| 3295 |
T6I = ii[WS(rs, 35)];
|
| 3296 |
T6J = FMA(T6F, T6G, T6H * T6I); |
| 3297 |
Ta1 = FNMS(T6H, T6G, T6F * T6I); |
| 3298 |
} |
| 3299 |
T6K = T6E + T6J; |
| 3300 |
Tf6 = Ta0 + Ta1; |
| 3301 |
Ta2 = Ta0 - Ta1; |
| 3302 |
Ta5 = T6E - T6J; |
| 3303 |
} |
| 3304 |
{
|
| 3305 |
E T76, Tah, T7b, Tai; |
| 3306 |
{
|
| 3307 |
E T74, T75, T78, T7a; |
| 3308 |
T74 = ri[WS(rs, 11)];
|
| 3309 |
T75 = ii[WS(rs, 11)];
|
| 3310 |
T76 = FMA(TA, T74, TE * T75); |
| 3311 |
Tah = FNMS(TE, T74, TA * T75); |
| 3312 |
T78 = ri[WS(rs, 43)];
|
| 3313 |
T7a = ii[WS(rs, 43)];
|
| 3314 |
T7b = FMA(T77, T78, T79 * T7a); |
| 3315 |
Tai = FNMS(T79, T78, T77 * T7a); |
| 3316 |
} |
| 3317 |
T7c = T76 + T7b; |
| 3318 |
Tfd = Tah + Tai; |
| 3319 |
Tae = T76 - T7b; |
| 3320 |
Taj = Tah - Tai; |
| 3321 |
} |
| 3322 |
{
|
| 3323 |
E T6N, Ta6, T6S, Ta7; |
| 3324 |
{
|
| 3325 |
E T6L, T6M, T6P, T6R; |
| 3326 |
T6L = ri[WS(rs, 19)];
|
| 3327 |
T6M = ii[WS(rs, 19)];
|
| 3328 |
T6N = FMA(T2z, T6L, T2C * T6M); |
| 3329 |
Ta6 = FNMS(T2C, T6L, T2z * T6M); |
| 3330 |
T6P = ri[WS(rs, 51)];
|
| 3331 |
T6R = ii[WS(rs, 51)];
|
| 3332 |
T6S = FMA(T6O, T6P, T6Q * T6R); |
| 3333 |
Ta7 = FNMS(T6Q, T6P, T6O * T6R); |
| 3334 |
} |
| 3335 |
T6T = T6N + T6S; |
| 3336 |
Tf7 = Ta6 + Ta7; |
| 3337 |
Ta3 = T6N - T6S; |
| 3338 |
Ta8 = Ta6 - Ta7; |
| 3339 |
} |
| 3340 |
{
|
| 3341 |
E T6Z, Tab, T72, Tac; |
| 3342 |
{
|
| 3343 |
E T6W, T6Y, T70, T71; |
| 3344 |
T6W = ri[WS(rs, 59)];
|
| 3345 |
T6Y = ii[WS(rs, 59)];
|
| 3346 |
T6Z = FMA(T6V, T6W, T6X * T6Y); |
| 3347 |
Tab = FNMS(T6X, T6W, T6V * T6Y); |
| 3348 |
T70 = ri[WS(rs, 27)];
|
| 3349 |
T71 = ii[WS(rs, 27)];
|
| 3350 |
T72 = FMA(Th, T70, Tm * T71); |
| 3351 |
Tac = FNMS(Tm, T70, Th * T71); |
| 3352 |
} |
| 3353 |
T73 = T6Z + T72; |
| 3354 |
Tfc = Tab + Tac; |
| 3355 |
Tad = Tab - Tac; |
| 3356 |
Tag = T6Z - T72; |
| 3357 |
} |
| 3358 |
{
|
| 3359 |
E T6U, T7d, Tfb, Tfe; |
| 3360 |
T6U = T6K + T6T; |
| 3361 |
T7d = T73 + T7c; |
| 3362 |
T7e = T6U + T7d; |
| 3363 |
Th9 = T7d - T6U; |
| 3364 |
Tfb = T73 - T7c; |
| 3365 |
Tfe = Tfc - Tfd; |
| 3366 |
Tff = Tfb + Tfe; |
| 3367 |
Tfn = Tfb - Tfe; |
| 3368 |
} |
| 3369 |
{
|
| 3370 |
E Th2, Th3, Ta4, Ta9; |
| 3371 |
Th2 = Tf6 + Tf7; |
| 3372 |
Th3 = Tfc + Tfd; |
| 3373 |
Th4 = Th2 - Th3; |
| 3374 |
ThJ = Th2 + Th3; |
| 3375 |
Ta4 = Ta2 + Ta3; |
| 3376 |
Ta9 = Ta5 - Ta8; |
| 3377 |
Taa = FNMS(KP923879532, Ta9, KP382683432 * Ta4); |
| 3378 |
Tay = FMA(KP923879532, Ta4, KP382683432 * Ta9); |
| 3379 |
} |
| 3380 |
{
|
| 3381 |
E Taf, Tak, TcB, TcC; |
| 3382 |
Taf = Tad + Tae; |
| 3383 |
Tak = Tag - Taj; |
| 3384 |
Tal = FMA(KP382683432, Taf, KP923879532 * Tak); |
| 3385 |
Tax = FNMS(KP923879532, Taf, KP382683432 * Tak); |
| 3386 |
TcB = Tad - Tae; |
| 3387 |
TcC = Tag + Taj; |
| 3388 |
TcD = FMA(KP923879532, TcB, KP382683432 * TcC); |
| 3389 |
TcJ = FNMS(KP382683432, TcB, KP923879532 * TcC); |
| 3390 |
} |
| 3391 |
{
|
| 3392 |
E Tf8, Tf9, Tcy, Tcz; |
| 3393 |
Tf8 = Tf6 - Tf7; |
| 3394 |
Tf9 = T6K - T6T; |
| 3395 |
Tfa = Tf8 - Tf9; |
| 3396 |
Tfo = Tf9 + Tf8; |
| 3397 |
Tcy = Ta2 - Ta3; |
| 3398 |
Tcz = Ta5 + Ta8; |
| 3399 |
TcA = FNMS(KP382683432, Tcz, KP923879532 * Tcy); |
| 3400 |
TcK = FMA(KP382683432, Tcy, KP923879532 * Tcz); |
| 3401 |
} |
| 3402 |
} |
| 3403 |
{
|
| 3404 |
E T2L, Thx, ThU, ThV, Ti5, Tib, T4s, Tia, T7g, Ti7, ThG, ThO, ThL, ThP, ThA; |
| 3405 |
E ThW; |
| 3406 |
{
|
| 3407 |
E T1L, T2K, ThS, ThT; |
| 3408 |
T1L = T17 + T1K; |
| 3409 |
T2K = T2e + T2J; |
| 3410 |
T2L = T1L + T2K; |
| 3411 |
Thx = T1L - T2K; |
| 3412 |
ThS = ThD + ThE; |
| 3413 |
ThT = ThI + ThJ; |
| 3414 |
ThU = ThS - ThT; |
| 3415 |
ThV = ThS + ThT; |
| 3416 |
} |
| 3417 |
{
|
| 3418 |
E ThX, Ti4, T3C, T4r; |
| 3419 |
ThX = TgA + TgB; |
| 3420 |
Ti4 = ThY + Ti3; |
| 3421 |
Ti5 = ThX + Ti4; |
| 3422 |
Tib = Ti4 - ThX; |
| 3423 |
T3C = T36 + T3B; |
| 3424 |
T4r = T45 + T4q; |
| 3425 |
T4s = T3C + T4r; |
| 3426 |
Tia = T4r - T3C; |
| 3427 |
} |
| 3428 |
{
|
| 3429 |
E T5S, T7f, ThC, ThF; |
| 3430 |
T5S = T5c + T5R; |
| 3431 |
T7f = T6B + T7e; |
| 3432 |
T7g = T5S + T7f; |
| 3433 |
Ti7 = T7f - T5S; |
| 3434 |
ThC = T5c - T5R; |
| 3435 |
ThF = ThD - ThE; |
| 3436 |
ThG = ThC + ThF; |
| 3437 |
ThO = ThF - ThC; |
| 3438 |
} |
| 3439 |
{
|
| 3440 |
E ThH, ThK, Thy, Thz; |
| 3441 |
ThH = T6B - T7e; |
| 3442 |
ThK = ThI - ThJ; |
| 3443 |
ThL = ThH - ThK; |
| 3444 |
ThP = ThH + ThK; |
| 3445 |
Thy = TgE + TgF; |
| 3446 |
Thz = TgK + TgL; |
| 3447 |
ThA = Thy - Thz; |
| 3448 |
ThW = Thy + Thz; |
| 3449 |
} |
| 3450 |
{
|
| 3451 |
E T4t, Ti6, ThR, Ti8; |
| 3452 |
T4t = T2L + T4s; |
| 3453 |
ri[WS(rs, 32)] = T4t - T7g;
|
| 3454 |
ri[0] = T4t + T7g;
|
| 3455 |
Ti6 = ThW + Ti5; |
| 3456 |
ii[0] = ThV + Ti6;
|
| 3457 |
ii[WS(rs, 32)] = Ti6 - ThV;
|
| 3458 |
ThR = T2L - T4s; |
| 3459 |
ri[WS(rs, 48)] = ThR - ThU;
|
| 3460 |
ri[WS(rs, 16)] = ThR + ThU;
|
| 3461 |
Ti8 = Ti5 - ThW; |
| 3462 |
ii[WS(rs, 16)] = Ti7 + Ti8;
|
| 3463 |
ii[WS(rs, 48)] = Ti8 - Ti7;
|
| 3464 |
} |
| 3465 |
{
|
| 3466 |
E ThB, ThM, Ti9, Tic; |
| 3467 |
ThB = Thx + ThA; |
| 3468 |
ThM = KP707106781 * (ThG + ThL); |
| 3469 |
ri[WS(rs, 40)] = ThB - ThM;
|
| 3470 |
ri[WS(rs, 8)] = ThB + ThM;
|
| 3471 |
Ti9 = KP707106781 * (ThO + ThP); |
| 3472 |
Tic = Tia + Tib; |
| 3473 |
ii[WS(rs, 8)] = Ti9 + Tic;
|
| 3474 |
ii[WS(rs, 40)] = Tic - Ti9;
|
| 3475 |
} |
| 3476 |
{
|
| 3477 |
E ThN, ThQ, Tid, Tie; |
| 3478 |
ThN = Thx - ThA; |
| 3479 |
ThQ = KP707106781 * (ThO - ThP); |
| 3480 |
ri[WS(rs, 56)] = ThN - ThQ;
|
| 3481 |
ri[WS(rs, 24)] = ThN + ThQ;
|
| 3482 |
Tid = KP707106781 * (ThL - ThG); |
| 3483 |
Tie = Tib - Tia; |
| 3484 |
ii[WS(rs, 24)] = Tid + Tie;
|
| 3485 |
ii[WS(rs, 56)] = Tie - Tid;
|
| 3486 |
} |
| 3487 |
} |
| 3488 |
{
|
| 3489 |
E TgD, Thh, Thr, Thv, Tij, Tip, TgO, Tig, Th0, The, Thk, Tio, Tho, Thu, Thb; |
| 3490 |
E Thf; |
| 3491 |
{
|
| 3492 |
E Tgz, TgC, Thp, Thq; |
| 3493 |
Tgz = T17 - T1K; |
| 3494 |
TgC = TgA - TgB; |
| 3495 |
TgD = Tgz - TgC; |
| 3496 |
Thh = Tgz + TgC; |
| 3497 |
Thp = Th1 + Th4; |
| 3498 |
Thq = Th8 + Th9; |
| 3499 |
Thr = FNMS(KP382683432, Thq, KP923879532 * Thp); |
| 3500 |
Thv = FMA(KP923879532, Thq, KP382683432 * Thp); |
| 3501 |
} |
| 3502 |
{
|
| 3503 |
E Tih, Tii, TgI, TgN; |
| 3504 |
Tih = T2J - T2e; |
| 3505 |
Tii = Ti3 - ThY; |
| 3506 |
Tij = Tih + Tii; |
| 3507 |
Tip = Tii - Tih; |
| 3508 |
TgI = TgG - TgH; |
| 3509 |
TgN = TgJ + TgM; |
| 3510 |
TgO = KP707106781 * (TgI - TgN); |
| 3511 |
Tig = KP707106781 * (TgI + TgN); |
| 3512 |
} |
| 3513 |
{
|
| 3514 |
E TgU, TgZ, Thi, Thj; |
| 3515 |
TgU = TgS - TgT; |
| 3516 |
TgZ = TgV - TgY; |
| 3517 |
Th0 = FMA(KP923879532, TgU, KP382683432 * TgZ); |
| 3518 |
The = FNMS(KP923879532, TgZ, KP382683432 * TgU); |
| 3519 |
Thi = TgH + TgG; |
| 3520 |
Thj = TgJ - TgM; |
| 3521 |
Thk = KP707106781 * (Thi + Thj); |
| 3522 |
Tio = KP707106781 * (Thj - Thi); |
| 3523 |
} |
| 3524 |
{
|
| 3525 |
E Thm, Thn, Th5, Tha; |
| 3526 |
Thm = TgS + TgT; |
| 3527 |
Thn = TgV + TgY; |
| 3528 |
Tho = FMA(KP382683432, Thm, KP923879532 * Thn); |
| 3529 |
Thu = FNMS(KP382683432, Thn, KP923879532 * Thm); |
| 3530 |
Th5 = Th1 - Th4; |
| 3531 |
Tha = Th8 - Th9; |
| 3532 |
Thb = FNMS(KP923879532, Tha, KP382683432 * Th5); |
| 3533 |
Thf = FMA(KP382683432, Tha, KP923879532 * Th5); |
| 3534 |
} |
| 3535 |
{
|
| 3536 |
E TgP, Thc, Tin, Tiq; |
| 3537 |
TgP = TgD + TgO; |
| 3538 |
Thc = Th0 + Thb; |
| 3539 |
ri[WS(rs, 44)] = TgP - Thc;
|
| 3540 |
ri[WS(rs, 12)] = TgP + Thc;
|
| 3541 |
Tin = The + Thf; |
| 3542 |
Tiq = Tio + Tip; |
| 3543 |
ii[WS(rs, 12)] = Tin + Tiq;
|
| 3544 |
ii[WS(rs, 44)] = Tiq - Tin;
|
| 3545 |
} |
| 3546 |
{
|
| 3547 |
E Thd, Thg, Tir, Tis; |
| 3548 |
Thd = TgD - TgO; |
| 3549 |
Thg = The - Thf; |
| 3550 |
ri[WS(rs, 60)] = Thd - Thg;
|
| 3551 |
ri[WS(rs, 28)] = Thd + Thg;
|
| 3552 |
Tir = Thb - Th0; |
| 3553 |
Tis = Tip - Tio; |
| 3554 |
ii[WS(rs, 28)] = Tir + Tis;
|
| 3555 |
ii[WS(rs, 60)] = Tis - Tir;
|
| 3556 |
} |
| 3557 |
{
|
| 3558 |
E Thl, Ths, Tif, Tik; |
| 3559 |
Thl = Thh + Thk; |
| 3560 |
Ths = Tho + Thr; |
| 3561 |
ri[WS(rs, 36)] = Thl - Ths;
|
| 3562 |
ri[WS(rs, 4)] = Thl + Ths;
|
| 3563 |
Tif = Thu + Thv; |
| 3564 |
Tik = Tig + Tij; |
| 3565 |
ii[WS(rs, 4)] = Tif + Tik;
|
| 3566 |
ii[WS(rs, 36)] = Tik - Tif;
|
| 3567 |
} |
| 3568 |
{
|
| 3569 |
E Tht, Thw, Til, Tim; |
| 3570 |
Tht = Thh - Thk; |
| 3571 |
Thw = Thu - Thv; |
| 3572 |
ri[WS(rs, 52)] = Tht - Thw;
|
| 3573 |
ri[WS(rs, 20)] = Tht + Thw;
|
| 3574 |
Til = Thr - Tho; |
| 3575 |
Tim = Tij - Tig; |
| 3576 |
ii[WS(rs, 20)] = Til + Tim;
|
| 3577 |
ii[WS(rs, 52)] = Tim - Til;
|
| 3578 |
} |
| 3579 |
} |
| 3580 |
{
|
| 3581 |
E Teb, Tfx, Tey, TiK, TiN, TiT, TfA, TiS, Tfr, TfL, Tfv, TfH, Tf0, TfK, Tfu; |
| 3582 |
E TfE; |
| 3583 |
{
|
| 3584 |
E TdZ, Tea, Tfy, Tfz; |
| 3585 |
TdZ = TdV - TdY; |
| 3586 |
Tea = KP707106781 * (Te4 - Te9); |
| 3587 |
Teb = TdZ - Tea; |
| 3588 |
Tfx = TdZ + Tea; |
| 3589 |
{
|
| 3590 |
E Tem, Tex, TiL, TiM; |
| 3591 |
Tem = FNMS(KP923879532, Tel, KP382683432 * Teg); |
| 3592 |
Tex = FMA(KP382683432, Ter, KP923879532 * Tew); |
| 3593 |
Tey = Tem - Tex; |
| 3594 |
TiK = Tem + Tex; |
| 3595 |
TiL = KP707106781 * (TfP - TfO); |
| 3596 |
TiM = Tix - Tiw; |
| 3597 |
TiN = TiL + TiM; |
| 3598 |
TiT = TiM - TiL; |
| 3599 |
} |
| 3600 |
Tfy = FMA(KP923879532, Teg, KP382683432 * Tel); |
| 3601 |
Tfz = FNMS(KP923879532, Ter, KP382683432 * Tew); |
| 3602 |
TfA = Tfy + Tfz; |
| 3603 |
TiS = Tfz - Tfy; |
| 3604 |
{
|
| 3605 |
E Tfh, TfF, Tfq, TfG, Tfg, Tfp; |
| 3606 |
Tfg = KP707106781 * (Tfa - Tff); |
| 3607 |
Tfh = Tf5 - Tfg; |
| 3608 |
TfF = Tf5 + Tfg; |
| 3609 |
Tfp = KP707106781 * (Tfn - Tfo); |
| 3610 |
Tfq = Tfm - Tfp; |
| 3611 |
TfG = Tfm + Tfp; |
| 3612 |
Tfr = FNMS(KP980785280, Tfq, KP195090322 * Tfh); |
| 3613 |
TfL = FMA(KP831469612, TfG, KP555570233 * TfF); |
| 3614 |
Tfv = FMA(KP195090322, Tfq, KP980785280 * Tfh); |
| 3615 |
TfH = FNMS(KP555570233, TfG, KP831469612 * TfF); |
| 3616 |
} |
| 3617 |
{
|
| 3618 |
E TeQ, TfC, TeZ, TfD, TeP, TeY; |
| 3619 |
TeP = KP707106781 * (TeJ - TeO); |
| 3620 |
TeQ = TeE - TeP; |
| 3621 |
TfC = TeE + TeP; |
| 3622 |
TeY = KP707106781 * (TeW - TeX); |
| 3623 |
TeZ = TeV - TeY; |
| 3624 |
TfD = TeV + TeY; |
| 3625 |
Tf0 = FMA(KP980785280, TeQ, KP195090322 * TeZ); |
| 3626 |
TfK = FNMS(KP555570233, TfD, KP831469612 * TfC); |
| 3627 |
Tfu = FNMS(KP980785280, TeZ, KP195090322 * TeQ); |
| 3628 |
TfE = FMA(KP555570233, TfC, KP831469612 * TfD); |
| 3629 |
} |
| 3630 |
} |
| 3631 |
{
|
| 3632 |
E Tez, Tfs, TiR, TiU; |
| 3633 |
Tez = Teb + Tey; |
| 3634 |
Tfs = Tf0 + Tfr; |
| 3635 |
ri[WS(rs, 46)] = Tez - Tfs;
|
| 3636 |
ri[WS(rs, 14)] = Tez + Tfs;
|
| 3637 |
TiR = Tfu + Tfv; |
| 3638 |
TiU = TiS + TiT; |
| 3639 |
ii[WS(rs, 14)] = TiR + TiU;
|
| 3640 |
ii[WS(rs, 46)] = TiU - TiR;
|
| 3641 |
} |
| 3642 |
{
|
| 3643 |
E Tft, Tfw, TiV, TiW; |
| 3644 |
Tft = Teb - Tey; |
| 3645 |
Tfw = Tfu - Tfv; |
| 3646 |
ri[WS(rs, 62)] = Tft - Tfw;
|
| 3647 |
ri[WS(rs, 30)] = Tft + Tfw;
|
| 3648 |
TiV = Tfr - Tf0; |
| 3649 |
TiW = TiT - TiS; |
| 3650 |
ii[WS(rs, 30)] = TiV + TiW;
|
| 3651 |
ii[WS(rs, 62)] = TiW - TiV;
|
| 3652 |
} |
| 3653 |
{
|
| 3654 |
E TfB, TfI, TiJ, TiO; |
| 3655 |
TfB = Tfx + TfA; |
| 3656 |
TfI = TfE + TfH; |
| 3657 |
ri[WS(rs, 38)] = TfB - TfI;
|
| 3658 |
ri[WS(rs, 6)] = TfB + TfI;
|
| 3659 |
TiJ = TfK + TfL; |
| 3660 |
TiO = TiK + TiN; |
| 3661 |
ii[WS(rs, 6)] = TiJ + TiO;
|
| 3662 |
ii[WS(rs, 38)] = TiO - TiJ;
|
| 3663 |
} |
| 3664 |
{
|
| 3665 |
E TfJ, TfM, TiP, TiQ; |
| 3666 |
TfJ = Tfx - TfA; |
| 3667 |
TfM = TfK - TfL; |
| 3668 |
ri[WS(rs, 54)] = TfJ - TfM;
|
| 3669 |
ri[WS(rs, 22)] = TfJ + TfM;
|
| 3670 |
TiP = TfH - TfE; |
| 3671 |
TiQ = TiN - TiK; |
| 3672 |
ii[WS(rs, 22)] = TiP + TiQ;
|
| 3673 |
ii[WS(rs, 54)] = TiQ - TiP;
|
| 3674 |
} |
| 3675 |
} |
| 3676 |
{
|
| 3677 |
E TfR, Tgj, TfY, Tiu, Tiz, TiF, Tgm, TiE, Tgd, Tgx, Tgh, Tgt, Tg6, Tgw, Tgg; |
| 3678 |
E Tgq; |
| 3679 |
{
|
| 3680 |
E TfN, TfQ, Tgk, Tgl; |
| 3681 |
TfN = TdV + TdY; |
| 3682 |
TfQ = KP707106781 * (TfO + TfP); |
| 3683 |
TfR = TfN - TfQ; |
| 3684 |
Tgj = TfN + TfQ; |
| 3685 |
{
|
| 3686 |
E TfU, TfX, Tiv, Tiy; |
| 3687 |
TfU = FNMS(KP382683432, TfT, KP923879532 * TfS); |
| 3688 |
TfX = FMA(KP923879532, TfV, KP382683432 * TfW); |
| 3689 |
TfY = TfU - TfX; |
| 3690 |
Tiu = TfU + TfX; |
| 3691 |
Tiv = KP707106781 * (Te4 + Te9); |
| 3692 |
Tiy = Tiw + Tix; |
| 3693 |
Tiz = Tiv + Tiy; |
| 3694 |
TiF = Tiy - Tiv; |
| 3695 |
} |
| 3696 |
Tgk = FMA(KP382683432, TfS, KP923879532 * TfT); |
| 3697 |
Tgl = FNMS(KP382683432, TfV, KP923879532 * TfW); |
| 3698 |
Tgm = Tgk + Tgl; |
| 3699 |
TiE = Tgl - Tgk; |
| 3700 |
{
|
| 3701 |
E Tg9, Tgr, Tgc, Tgs, Tg8, Tgb; |
| 3702 |
Tg8 = KP707106781 * (Tfo + Tfn); |
| 3703 |
Tg9 = Tg7 - Tg8; |
| 3704 |
Tgr = Tg7 + Tg8; |
| 3705 |
Tgb = KP707106781 * (Tfa + Tff); |
| 3706 |
Tgc = Tga - Tgb; |
| 3707 |
Tgs = Tga + Tgb; |
| 3708 |
Tgd = FNMS(KP831469612, Tgc, KP555570233 * Tg9); |
| 3709 |
Tgx = FMA(KP195090322, Tgr, KP980785280 * Tgs); |
| 3710 |
Tgh = FMA(KP831469612, Tg9, KP555570233 * Tgc); |
| 3711 |
Tgt = FNMS(KP195090322, Tgs, KP980785280 * Tgr); |
| 3712 |
} |
| 3713 |
{
|
| 3714 |
E Tg2, Tgo, Tg5, Tgp, Tg1, Tg4; |
| 3715 |
Tg1 = KP707106781 * (TeO + TeJ); |
| 3716 |
Tg2 = Tg0 - Tg1; |
| 3717 |
Tgo = Tg0 + Tg1; |
| 3718 |
Tg4 = KP707106781 * (TeW + TeX); |
| 3719 |
Tg5 = Tg3 - Tg4; |
| 3720 |
Tgp = Tg3 + Tg4; |
| 3721 |
Tg6 = FMA(KP555570233, Tg2, KP831469612 * Tg5); |
| 3722 |
Tgw = FNMS(KP195090322, Tgo, KP980785280 * Tgp); |
| 3723 |
Tgg = FNMS(KP831469612, Tg2, KP555570233 * Tg5); |
| 3724 |
Tgq = FMA(KP980785280, Tgo, KP195090322 * Tgp); |
| 3725 |
} |
| 3726 |
} |
| 3727 |
{
|
| 3728 |
E TfZ, Tge, TiD, TiG; |
| 3729 |
TfZ = TfR + TfY; |
| 3730 |
Tge = Tg6 + Tgd; |
| 3731 |
ri[WS(rs, 42)] = TfZ - Tge;
|
| 3732 |
ri[WS(rs, 10)] = TfZ + Tge;
|
| 3733 |
TiD = Tgg + Tgh; |
| 3734 |
TiG = TiE + TiF; |
| 3735 |
ii[WS(rs, 10)] = TiD + TiG;
|
| 3736 |
ii[WS(rs, 42)] = TiG - TiD;
|
| 3737 |
} |
| 3738 |
{
|
| 3739 |
E Tgf, Tgi, TiH, TiI; |
| 3740 |
Tgf = TfR - TfY; |
| 3741 |
Tgi = Tgg - Tgh; |
| 3742 |
ri[WS(rs, 58)] = Tgf - Tgi;
|
| 3743 |
ri[WS(rs, 26)] = Tgf + Tgi;
|
| 3744 |
TiH = Tgd - Tg6; |
| 3745 |
TiI = TiF - TiE; |
| 3746 |
ii[WS(rs, 26)] = TiH + TiI;
|
| 3747 |
ii[WS(rs, 58)] = TiI - TiH;
|
| 3748 |
} |
| 3749 |
{
|
| 3750 |
E Tgn, Tgu, Tit, TiA; |
| 3751 |
Tgn = Tgj + Tgm; |
| 3752 |
Tgu = Tgq + Tgt; |
| 3753 |
ri[WS(rs, 34)] = Tgn - Tgu;
|
| 3754 |
ri[WS(rs, 2)] = Tgn + Tgu;
|
| 3755 |
Tit = Tgw + Tgx; |
| 3756 |
TiA = Tiu + Tiz; |
| 3757 |
ii[WS(rs, 2)] = Tit + TiA;
|
| 3758 |
ii[WS(rs, 34)] = TiA - Tit;
|
| 3759 |
} |
| 3760 |
{
|
| 3761 |
E Tgv, Tgy, TiB, TiC; |
| 3762 |
Tgv = Tgj - Tgm; |
| 3763 |
Tgy = Tgw - Tgx; |
| 3764 |
ri[WS(rs, 50)] = Tgv - Tgy;
|
| 3765 |
ri[WS(rs, 18)] = Tgv + Tgy;
|
| 3766 |
TiB = Tgt - Tgq; |
| 3767 |
TiC = Tiz - Tiu; |
| 3768 |
ii[WS(rs, 18)] = TiB + TiC;
|
| 3769 |
ii[WS(rs, 50)] = TiC - TiB;
|
| 3770 |
} |
| 3771 |
} |
| 3772 |
{
|
| 3773 |
E T7V, TaH, TjN, TjT, T8O, TjS, TaK, TjK, T9I, TaU, TaE, TaO, TaB, TaV, TaF; |
| 3774 |
E TaR; |
| 3775 |
{
|
| 3776 |
E T7x, T7U, TjL, TjM; |
| 3777 |
T7x = T7l - T7w; |
| 3778 |
T7U = T7I - T7T; |
| 3779 |
T7V = T7x - T7U; |
| 3780 |
TaH = T7x + T7U; |
| 3781 |
TjL = TaZ - TaY; |
| 3782 |
TjM = Tjx - Tjw; |
| 3783 |
TjN = TjL + TjM; |
| 3784 |
TjT = TjM - TjL; |
| 3785 |
} |
| 3786 |
{
|
| 3787 |
E T8m, TaI, T8N, TaJ; |
| 3788 |
{
|
| 3789 |
E T8c, T8l, T8D, T8M; |
| 3790 |
T8c = T80 - T8b; |
| 3791 |
T8l = T8h - T8k; |
| 3792 |
T8m = FNMS(KP980785280, T8l, KP195090322 * T8c); |
| 3793 |
TaI = FMA(KP980785280, T8c, KP195090322 * T8l); |
| 3794 |
T8D = T8r - T8C; |
| 3795 |
T8M = T8I - T8L; |
| 3796 |
T8N = FMA(KP195090322, T8D, KP980785280 * T8M); |
| 3797 |
TaJ = FNMS(KP980785280, T8D, KP195090322 * T8M); |
| 3798 |
} |
| 3799 |
T8O = T8m - T8N; |
| 3800 |
TjS = TaJ - TaI; |
| 3801 |
TaK = TaI + TaJ; |
| 3802 |
TjK = T8m + T8N; |
| 3803 |
} |
| 3804 |
{
|
| 3805 |
E T9u, TaM, T9H, TaN; |
| 3806 |
{
|
| 3807 |
E T96, T9t, T9D, T9G; |
| 3808 |
T96 = T8U - T95; |
| 3809 |
T9t = T9h - T9s; |
| 3810 |
T9u = T96 - T9t; |
| 3811 |
TaM = T96 + T9t; |
| 3812 |
T9D = T9z - T9C; |
| 3813 |
T9G = T9E - T9F; |
| 3814 |
T9H = T9D - T9G; |
| 3815 |
TaN = T9D + T9G; |
| 3816 |
} |
| 3817 |
T9I = FMA(KP995184726, T9u, KP098017140 * T9H); |
| 3818 |
TaU = FNMS(KP634393284, TaN, KP773010453 * TaM); |
| 3819 |
TaE = FNMS(KP995184726, T9H, KP098017140 * T9u); |
| 3820 |
TaO = FMA(KP634393284, TaM, KP773010453 * TaN); |
| 3821 |
} |
| 3822 |
{
|
| 3823 |
E Tan, TaP, TaA, TaQ; |
| 3824 |
{
|
| 3825 |
E T9Z, Tam, Taw, Taz; |
| 3826 |
T9Z = T9N - T9Y; |
| 3827 |
Tam = Taa - Tal; |
| 3828 |
Tan = T9Z - Tam; |
| 3829 |
TaP = T9Z + Tam; |
| 3830 |
Taw = Tas - Tav; |
| 3831 |
Taz = Tax - Tay; |
| 3832 |
TaA = Taw - Taz; |
| 3833 |
TaQ = Taw + Taz; |
| 3834 |
} |
| 3835 |
TaB = FNMS(KP995184726, TaA, KP098017140 * Tan); |
| 3836 |
TaV = FMA(KP773010453, TaQ, KP634393284 * TaP); |
| 3837 |
TaF = FMA(KP098017140, TaA, KP995184726 * Tan); |
| 3838 |
TaR = FNMS(KP634393284, TaQ, KP773010453 * TaP); |
| 3839 |
} |
| 3840 |
{
|
| 3841 |
E T8P, TaC, TjR, TjU; |
| 3842 |
T8P = T7V + T8O; |
| 3843 |
TaC = T9I + TaB; |
| 3844 |
ri[WS(rs, 47)] = T8P - TaC;
|
| 3845 |
ri[WS(rs, 15)] = T8P + TaC;
|
| 3846 |
TjR = TaE + TaF; |
| 3847 |
TjU = TjS + TjT; |
| 3848 |
ii[WS(rs, 15)] = TjR + TjU;
|
| 3849 |
ii[WS(rs, 47)] = TjU - TjR;
|
| 3850 |
} |
| 3851 |
{
|
| 3852 |
E TaD, TaG, TjV, TjW; |
| 3853 |
TaD = T7V - T8O; |
| 3854 |
TaG = TaE - TaF; |
| 3855 |
ri[WS(rs, 63)] = TaD - TaG;
|
| 3856 |
ri[WS(rs, 31)] = TaD + TaG;
|
| 3857 |
TjV = TaB - T9I; |
| 3858 |
TjW = TjT - TjS; |
| 3859 |
ii[WS(rs, 31)] = TjV + TjW;
|
| 3860 |
ii[WS(rs, 63)] = TjW - TjV;
|
| 3861 |
} |
| 3862 |
{
|
| 3863 |
E TaL, TaS, TjJ, TjO; |
| 3864 |
TaL = TaH + TaK; |
| 3865 |
TaS = TaO + TaR; |
| 3866 |
ri[WS(rs, 39)] = TaL - TaS;
|
| 3867 |
ri[WS(rs, 7)] = TaL + TaS;
|
| 3868 |
TjJ = TaU + TaV; |
| 3869 |
TjO = TjK + TjN; |
| 3870 |
ii[WS(rs, 7)] = TjJ + TjO;
|
| 3871 |
ii[WS(rs, 39)] = TjO - TjJ;
|
| 3872 |
} |
| 3873 |
{
|
| 3874 |
E TaT, TaW, TjP, TjQ; |
| 3875 |
TaT = TaH - TaK; |
| 3876 |
TaW = TaU - TaV; |
| 3877 |
ri[WS(rs, 55)] = TaT - TaW;
|
| 3878 |
ri[WS(rs, 23)] = TaT + TaW;
|
| 3879 |
TjP = TaR - TaO; |
| 3880 |
TjQ = TjN - TjK; |
| 3881 |
ii[WS(rs, 23)] = TjP + TjQ;
|
| 3882 |
ii[WS(rs, 55)] = TjQ - TjP;
|
| 3883 |
} |
| 3884 |
} |
| 3885 |
{
|
| 3886 |
E TbV, TcT, Tjj, Tjp, Tca, Tjo, TcW, Tjg, Tcu, Td6, TcQ, Td0, TcN, Td7, TcR; |
| 3887 |
E Td3; |
| 3888 |
{
|
| 3889 |
E TbN, TbU, Tjh, Tji; |
| 3890 |
TbN = TbJ - TbM; |
| 3891 |
TbU = TbQ - TbT; |
| 3892 |
TbV = TbN - TbU; |
| 3893 |
TcT = TbN + TbU; |
| 3894 |
Tjh = Tdb - Tda; |
| 3895 |
Tji = Tj3 - Tj0; |
| 3896 |
Tjj = Tjh + Tji; |
| 3897 |
Tjp = Tji - Tjh; |
| 3898 |
} |
| 3899 |
{
|
| 3900 |
E Tc2, TcU, Tc9, TcV; |
| 3901 |
{
|
| 3902 |
E TbY, Tc1, Tc5, Tc8; |
| 3903 |
TbY = TbW - TbX; |
| 3904 |
Tc1 = TbZ - Tc0; |
| 3905 |
Tc2 = FNMS(KP831469612, Tc1, KP555570233 * TbY); |
| 3906 |
TcU = FMA(KP555570233, Tc1, KP831469612 * TbY); |
| 3907 |
Tc5 = Tc3 - Tc4; |
| 3908 |
Tc8 = Tc6 - Tc7; |
| 3909 |
Tc9 = FMA(KP831469612, Tc5, KP555570233 * Tc8); |
| 3910 |
TcV = FNMS(KP831469612, Tc8, KP555570233 * Tc5); |
| 3911 |
} |
| 3912 |
Tca = Tc2 - Tc9; |
| 3913 |
Tjo = TcV - TcU; |
| 3914 |
TcW = TcU + TcV; |
| 3915 |
Tjg = Tc2 + Tc9; |
| 3916 |
} |
| 3917 |
{
|
| 3918 |
E Tcm, TcY, Tct, TcZ; |
| 3919 |
{
|
| 3920 |
E Tce, Tcl, Tcp, Tcs; |
| 3921 |
Tce = Tcc - Tcd; |
| 3922 |
Tcl = Tch - Tck; |
| 3923 |
Tcm = Tce - Tcl; |
| 3924 |
TcY = Tce + Tcl; |
| 3925 |
Tcp = Tcn - Tco; |
| 3926 |
Tcs = Tcq - Tcr; |
| 3927 |
Tct = Tcp - Tcs; |
| 3928 |
TcZ = Tcp + Tcs; |
| 3929 |
} |
| 3930 |
Tcu = FMA(KP956940335, Tcm, KP290284677 * Tct); |
| 3931 |
Td6 = FNMS(KP471396736, TcZ, KP881921264 * TcY); |
| 3932 |
TcQ = FNMS(KP956940335, Tct, KP290284677 * Tcm); |
| 3933 |
Td0 = FMA(KP471396736, TcY, KP881921264 * TcZ); |
| 3934 |
} |
| 3935 |
{
|
| 3936 |
E TcF, Td1, TcM, Td2; |
| 3937 |
{
|
| 3938 |
E Tcx, TcE, TcI, TcL; |
| 3939 |
Tcx = Tcv - Tcw; |
| 3940 |
TcE = TcA - TcD; |
| 3941 |
TcF = Tcx - TcE; |
| 3942 |
Td1 = Tcx + TcE; |
| 3943 |
TcI = TcG - TcH; |
| 3944 |
TcL = TcJ - TcK; |
| 3945 |
TcM = TcI - TcL; |
| 3946 |
Td2 = TcI + TcL; |
| 3947 |
} |
| 3948 |
TcN = FNMS(KP956940335, TcM, KP290284677 * TcF); |
| 3949 |
Td7 = FMA(KP881921264, Td2, KP471396736 * Td1); |
| 3950 |
TcR = FMA(KP290284677, TcM, KP956940335 * TcF); |
| 3951 |
Td3 = FNMS(KP471396736, Td2, KP881921264 * Td1); |
| 3952 |
} |
| 3953 |
{
|
| 3954 |
E Tcb, TcO, Tjn, Tjq; |
| 3955 |
Tcb = TbV + Tca; |
| 3956 |
TcO = Tcu + TcN; |
| 3957 |
ri[WS(rs, 45)] = Tcb - TcO;
|
| 3958 |
ri[WS(rs, 13)] = Tcb + TcO;
|
| 3959 |
Tjn = TcQ + TcR; |
| 3960 |
Tjq = Tjo + Tjp; |
| 3961 |
ii[WS(rs, 13)] = Tjn + Tjq;
|
| 3962 |
ii[WS(rs, 45)] = Tjq - Tjn;
|
| 3963 |
} |
| 3964 |
{
|
| 3965 |
E TcP, TcS, Tjr, Tjs; |
| 3966 |
TcP = TbV - Tca; |
| 3967 |
TcS = TcQ - TcR; |
| 3968 |
ri[WS(rs, 61)] = TcP - TcS;
|
| 3969 |
ri[WS(rs, 29)] = TcP + TcS;
|
| 3970 |
Tjr = TcN - Tcu; |
| 3971 |
Tjs = Tjp - Tjo; |
| 3972 |
ii[WS(rs, 29)] = Tjr + Tjs;
|
| 3973 |
ii[WS(rs, 61)] = Tjs - Tjr;
|
| 3974 |
} |
| 3975 |
{
|
| 3976 |
E TcX, Td4, Tjf, Tjk; |
| 3977 |
TcX = TcT + TcW; |
| 3978 |
Td4 = Td0 + Td3; |
| 3979 |
ri[WS(rs, 37)] = TcX - Td4;
|
| 3980 |
ri[WS(rs, 5)] = TcX + Td4;
|
| 3981 |
Tjf = Td6 + Td7; |
| 3982 |
Tjk = Tjg + Tjj; |
| 3983 |
ii[WS(rs, 5)] = Tjf + Tjk;
|
| 3984 |
ii[WS(rs, 37)] = Tjk - Tjf;
|
| 3985 |
} |
| 3986 |
{
|
| 3987 |
E Td5, Td8, Tjl, Tjm; |
| 3988 |
Td5 = TcT - TcW; |
| 3989 |
Td8 = Td6 - Td7; |
| 3990 |
ri[WS(rs, 53)] = Td5 - Td8;
|
| 3991 |
ri[WS(rs, 21)] = Td5 + Td8;
|
| 3992 |
Tjl = Td3 - Td0; |
| 3993 |
Tjm = Tjj - Tjg; |
| 3994 |
ii[WS(rs, 21)] = Tjl + Tjm;
|
| 3995 |
ii[WS(rs, 53)] = Tjm - Tjl;
|
| 3996 |
} |
| 3997 |
} |
| 3998 |
{
|
| 3999 |
E Tdd, TdF, Tj5, Tjb, Tdk, Tja, TdI, TiY, Tds, TdS, TdC, TdM, Tdz, TdT, TdD; |
| 4000 |
E TdP; |
| 4001 |
{
|
| 4002 |
E Td9, Tdc, TiZ, Tj4; |
| 4003 |
Td9 = TbJ + TbM; |
| 4004 |
Tdc = Tda + Tdb; |
| 4005 |
Tdd = Td9 - Tdc; |
| 4006 |
TdF = Td9 + Tdc; |
| 4007 |
TiZ = TbQ + TbT; |
| 4008 |
Tj4 = Tj0 + Tj3; |
| 4009 |
Tj5 = TiZ + Tj4; |
| 4010 |
Tjb = Tj4 - TiZ; |
| 4011 |
} |
| 4012 |
{
|
| 4013 |
E Tdg, TdG, Tdj, TdH; |
| 4014 |
{
|
| 4015 |
E Tde, Tdf, Tdh, Tdi; |
| 4016 |
Tde = TbW + TbX; |
| 4017 |
Tdf = TbZ + Tc0; |
| 4018 |
Tdg = FNMS(KP195090322, Tdf, KP980785280 * Tde); |
| 4019 |
TdG = FMA(KP980785280, Tdf, KP195090322 * Tde); |
| 4020 |
Tdh = Tc3 + Tc4; |
| 4021 |
Tdi = Tc6 + Tc7; |
| 4022 |
Tdj = FMA(KP195090322, Tdh, KP980785280 * Tdi); |
| 4023 |
TdH = FNMS(KP195090322, Tdi, KP980785280 * Tdh); |
| 4024 |
} |
| 4025 |
Tdk = Tdg - Tdj; |
| 4026 |
Tja = TdH - TdG; |
| 4027 |
TdI = TdG + TdH; |
| 4028 |
TiY = Tdg + Tdj; |
| 4029 |
} |
| 4030 |
{
|
| 4031 |
E Tdo, TdK, Tdr, TdL; |
| 4032 |
{
|
| 4033 |
E Tdm, Tdn, Tdp, Tdq; |
| 4034 |
Tdm = Tcn + Tco; |
| 4035 |
Tdn = Tck + Tch; |
| 4036 |
Tdo = Tdm - Tdn; |
| 4037 |
TdK = Tdm + Tdn; |
| 4038 |
Tdp = Tcc + Tcd; |
| 4039 |
Tdq = Tcq + Tcr; |
| 4040 |
Tdr = Tdp - Tdq; |
| 4041 |
TdL = Tdp + Tdq; |
| 4042 |
} |
| 4043 |
Tds = FMA(KP634393284, Tdo, KP773010453 * Tdr); |
| 4044 |
TdS = FNMS(KP098017140, TdK, KP995184726 * TdL); |
| 4045 |
TdC = FNMS(KP773010453, Tdo, KP634393284 * Tdr); |
| 4046 |
TdM = FMA(KP995184726, TdK, KP098017140 * TdL); |
| 4047 |
} |
| 4048 |
{
|
| 4049 |
E Tdv, TdN, Tdy, TdO; |
| 4050 |
{
|
| 4051 |
E Tdt, Tdu, Tdw, Tdx; |
| 4052 |
Tdt = Tcv + Tcw; |
| 4053 |
Tdu = TcK + TcJ; |
| 4054 |
Tdv = Tdt - Tdu; |
| 4055 |
TdN = Tdt + Tdu; |
| 4056 |
Tdw = TcG + TcH; |
| 4057 |
Tdx = TcA + TcD; |
| 4058 |
Tdy = Tdw - Tdx; |
| 4059 |
TdO = Tdw + Tdx; |
| 4060 |
} |
| 4061 |
Tdz = FNMS(KP773010453, Tdy, KP634393284 * Tdv); |
| 4062 |
TdT = FMA(KP098017140, TdN, KP995184726 * TdO); |
| 4063 |
TdD = FMA(KP773010453, Tdv, KP634393284 * Tdy); |
| 4064 |
TdP = FNMS(KP098017140, TdO, KP995184726 * TdN); |
| 4065 |
} |
| 4066 |
{
|
| 4067 |
E Tdl, TdA, Tj9, Tjc; |
| 4068 |
Tdl = Tdd + Tdk; |
| 4069 |
TdA = Tds + Tdz; |
| 4070 |
ri[WS(rs, 41)] = Tdl - TdA;
|
| 4071 |
ri[WS(rs, 9)] = Tdl + TdA;
|
| 4072 |
Tj9 = TdC + TdD; |
| 4073 |
Tjc = Tja + Tjb; |
| 4074 |
ii[WS(rs, 9)] = Tj9 + Tjc;
|
| 4075 |
ii[WS(rs, 41)] = Tjc - Tj9;
|
| 4076 |
} |
| 4077 |
{
|
| 4078 |
E TdB, TdE, Tjd, Tje; |
| 4079 |
TdB = Tdd - Tdk; |
| 4080 |
TdE = TdC - TdD; |
| 4081 |
ri[WS(rs, 57)] = TdB - TdE;
|
| 4082 |
ri[WS(rs, 25)] = TdB + TdE;
|
| 4083 |
Tjd = Tdz - Tds; |
| 4084 |
Tje = Tjb - Tja; |
| 4085 |
ii[WS(rs, 25)] = Tjd + Tje;
|
| 4086 |
ii[WS(rs, 57)] = Tje - Tjd;
|
| 4087 |
} |
| 4088 |
{
|
| 4089 |
E TdJ, TdQ, TiX, Tj6; |
| 4090 |
TdJ = TdF + TdI; |
| 4091 |
TdQ = TdM + TdP; |
| 4092 |
ri[WS(rs, 33)] = TdJ - TdQ;
|
| 4093 |
ri[WS(rs, 1)] = TdJ + TdQ;
|
| 4094 |
TiX = TdS + TdT; |
| 4095 |
Tj6 = TiY + Tj5; |
| 4096 |
ii[WS(rs, 1)] = TiX + Tj6;
|
| 4097 |
ii[WS(rs, 33)] = Tj6 - TiX;
|
| 4098 |
} |
| 4099 |
{
|
| 4100 |
E TdR, TdU, Tj7, Tj8; |
| 4101 |
TdR = TdF - TdI; |
| 4102 |
TdU = TdS - TdT; |
| 4103 |
ri[WS(rs, 49)] = TdR - TdU;
|
| 4104 |
ri[WS(rs, 17)] = TdR + TdU;
|
| 4105 |
Tj7 = TdP - TdM; |
| 4106 |
Tj8 = Tj5 - TiY; |
| 4107 |
ii[WS(rs, 17)] = Tj7 + Tj8;
|
| 4108 |
ii[WS(rs, 49)] = Tj8 - Tj7;
|
| 4109 |
} |
| 4110 |
} |
| 4111 |
{
|
| 4112 |
E Tb1, Tbt, Tjz, TjF, Tb8, TjE, Tbw, Tju, Tbg, TbG, Tbq, TbA, Tbn, TbH, Tbr; |
| 4113 |
E TbD; |
| 4114 |
{
|
| 4115 |
E TaX, Tb0, Tjv, Tjy; |
| 4116 |
TaX = T7l + T7w; |
| 4117 |
Tb0 = TaY + TaZ; |
| 4118 |
Tb1 = TaX - Tb0; |
| 4119 |
Tbt = TaX + Tb0; |
| 4120 |
Tjv = T7I + T7T; |
| 4121 |
Tjy = Tjw + Tjx; |
| 4122 |
Tjz = Tjv + Tjy; |
| 4123 |
TjF = Tjy - Tjv; |
| 4124 |
} |
| 4125 |
{
|
| 4126 |
E Tb4, Tbu, Tb7, Tbv; |
| 4127 |
{
|
| 4128 |
E Tb2, Tb3, Tb5, Tb6; |
| 4129 |
Tb2 = T80 + T8b; |
| 4130 |
Tb3 = T8h + T8k; |
| 4131 |
Tb4 = FNMS(KP555570233, Tb3, KP831469612 * Tb2); |
| 4132 |
Tbu = FMA(KP555570233, Tb2, KP831469612 * Tb3); |
| 4133 |
Tb5 = T8r + T8C; |
| 4134 |
Tb6 = T8I + T8L; |
| 4135 |
Tb7 = FMA(KP831469612, Tb5, KP555570233 * Tb6); |
| 4136 |
Tbv = FNMS(KP555570233, Tb5, KP831469612 * Tb6); |
| 4137 |
} |
| 4138 |
Tb8 = Tb4 - Tb7; |
| 4139 |
TjE = Tbv - Tbu; |
| 4140 |
Tbw = Tbu + Tbv; |
| 4141 |
Tju = Tb4 + Tb7; |
| 4142 |
} |
| 4143 |
{
|
| 4144 |
E Tbc, Tby, Tbf, Tbz; |
| 4145 |
{
|
| 4146 |
E Tba, Tbb, Tbd, Tbe; |
| 4147 |
Tba = T9z + T9C; |
| 4148 |
Tbb = T9s + T9h; |
| 4149 |
Tbc = Tba - Tbb; |
| 4150 |
Tby = Tba + Tbb; |
| 4151 |
Tbd = T8U + T95; |
| 4152 |
Tbe = T9E + T9F; |
| 4153 |
Tbf = Tbd - Tbe; |
| 4154 |
Tbz = Tbd + Tbe; |
| 4155 |
} |
| 4156 |
Tbg = FMA(KP471396736, Tbc, KP881921264 * Tbf); |
| 4157 |
TbG = FNMS(KP290284677, Tby, KP956940335 * Tbz); |
| 4158 |
Tbq = FNMS(KP881921264, Tbc, KP471396736 * Tbf); |
| 4159 |
TbA = FMA(KP956940335, Tby, KP290284677 * Tbz); |
| 4160 |
} |
| 4161 |
{
|
| 4162 |
E Tbj, TbB, Tbm, TbC; |
| 4163 |
{
|
| 4164 |
E Tbh, Tbi, Tbk, Tbl; |
| 4165 |
Tbh = T9N + T9Y; |
| 4166 |
Tbi = Tay + Tax; |
| 4167 |
Tbj = Tbh - Tbi; |
| 4168 |
TbB = Tbh + Tbi; |
| 4169 |
Tbk = Tas + Tav; |
| 4170 |
Tbl = Taa + Tal; |
| 4171 |
Tbm = Tbk - Tbl; |
| 4172 |
TbC = Tbk + Tbl; |
| 4173 |
} |
| 4174 |
Tbn = FNMS(KP881921264, Tbm, KP471396736 * Tbj); |
| 4175 |
TbH = FMA(KP290284677, TbB, KP956940335 * TbC); |
| 4176 |
Tbr = FMA(KP881921264, Tbj, KP471396736 * Tbm); |
| 4177 |
TbD = FNMS(KP290284677, TbC, KP956940335 * TbB); |
| 4178 |
} |
| 4179 |
{
|
| 4180 |
E Tb9, Tbo, TjD, TjG; |
| 4181 |
Tb9 = Tb1 + Tb8; |
| 4182 |
Tbo = Tbg + Tbn; |
| 4183 |
ri[WS(rs, 43)] = Tb9 - Tbo;
|
| 4184 |
ri[WS(rs, 11)] = Tb9 + Tbo;
|
| 4185 |
TjD = Tbq + Tbr; |
| 4186 |
TjG = TjE + TjF; |
| 4187 |
ii[WS(rs, 11)] = TjD + TjG;
|
| 4188 |
ii[WS(rs, 43)] = TjG - TjD;
|
| 4189 |
} |
| 4190 |
{
|
| 4191 |
E Tbp, Tbs, TjH, TjI; |
| 4192 |
Tbp = Tb1 - Tb8; |
| 4193 |
Tbs = Tbq - Tbr; |
| 4194 |
ri[WS(rs, 59)] = Tbp - Tbs;
|
| 4195 |
ri[WS(rs, 27)] = Tbp + Tbs;
|
| 4196 |
TjH = Tbn - Tbg; |
| 4197 |
TjI = TjF - TjE; |
| 4198 |
ii[WS(rs, 27)] = TjH + TjI;
|
| 4199 |
ii[WS(rs, 59)] = TjI - TjH;
|
| 4200 |
} |
| 4201 |
{
|
| 4202 |
E Tbx, TbE, Tjt, TjA; |
| 4203 |
Tbx = Tbt + Tbw; |
| 4204 |
TbE = TbA + TbD; |
| 4205 |
ri[WS(rs, 35)] = Tbx - TbE;
|
| 4206 |
ri[WS(rs, 3)] = Tbx + TbE;
|
| 4207 |
Tjt = TbG + TbH; |
| 4208 |
TjA = Tju + Tjz; |
| 4209 |
ii[WS(rs, 3)] = Tjt + TjA;
|
| 4210 |
ii[WS(rs, 35)] = TjA - Tjt;
|
| 4211 |
} |
| 4212 |
{
|
| 4213 |
E TbF, TbI, TjB, TjC; |
| 4214 |
TbF = Tbt - Tbw; |
| 4215 |
TbI = TbG - TbH; |
| 4216 |
ri[WS(rs, 51)] = TbF - TbI;
|
| 4217 |
ri[WS(rs, 19)] = TbF + TbI;
|
| 4218 |
TjB = TbD - TbA; |
| 4219 |
TjC = Tjz - Tju; |
| 4220 |
ii[WS(rs, 19)] = TjB + TjC;
|
| 4221 |
ii[WS(rs, 51)] = TjC - TjB;
|
| 4222 |
} |
| 4223 |
} |
| 4224 |
} |
| 4225 |
} |
| 4226 |
} |
| 4227 |
} |
| 4228 |
|
| 4229 |
static const tw_instr twinstr[] = { |
| 4230 |
{TW_CEXP, 0, 1},
|
| 4231 |
{TW_CEXP, 0, 3},
|
| 4232 |
{TW_CEXP, 0, 9},
|
| 4233 |
{TW_CEXP, 0, 27},
|
| 4234 |
{TW_CEXP, 0, 63},
|
| 4235 |
{TW_NEXT, 1, 0}
|
| 4236 |
}; |
| 4237 |
|
| 4238 |
static const ct_desc desc = { 64, "t2_64", twinstr, &GENUS, {880, 386, 274, 0}, 0, 0, 0 }; |
| 4239 |
|
| 4240 |
void X(codelet_t2_64) (planner *p) {
|
| 4241 |
X(kdft_dit_register) (p, t2_64, &desc); |
| 4242 |
} |
| 4243 |
#endif
|