To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t2_32.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (51.1 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:20 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 488 FP additions, 350 FP multiplications,
|
| 32 |
* (or, 236 additions, 98 multiplications, 252 fused multiply/add),
|
| 33 |
* 164 stack variables, 7 constants, and 128 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 40 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 41 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 42 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 43 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 44 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 45 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 46 |
{
|
| 47 |
INT m; |
| 48 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { |
| 49 |
E T2, T8, T3, T6, Te, Ti, T5, T7, TJ, Tb, TM, Tc, Ts, T23, T1w; |
| 50 |
E T19, TA, TE, T1s, T1N, T1o, T1C, T1F, T1K, T15, T11, T2F, T31, T2J, T34; |
| 51 |
E T3f, T3z, T3j, T3C, Tw, T3M, T3Q, T1z, T2s, T2w, T1d, T3n, T3r, T26, T2T; |
| 52 |
E T2X, Th, TR, TP, Td, Tj, TW, Tn, TS, T1U, T2b, T29, T1R, T1V, T2g; |
| 53 |
E T1Z, T2c; |
| 54 |
{
|
| 55 |
E Tz, T1n, T10, TD, T1r, T14, T9, T1Q, Tv, T1c; |
| 56 |
{
|
| 57 |
E T4, T18, Ta, Tr; |
| 58 |
T2 = W[0];
|
| 59 |
T8 = W[4];
|
| 60 |
T3 = W[2];
|
| 61 |
T6 = W[3];
|
| 62 |
T4 = T2 * T3; |
| 63 |
T18 = T3 * T8; |
| 64 |
Ta = T2 * T6; |
| 65 |
Tr = T2 * T8; |
| 66 |
Te = W[6];
|
| 67 |
Tz = T3 * Te; |
| 68 |
T1n = T8 * Te; |
| 69 |
T10 = T2 * Te; |
| 70 |
Ti = W[7];
|
| 71 |
TD = T3 * Ti; |
| 72 |
T1r = T8 * Ti; |
| 73 |
T14 = T2 * Ti; |
| 74 |
T5 = W[1];
|
| 75 |
T7 = FMA(T5, T6, T4); |
| 76 |
TJ = FNMS(T5, T6, T4); |
| 77 |
T9 = T7 * T8; |
| 78 |
T1Q = TJ * T8; |
| 79 |
Tb = FNMS(T5, T3, Ta); |
| 80 |
TM = FMA(T5, T3, Ta); |
| 81 |
Tc = W[5];
|
| 82 |
Tv = T2 * Tc; |
| 83 |
T1c = T3 * Tc; |
| 84 |
Ts = FMA(T5, Tc, Tr); |
| 85 |
T23 = FMA(T6, Tc, T18); |
| 86 |
T1w = FNMS(T5, Tc, Tr); |
| 87 |
T19 = FNMS(T6, Tc, T18); |
| 88 |
} |
| 89 |
TA = FMA(T6, Ti, Tz); |
| 90 |
TE = FNMS(T6, Te, TD); |
| 91 |
T1s = FNMS(Tc, Te, T1r); |
| 92 |
T1N = FMA(T6, Te, TD); |
| 93 |
T1o = FMA(Tc, Ti, T1n); |
| 94 |
T1C = FMA(T5, Ti, T10); |
| 95 |
T1F = FNMS(T5, Te, T14); |
| 96 |
T1K = FNMS(T6, Ti, Tz); |
| 97 |
T15 = FMA(T5, Te, T14); |
| 98 |
T11 = FNMS(T5, Ti, T10); |
| 99 |
{
|
| 100 |
E T2E, T2I, T2S, T2W; |
| 101 |
T2E = T7 * Te; |
| 102 |
T2F = FMA(Tb, Ti, T2E); |
| 103 |
T31 = FNMS(Tb, Ti, T2E); |
| 104 |
T2I = T7 * Ti; |
| 105 |
T2J = FNMS(Tb, Te, T2I); |
| 106 |
T34 = FMA(Tb, Te, T2I); |
| 107 |
{
|
| 108 |
E T3e, T3i, T3L, T3P; |
| 109 |
T3e = TJ * Te; |
| 110 |
T3f = FNMS(TM, Ti, T3e); |
| 111 |
T3z = FMA(TM, Ti, T3e); |
| 112 |
T3i = TJ * Ti; |
| 113 |
T3j = FMA(TM, Te, T3i); |
| 114 |
T3C = FNMS(TM, Te, T3i); |
| 115 |
T3L = Ts * Te; |
| 116 |
T3P = Ts * Ti; |
| 117 |
Tw = FNMS(T5, T8, Tv); |
| 118 |
T3M = FMA(Tw, Ti, T3L); |
| 119 |
T3Q = FNMS(Tw, Te, T3P); |
| 120 |
} |
| 121 |
{
|
| 122 |
E T2r, T2v, T3m, T3q; |
| 123 |
T2r = T1w * Te; |
| 124 |
T2v = T1w * Ti; |
| 125 |
T1z = FMA(T5, T8, Tv); |
| 126 |
T2s = FMA(T1z, Ti, T2r); |
| 127 |
T2w = FNMS(T1z, Te, T2v); |
| 128 |
T3m = T19 * Te; |
| 129 |
T3q = T19 * Ti; |
| 130 |
T1d = FMA(T6, T8, T1c); |
| 131 |
T3n = FMA(T1d, Ti, T3m); |
| 132 |
T3r = FNMS(T1d, Te, T3q); |
| 133 |
} |
| 134 |
T2S = T23 * Te; |
| 135 |
T2W = T23 * Ti; |
| 136 |
T26 = FNMS(T6, T8, T1c); |
| 137 |
T2T = FMA(T26, Ti, T2S); |
| 138 |
T2X = FNMS(T26, Te, T2W); |
| 139 |
{
|
| 140 |
E TQ, TV, Tf, Tm, Tg; |
| 141 |
Tg = T7 * Tc; |
| 142 |
Th = FMA(Tb, T8, Tg); |
| 143 |
TR = FNMS(Tb, T8, Tg); |
| 144 |
TP = FMA(Tb, Tc, T9); |
| 145 |
TQ = TP * Te; |
| 146 |
TV = TP * Ti; |
| 147 |
Td = FNMS(Tb, Tc, T9); |
| 148 |
Tf = Td * Te; |
| 149 |
Tm = Td * Ti; |
| 150 |
Tj = FMA(Th, Ti, Tf); |
| 151 |
TW = FNMS(TR, Te, TV); |
| 152 |
Tn = FNMS(Th, Te, Tm); |
| 153 |
TS = FMA(TR, Ti, TQ); |
| 154 |
} |
| 155 |
{
|
| 156 |
E T2a, T2f, T1S, T1Y, T1T; |
| 157 |
T1T = TJ * Tc; |
| 158 |
T1U = FMA(TM, T8, T1T); |
| 159 |
T2b = FNMS(TM, T8, T1T); |
| 160 |
T29 = FMA(TM, Tc, T1Q); |
| 161 |
T2a = T29 * Te; |
| 162 |
T2f = T29 * Ti; |
| 163 |
T1R = FNMS(TM, Tc, T1Q); |
| 164 |
T1S = T1R * Te; |
| 165 |
T1Y = T1R * Ti; |
| 166 |
T1V = FMA(T1U, Ti, T1S); |
| 167 |
T2g = FNMS(T2b, Te, T2f); |
| 168 |
T1Z = FNMS(T1U, Te, T1Y); |
| 169 |
T2c = FMA(T2b, Ti, T2a); |
| 170 |
} |
| 171 |
} |
| 172 |
} |
| 173 |
{
|
| 174 |
E Tq, T46, T8H, T97, TH, T98, T4b, T8D, TZ, T7f, T4j, T6t, T1g, T7g, T4q; |
| 175 |
E T6u, T1v, T1I, T7m, T7j, T7k, T7l, T4z, T6x, T4G, T6y, T22, T2j, T7o, T7p; |
| 176 |
E T7q, T7r, T4O, T6A, T4V, T6B, T3G, T7L, T7I, T8n, T5E, T6P, T61, T6M, T2N; |
| 177 |
E T7A, T7x, T8i, T55, T6I, T5s, T6F, T43, T7J, T7O, T8o, T5L, T62, T5S, T63; |
| 178 |
E T3c, T7y, T7D, T8j, T5c, T5t, T5j, T5u; |
| 179 |
{
|
| 180 |
E T1, T8G, Tk, Tl, To, T8E, Tp, T8F; |
| 181 |
T1 = ri[0];
|
| 182 |
T8G = ii[0];
|
| 183 |
Tk = ri[WS(rs, 16)];
|
| 184 |
Tl = Tj * Tk; |
| 185 |
To = ii[WS(rs, 16)];
|
| 186 |
T8E = Tj * To; |
| 187 |
Tp = FMA(Tn, To, Tl); |
| 188 |
Tq = T1 + Tp; |
| 189 |
T46 = T1 - Tp; |
| 190 |
T8F = FNMS(Tn, Tk, T8E); |
| 191 |
T8H = T8F + T8G; |
| 192 |
T97 = T8G - T8F; |
| 193 |
} |
| 194 |
{
|
| 195 |
E Tt, Tu, Tx, T47, TB, TC, TF, T49; |
| 196 |
Tt = ri[WS(rs, 8)];
|
| 197 |
Tu = Ts * Tt; |
| 198 |
Tx = ii[WS(rs, 8)];
|
| 199 |
T47 = Ts * Tx; |
| 200 |
TB = ri[WS(rs, 24)];
|
| 201 |
TC = TA * TB; |
| 202 |
TF = ii[WS(rs, 24)];
|
| 203 |
T49 = TA * TF; |
| 204 |
{
|
| 205 |
E Ty, TG, T48, T4a; |
| 206 |
Ty = FMA(Tw, Tx, Tu); |
| 207 |
TG = FMA(TE, TF, TC); |
| 208 |
TH = Ty + TG; |
| 209 |
T98 = Ty - TG; |
| 210 |
T48 = FNMS(Tw, Tt, T47); |
| 211 |
T4a = FNMS(TE, TB, T49); |
| 212 |
T4b = T48 - T4a; |
| 213 |
T8D = T48 + T4a; |
| 214 |
} |
| 215 |
} |
| 216 |
{
|
| 217 |
E TO, T4f, TY, T4h, T4d, T4i; |
| 218 |
{
|
| 219 |
E TK, TL, TN, T4e; |
| 220 |
TK = ri[WS(rs, 4)];
|
| 221 |
TL = TJ * TK; |
| 222 |
TN = ii[WS(rs, 4)];
|
| 223 |
T4e = TJ * TN; |
| 224 |
TO = FMA(TM, TN, TL); |
| 225 |
T4f = FNMS(TM, TK, T4e); |
| 226 |
} |
| 227 |
{
|
| 228 |
E TT, TU, TX, T4g; |
| 229 |
TT = ri[WS(rs, 20)];
|
| 230 |
TU = TS * TT; |
| 231 |
TX = ii[WS(rs, 20)];
|
| 232 |
T4g = TS * TX; |
| 233 |
TY = FMA(TW, TX, TU); |
| 234 |
T4h = FNMS(TW, TT, T4g); |
| 235 |
} |
| 236 |
TZ = TO + TY; |
| 237 |
T7f = T4f + T4h; |
| 238 |
T4d = TO - TY; |
| 239 |
T4i = T4f - T4h; |
| 240 |
T4j = T4d + T4i; |
| 241 |
T6t = T4i - T4d; |
| 242 |
} |
| 243 |
{
|
| 244 |
E T17, T4m, T1f, T4o, T4k, T4p; |
| 245 |
{
|
| 246 |
E T12, T13, T16, T4l; |
| 247 |
T12 = ri[WS(rs, 28)];
|
| 248 |
T13 = T11 * T12; |
| 249 |
T16 = ii[WS(rs, 28)];
|
| 250 |
T4l = T11 * T16; |
| 251 |
T17 = FMA(T15, T16, T13); |
| 252 |
T4m = FNMS(T15, T12, T4l); |
| 253 |
} |
| 254 |
{
|
| 255 |
E T1a, T1b, T1e, T4n; |
| 256 |
T1a = ri[WS(rs, 12)];
|
| 257 |
T1b = T19 * T1a; |
| 258 |
T1e = ii[WS(rs, 12)];
|
| 259 |
T4n = T19 * T1e; |
| 260 |
T1f = FMA(T1d, T1e, T1b); |
| 261 |
T4o = FNMS(T1d, T1a, T4n); |
| 262 |
} |
| 263 |
T1g = T17 + T1f; |
| 264 |
T7g = T4m + T4o; |
| 265 |
T4k = T17 - T1f; |
| 266 |
T4p = T4m - T4o; |
| 267 |
T4q = T4k - T4p; |
| 268 |
T6u = T4k + T4p; |
| 269 |
} |
| 270 |
{
|
| 271 |
E T1m, T4u, T1H, T4E, T1u, T4w, T1B, T4C; |
| 272 |
{
|
| 273 |
E T1j, T1k, T1l, T4t; |
| 274 |
T1j = ri[WS(rs, 2)];
|
| 275 |
T1k = T7 * T1j; |
| 276 |
T1l = ii[WS(rs, 2)];
|
| 277 |
T4t = T7 * T1l; |
| 278 |
T1m = FMA(Tb, T1l, T1k); |
| 279 |
T4u = FNMS(Tb, T1j, T4t); |
| 280 |
} |
| 281 |
{
|
| 282 |
E T1D, T1E, T1G, T4D; |
| 283 |
T1D = ri[WS(rs, 26)];
|
| 284 |
T1E = T1C * T1D; |
| 285 |
T1G = ii[WS(rs, 26)];
|
| 286 |
T4D = T1C * T1G; |
| 287 |
T1H = FMA(T1F, T1G, T1E); |
| 288 |
T4E = FNMS(T1F, T1D, T4D); |
| 289 |
} |
| 290 |
{
|
| 291 |
E T1p, T1q, T1t, T4v; |
| 292 |
T1p = ri[WS(rs, 18)];
|
| 293 |
T1q = T1o * T1p; |
| 294 |
T1t = ii[WS(rs, 18)];
|
| 295 |
T4v = T1o * T1t; |
| 296 |
T1u = FMA(T1s, T1t, T1q); |
| 297 |
T4w = FNMS(T1s, T1p, T4v); |
| 298 |
} |
| 299 |
{
|
| 300 |
E T1x, T1y, T1A, T4B; |
| 301 |
T1x = ri[WS(rs, 10)];
|
| 302 |
T1y = T1w * T1x; |
| 303 |
T1A = ii[WS(rs, 10)];
|
| 304 |
T4B = T1w * T1A; |
| 305 |
T1B = FMA(T1z, T1A, T1y); |
| 306 |
T4C = FNMS(T1z, T1x, T4B); |
| 307 |
} |
| 308 |
T1v = T1m + T1u; |
| 309 |
T1I = T1B + T1H; |
| 310 |
T7m = T1v - T1I; |
| 311 |
T7j = T4u + T4w; |
| 312 |
T7k = T4C + T4E; |
| 313 |
T7l = T7j - T7k; |
| 314 |
{
|
| 315 |
E T4x, T4y, T4A, T4F; |
| 316 |
T4x = T4u - T4w; |
| 317 |
T4y = T1B - T1H; |
| 318 |
T4z = T4x - T4y; |
| 319 |
T6x = T4x + T4y; |
| 320 |
T4A = T1m - T1u; |
| 321 |
T4F = T4C - T4E; |
| 322 |
T4G = T4A + T4F; |
| 323 |
T6y = T4A - T4F; |
| 324 |
} |
| 325 |
} |
| 326 |
{
|
| 327 |
E T1P, T4J, T2i, T4T, T21, T4L, T28, T4R; |
| 328 |
{
|
| 329 |
E T1L, T1M, T1O, T4I; |
| 330 |
T1L = ri[WS(rs, 30)];
|
| 331 |
T1M = T1K * T1L; |
| 332 |
T1O = ii[WS(rs, 30)];
|
| 333 |
T4I = T1K * T1O; |
| 334 |
T1P = FMA(T1N, T1O, T1M); |
| 335 |
T4J = FNMS(T1N, T1L, T4I); |
| 336 |
} |
| 337 |
{
|
| 338 |
E T2d, T2e, T2h, T4S; |
| 339 |
T2d = ri[WS(rs, 22)];
|
| 340 |
T2e = T2c * T2d; |
| 341 |
T2h = ii[WS(rs, 22)];
|
| 342 |
T4S = T2c * T2h; |
| 343 |
T2i = FMA(T2g, T2h, T2e); |
| 344 |
T4T = FNMS(T2g, T2d, T4S); |
| 345 |
} |
| 346 |
{
|
| 347 |
E T1W, T1X, T20, T4K; |
| 348 |
T1W = ri[WS(rs, 14)];
|
| 349 |
T1X = T1V * T1W; |
| 350 |
T20 = ii[WS(rs, 14)];
|
| 351 |
T4K = T1V * T20; |
| 352 |
T21 = FMA(T1Z, T20, T1X); |
| 353 |
T4L = FNMS(T1Z, T1W, T4K); |
| 354 |
} |
| 355 |
{
|
| 356 |
E T24, T25, T27, T4Q; |
| 357 |
T24 = ri[WS(rs, 6)];
|
| 358 |
T25 = T23 * T24; |
| 359 |
T27 = ii[WS(rs, 6)];
|
| 360 |
T4Q = T23 * T27; |
| 361 |
T28 = FMA(T26, T27, T25); |
| 362 |
T4R = FNMS(T26, T24, T4Q); |
| 363 |
} |
| 364 |
T22 = T1P + T21; |
| 365 |
T2j = T28 + T2i; |
| 366 |
T7o = T22 - T2j; |
| 367 |
T7p = T4J + T4L; |
| 368 |
T7q = T4R + T4T; |
| 369 |
T7r = T7p - T7q; |
| 370 |
{
|
| 371 |
E T4M, T4N, T4P, T4U; |
| 372 |
T4M = T4J - T4L; |
| 373 |
T4N = T28 - T2i; |
| 374 |
T4O = T4M - T4N; |
| 375 |
T6A = T4M + T4N; |
| 376 |
T4P = T1P - T21; |
| 377 |
T4U = T4R - T4T; |
| 378 |
T4V = T4P + T4U; |
| 379 |
T6B = T4P - T4U; |
| 380 |
} |
| 381 |
} |
| 382 |
{
|
| 383 |
E T3l, T5z, T3E, T5Z, T3t, T5B, T3y, T5X; |
| 384 |
{
|
| 385 |
E T3g, T3h, T3k, T5y; |
| 386 |
T3g = ri[WS(rs, 31)];
|
| 387 |
T3h = T3f * T3g; |
| 388 |
T3k = ii[WS(rs, 31)];
|
| 389 |
T5y = T3f * T3k; |
| 390 |
T3l = FMA(T3j, T3k, T3h); |
| 391 |
T5z = FNMS(T3j, T3g, T5y); |
| 392 |
} |
| 393 |
{
|
| 394 |
E T3A, T3B, T3D, T5Y; |
| 395 |
T3A = ri[WS(rs, 23)];
|
| 396 |
T3B = T3z * T3A; |
| 397 |
T3D = ii[WS(rs, 23)];
|
| 398 |
T5Y = T3z * T3D; |
| 399 |
T3E = FMA(T3C, T3D, T3B); |
| 400 |
T5Z = FNMS(T3C, T3A, T5Y); |
| 401 |
} |
| 402 |
{
|
| 403 |
E T3o, T3p, T3s, T5A; |
| 404 |
T3o = ri[WS(rs, 15)];
|
| 405 |
T3p = T3n * T3o; |
| 406 |
T3s = ii[WS(rs, 15)];
|
| 407 |
T5A = T3n * T3s; |
| 408 |
T3t = FMA(T3r, T3s, T3p); |
| 409 |
T5B = FNMS(T3r, T3o, T5A); |
| 410 |
} |
| 411 |
{
|
| 412 |
E T3v, T3w, T3x, T5W; |
| 413 |
T3v = ri[WS(rs, 7)];
|
| 414 |
T3w = TP * T3v; |
| 415 |
T3x = ii[WS(rs, 7)];
|
| 416 |
T5W = TP * T3x; |
| 417 |
T3y = FMA(TR, T3x, T3w); |
| 418 |
T5X = FNMS(TR, T3v, T5W); |
| 419 |
} |
| 420 |
{
|
| 421 |
E T3u, T3F, T7G, T7H; |
| 422 |
T3u = T3l + T3t; |
| 423 |
T3F = T3y + T3E; |
| 424 |
T3G = T3u + T3F; |
| 425 |
T7L = T3u - T3F; |
| 426 |
T7G = T5z + T5B; |
| 427 |
T7H = T5X + T5Z; |
| 428 |
T7I = T7G - T7H; |
| 429 |
T8n = T7G + T7H; |
| 430 |
} |
| 431 |
{
|
| 432 |
E T5C, T5D, T5V, T60; |
| 433 |
T5C = T5z - T5B; |
| 434 |
T5D = T3y - T3E; |
| 435 |
T5E = T5C - T5D; |
| 436 |
T6P = T5C + T5D; |
| 437 |
T5V = T3l - T3t; |
| 438 |
T60 = T5X - T5Z; |
| 439 |
T61 = T5V + T60; |
| 440 |
T6M = T5V - T60; |
| 441 |
} |
| 442 |
} |
| 443 |
{
|
| 444 |
E T2q, T50, T2L, T5q, T2y, T52, T2D, T5o; |
| 445 |
{
|
| 446 |
E T2n, T2o, T2p, T4Z; |
| 447 |
T2n = ri[WS(rs, 1)];
|
| 448 |
T2o = T2 * T2n; |
| 449 |
T2p = ii[WS(rs, 1)];
|
| 450 |
T4Z = T2 * T2p; |
| 451 |
T2q = FMA(T5, T2p, T2o); |
| 452 |
T50 = FNMS(T5, T2n, T4Z); |
| 453 |
} |
| 454 |
{
|
| 455 |
E T2G, T2H, T2K, T5p; |
| 456 |
T2G = ri[WS(rs, 25)];
|
| 457 |
T2H = T2F * T2G; |
| 458 |
T2K = ii[WS(rs, 25)];
|
| 459 |
T5p = T2F * T2K; |
| 460 |
T2L = FMA(T2J, T2K, T2H); |
| 461 |
T5q = FNMS(T2J, T2G, T5p); |
| 462 |
} |
| 463 |
{
|
| 464 |
E T2t, T2u, T2x, T51; |
| 465 |
T2t = ri[WS(rs, 17)];
|
| 466 |
T2u = T2s * T2t; |
| 467 |
T2x = ii[WS(rs, 17)];
|
| 468 |
T51 = T2s * T2x; |
| 469 |
T2y = FMA(T2w, T2x, T2u); |
| 470 |
T52 = FNMS(T2w, T2t, T51); |
| 471 |
} |
| 472 |
{
|
| 473 |
E T2A, T2B, T2C, T5n; |
| 474 |
T2A = ri[WS(rs, 9)];
|
| 475 |
T2B = T8 * T2A; |
| 476 |
T2C = ii[WS(rs, 9)];
|
| 477 |
T5n = T8 * T2C; |
| 478 |
T2D = FMA(Tc, T2C, T2B); |
| 479 |
T5o = FNMS(Tc, T2A, T5n); |
| 480 |
} |
| 481 |
{
|
| 482 |
E T2z, T2M, T7v, T7w; |
| 483 |
T2z = T2q + T2y; |
| 484 |
T2M = T2D + T2L; |
| 485 |
T2N = T2z + T2M; |
| 486 |
T7A = T2z - T2M; |
| 487 |
T7v = T50 + T52; |
| 488 |
T7w = T5o + T5q; |
| 489 |
T7x = T7v - T7w; |
| 490 |
T8i = T7v + T7w; |
| 491 |
} |
| 492 |
{
|
| 493 |
E T53, T54, T5m, T5r; |
| 494 |
T53 = T50 - T52; |
| 495 |
T54 = T2D - T2L; |
| 496 |
T55 = T53 - T54; |
| 497 |
T6I = T53 + T54; |
| 498 |
T5m = T2q - T2y; |
| 499 |
T5r = T5o - T5q; |
| 500 |
T5s = T5m + T5r; |
| 501 |
T6F = T5m - T5r; |
| 502 |
} |
| 503 |
} |
| 504 |
{
|
| 505 |
E T3K, T5G, T41, T5Q, T3S, T5I, T3X, T5O; |
| 506 |
{
|
| 507 |
E T3H, T3I, T3J, T5F; |
| 508 |
T3H = ri[WS(rs, 3)];
|
| 509 |
T3I = T3 * T3H; |
| 510 |
T3J = ii[WS(rs, 3)];
|
| 511 |
T5F = T3 * T3J; |
| 512 |
T3K = FMA(T6, T3J, T3I); |
| 513 |
T5G = FNMS(T6, T3H, T5F); |
| 514 |
} |
| 515 |
{
|
| 516 |
E T3Y, T3Z, T40, T5P; |
| 517 |
T3Y = ri[WS(rs, 11)];
|
| 518 |
T3Z = Td * T3Y; |
| 519 |
T40 = ii[WS(rs, 11)];
|
| 520 |
T5P = Td * T40; |
| 521 |
T41 = FMA(Th, T40, T3Z); |
| 522 |
T5Q = FNMS(Th, T3Y, T5P); |
| 523 |
} |
| 524 |
{
|
| 525 |
E T3N, T3O, T3R, T5H; |
| 526 |
T3N = ri[WS(rs, 19)];
|
| 527 |
T3O = T3M * T3N; |
| 528 |
T3R = ii[WS(rs, 19)];
|
| 529 |
T5H = T3M * T3R; |
| 530 |
T3S = FMA(T3Q, T3R, T3O); |
| 531 |
T5I = FNMS(T3Q, T3N, T5H); |
| 532 |
} |
| 533 |
{
|
| 534 |
E T3U, T3V, T3W, T5N; |
| 535 |
T3U = ri[WS(rs, 27)];
|
| 536 |
T3V = Te * T3U; |
| 537 |
T3W = ii[WS(rs, 27)];
|
| 538 |
T5N = Te * T3W; |
| 539 |
T3X = FMA(Ti, T3W, T3V); |
| 540 |
T5O = FNMS(Ti, T3U, T5N); |
| 541 |
} |
| 542 |
{
|
| 543 |
E T3T, T42, T7M, T7N; |
| 544 |
T3T = T3K + T3S; |
| 545 |
T42 = T3X + T41; |
| 546 |
T43 = T3T + T42; |
| 547 |
T7J = T42 - T3T; |
| 548 |
T7M = T5G + T5I; |
| 549 |
T7N = T5O + T5Q; |
| 550 |
T7O = T7M - T7N; |
| 551 |
T8o = T7M + T7N; |
| 552 |
} |
| 553 |
{
|
| 554 |
E T5J, T5K, T5M, T5R; |
| 555 |
T5J = T5G - T5I; |
| 556 |
T5K = T3K - T3S; |
| 557 |
T5L = T5J - T5K; |
| 558 |
T62 = T5K + T5J; |
| 559 |
T5M = T3X - T41; |
| 560 |
T5R = T5O - T5Q; |
| 561 |
T5S = T5M + T5R; |
| 562 |
T63 = T5M - T5R; |
| 563 |
} |
| 564 |
} |
| 565 |
{
|
| 566 |
E T2R, T57, T3a, T5h, T2Z, T59, T36, T5f; |
| 567 |
{
|
| 568 |
E T2O, T2P, T2Q, T56; |
| 569 |
T2O = ri[WS(rs, 5)];
|
| 570 |
T2P = T29 * T2O; |
| 571 |
T2Q = ii[WS(rs, 5)];
|
| 572 |
T56 = T29 * T2Q; |
| 573 |
T2R = FMA(T2b, T2Q, T2P); |
| 574 |
T57 = FNMS(T2b, T2O, T56); |
| 575 |
} |
| 576 |
{
|
| 577 |
E T37, T38, T39, T5g; |
| 578 |
T37 = ri[WS(rs, 13)];
|
| 579 |
T38 = T1R * T37; |
| 580 |
T39 = ii[WS(rs, 13)];
|
| 581 |
T5g = T1R * T39; |
| 582 |
T3a = FMA(T1U, T39, T38); |
| 583 |
T5h = FNMS(T1U, T37, T5g); |
| 584 |
} |
| 585 |
{
|
| 586 |
E T2U, T2V, T2Y, T58; |
| 587 |
T2U = ri[WS(rs, 21)];
|
| 588 |
T2V = T2T * T2U; |
| 589 |
T2Y = ii[WS(rs, 21)];
|
| 590 |
T58 = T2T * T2Y; |
| 591 |
T2Z = FMA(T2X, T2Y, T2V); |
| 592 |
T59 = FNMS(T2X, T2U, T58); |
| 593 |
} |
| 594 |
{
|
| 595 |
E T32, T33, T35, T5e; |
| 596 |
T32 = ri[WS(rs, 29)];
|
| 597 |
T33 = T31 * T32; |
| 598 |
T35 = ii[WS(rs, 29)];
|
| 599 |
T5e = T31 * T35; |
| 600 |
T36 = FMA(T34, T35, T33); |
| 601 |
T5f = FNMS(T34, T32, T5e); |
| 602 |
} |
| 603 |
{
|
| 604 |
E T30, T3b, T7B, T7C; |
| 605 |
T30 = T2R + T2Z; |
| 606 |
T3b = T36 + T3a; |
| 607 |
T3c = T30 + T3b; |
| 608 |
T7y = T3b - T30; |
| 609 |
T7B = T57 + T59; |
| 610 |
T7C = T5f + T5h; |
| 611 |
T7D = T7B - T7C; |
| 612 |
T8j = T7B + T7C; |
| 613 |
} |
| 614 |
{
|
| 615 |
E T5a, T5b, T5d, T5i; |
| 616 |
T5a = T57 - T59; |
| 617 |
T5b = T2R - T2Z; |
| 618 |
T5c = T5a - T5b; |
| 619 |
T5t = T5b + T5a; |
| 620 |
T5d = T36 - T3a; |
| 621 |
T5i = T5f - T5h; |
| 622 |
T5j = T5d + T5i; |
| 623 |
T5u = T5d - T5i; |
| 624 |
} |
| 625 |
} |
| 626 |
{
|
| 627 |
E T1i, T8c, T8z, T8A, T8J, T8O, T2l, T8N, T45, T8L, T8l, T8t, T8q, T8u, T8f; |
| 628 |
E T8B; |
| 629 |
{
|
| 630 |
E TI, T1h, T8x, T8y; |
| 631 |
TI = Tq + TH; |
| 632 |
T1h = TZ + T1g; |
| 633 |
T1i = TI + T1h; |
| 634 |
T8c = TI - T1h; |
| 635 |
T8x = T8i + T8j; |
| 636 |
T8y = T8n + T8o; |
| 637 |
T8z = T8x - T8y; |
| 638 |
T8A = T8x + T8y; |
| 639 |
} |
| 640 |
{
|
| 641 |
E T8C, T8I, T1J, T2k; |
| 642 |
T8C = T7f + T7g; |
| 643 |
T8I = T8D + T8H; |
| 644 |
T8J = T8C + T8I; |
| 645 |
T8O = T8I - T8C; |
| 646 |
T1J = T1v + T1I; |
| 647 |
T2k = T22 + T2j; |
| 648 |
T2l = T1J + T2k; |
| 649 |
T8N = T2k - T1J; |
| 650 |
} |
| 651 |
{
|
| 652 |
E T3d, T44, T8h, T8k; |
| 653 |
T3d = T2N + T3c; |
| 654 |
T44 = T3G + T43; |
| 655 |
T45 = T3d + T44; |
| 656 |
T8L = T44 - T3d; |
| 657 |
T8h = T2N - T3c; |
| 658 |
T8k = T8i - T8j; |
| 659 |
T8l = T8h + T8k; |
| 660 |
T8t = T8k - T8h; |
| 661 |
} |
| 662 |
{
|
| 663 |
E T8m, T8p, T8d, T8e; |
| 664 |
T8m = T3G - T43; |
| 665 |
T8p = T8n - T8o; |
| 666 |
T8q = T8m - T8p; |
| 667 |
T8u = T8m + T8p; |
| 668 |
T8d = T7j + T7k; |
| 669 |
T8e = T7p + T7q; |
| 670 |
T8f = T8d - T8e; |
| 671 |
T8B = T8d + T8e; |
| 672 |
} |
| 673 |
{
|
| 674 |
E T2m, T8K, T8w, T8M; |
| 675 |
T2m = T1i + T2l; |
| 676 |
ri[WS(rs, 16)] = T2m - T45;
|
| 677 |
ri[0] = T2m + T45;
|
| 678 |
T8K = T8B + T8J; |
| 679 |
ii[0] = T8A + T8K;
|
| 680 |
ii[WS(rs, 16)] = T8K - T8A;
|
| 681 |
T8w = T1i - T2l; |
| 682 |
ri[WS(rs, 24)] = T8w - T8z;
|
| 683 |
ri[WS(rs, 8)] = T8w + T8z;
|
| 684 |
T8M = T8J - T8B; |
| 685 |
ii[WS(rs, 8)] = T8L + T8M;
|
| 686 |
ii[WS(rs, 24)] = T8M - T8L;
|
| 687 |
} |
| 688 |
{
|
| 689 |
E T8g, T8r, T8P, T8Q; |
| 690 |
T8g = T8c + T8f; |
| 691 |
T8r = T8l + T8q; |
| 692 |
ri[WS(rs, 20)] = FNMS(KP707106781, T8r, T8g);
|
| 693 |
ri[WS(rs, 4)] = FMA(KP707106781, T8r, T8g);
|
| 694 |
T8P = T8N + T8O; |
| 695 |
T8Q = T8t + T8u; |
| 696 |
ii[WS(rs, 4)] = FMA(KP707106781, T8Q, T8P);
|
| 697 |
ii[WS(rs, 20)] = FNMS(KP707106781, T8Q, T8P);
|
| 698 |
} |
| 699 |
{
|
| 700 |
E T8s, T8v, T8R, T8S; |
| 701 |
T8s = T8c - T8f; |
| 702 |
T8v = T8t - T8u; |
| 703 |
ri[WS(rs, 28)] = FNMS(KP707106781, T8v, T8s);
|
| 704 |
ri[WS(rs, 12)] = FMA(KP707106781, T8v, T8s);
|
| 705 |
T8R = T8O - T8N; |
| 706 |
T8S = T8q - T8l; |
| 707 |
ii[WS(rs, 12)] = FMA(KP707106781, T8S, T8R);
|
| 708 |
ii[WS(rs, 28)] = FNMS(KP707106781, T8S, T8R);
|
| 709 |
} |
| 710 |
} |
| 711 |
{
|
| 712 |
E T7i, T7W, T86, T8a, T8V, T91, T7t, T8W, T7F, T7T, T7Z, T92, T83, T89, T7Q; |
| 713 |
E T7U; |
| 714 |
{
|
| 715 |
E T7e, T7h, T84, T85; |
| 716 |
T7e = Tq - TH; |
| 717 |
T7h = T7f - T7g; |
| 718 |
T7i = T7e - T7h; |
| 719 |
T7W = T7e + T7h; |
| 720 |
T84 = T7L + T7O; |
| 721 |
T85 = T7I + T7J; |
| 722 |
T86 = FNMS(KP414213562, T85, T84); |
| 723 |
T8a = FMA(KP414213562, T84, T85); |
| 724 |
} |
| 725 |
{
|
| 726 |
E T8T, T8U, T7n, T7s; |
| 727 |
T8T = T1g - TZ; |
| 728 |
T8U = T8H - T8D; |
| 729 |
T8V = T8T + T8U; |
| 730 |
T91 = T8U - T8T; |
| 731 |
T7n = T7l - T7m; |
| 732 |
T7s = T7o + T7r; |
| 733 |
T7t = T7n - T7s; |
| 734 |
T8W = T7n + T7s; |
| 735 |
} |
| 736 |
{
|
| 737 |
E T7z, T7E, T7X, T7Y; |
| 738 |
T7z = T7x - T7y; |
| 739 |
T7E = T7A - T7D; |
| 740 |
T7F = FMA(KP414213562, T7E, T7z); |
| 741 |
T7T = FNMS(KP414213562, T7z, T7E); |
| 742 |
T7X = T7m + T7l; |
| 743 |
T7Y = T7o - T7r; |
| 744 |
T7Z = T7X + T7Y; |
| 745 |
T92 = T7Y - T7X; |
| 746 |
} |
| 747 |
{
|
| 748 |
E T81, T82, T7K, T7P; |
| 749 |
T81 = T7A + T7D; |
| 750 |
T82 = T7x + T7y; |
| 751 |
T83 = FMA(KP414213562, T82, T81); |
| 752 |
T89 = FNMS(KP414213562, T81, T82); |
| 753 |
T7K = T7I - T7J; |
| 754 |
T7P = T7L - T7O; |
| 755 |
T7Q = FNMS(KP414213562, T7P, T7K); |
| 756 |
T7U = FMA(KP414213562, T7K, T7P); |
| 757 |
} |
| 758 |
{
|
| 759 |
E T7u, T7R, T93, T94; |
| 760 |
T7u = FMA(KP707106781, T7t, T7i); |
| 761 |
T7R = T7F - T7Q; |
| 762 |
ri[WS(rs, 22)] = FNMS(KP923879532, T7R, T7u);
|
| 763 |
ri[WS(rs, 6)] = FMA(KP923879532, T7R, T7u);
|
| 764 |
T93 = FMA(KP707106781, T92, T91); |
| 765 |
T94 = T7U - T7T; |
| 766 |
ii[WS(rs, 6)] = FMA(KP923879532, T94, T93);
|
| 767 |
ii[WS(rs, 22)] = FNMS(KP923879532, T94, T93);
|
| 768 |
} |
| 769 |
{
|
| 770 |
E T7S, T7V, T95, T96; |
| 771 |
T7S = FNMS(KP707106781, T7t, T7i); |
| 772 |
T7V = T7T + T7U; |
| 773 |
ri[WS(rs, 14)] = FNMS(KP923879532, T7V, T7S);
|
| 774 |
ri[WS(rs, 30)] = FMA(KP923879532, T7V, T7S);
|
| 775 |
T95 = FNMS(KP707106781, T92, T91); |
| 776 |
T96 = T7F + T7Q; |
| 777 |
ii[WS(rs, 14)] = FNMS(KP923879532, T96, T95);
|
| 778 |
ii[WS(rs, 30)] = FMA(KP923879532, T96, T95);
|
| 779 |
} |
| 780 |
{
|
| 781 |
E T80, T87, T8X, T8Y; |
| 782 |
T80 = FMA(KP707106781, T7Z, T7W); |
| 783 |
T87 = T83 + T86; |
| 784 |
ri[WS(rs, 18)] = FNMS(KP923879532, T87, T80);
|
| 785 |
ri[WS(rs, 2)] = FMA(KP923879532, T87, T80);
|
| 786 |
T8X = FMA(KP707106781, T8W, T8V); |
| 787 |
T8Y = T89 + T8a; |
| 788 |
ii[WS(rs, 2)] = FMA(KP923879532, T8Y, T8X);
|
| 789 |
ii[WS(rs, 18)] = FNMS(KP923879532, T8Y, T8X);
|
| 790 |
} |
| 791 |
{
|
| 792 |
E T88, T8b, T8Z, T90; |
| 793 |
T88 = FNMS(KP707106781, T7Z, T7W); |
| 794 |
T8b = T89 - T8a; |
| 795 |
ri[WS(rs, 26)] = FNMS(KP923879532, T8b, T88);
|
| 796 |
ri[WS(rs, 10)] = FMA(KP923879532, T8b, T88);
|
| 797 |
T8Z = FNMS(KP707106781, T8W, T8V); |
| 798 |
T90 = T86 - T83; |
| 799 |
ii[WS(rs, 10)] = FMA(KP923879532, T90, T8Z);
|
| 800 |
ii[WS(rs, 26)] = FNMS(KP923879532, T90, T8Z);
|
| 801 |
} |
| 802 |
} |
| 803 |
{
|
| 804 |
E T4s, T6c, T4X, T9c, T9b, T9h, T6f, T9i, T66, T6q, T6a, T6m, T5x, T6p, T69; |
| 805 |
E T6j; |
| 806 |
{
|
| 807 |
E T4c, T4r, T6d, T6e; |
| 808 |
T4c = T46 + T4b; |
| 809 |
T4r = T4j + T4q; |
| 810 |
T4s = FNMS(KP707106781, T4r, T4c); |
| 811 |
T6c = FMA(KP707106781, T4r, T4c); |
| 812 |
{
|
| 813 |
E T4H, T4W, T99, T9a; |
| 814 |
T4H = FNMS(KP414213562, T4G, T4z); |
| 815 |
T4W = FMA(KP414213562, T4V, T4O); |
| 816 |
T4X = T4H - T4W; |
| 817 |
T9c = T4H + T4W; |
| 818 |
T99 = T97 - T98; |
| 819 |
T9a = T6t + T6u; |
| 820 |
T9b = FMA(KP707106781, T9a, T99); |
| 821 |
T9h = FNMS(KP707106781, T9a, T99); |
| 822 |
} |
| 823 |
T6d = FMA(KP414213562, T4z, T4G); |
| 824 |
T6e = FNMS(KP414213562, T4O, T4V); |
| 825 |
T6f = T6d + T6e; |
| 826 |
T9i = T6e - T6d; |
| 827 |
{
|
| 828 |
E T5U, T6l, T65, T6k, T5T, T64; |
| 829 |
T5T = T5L + T5S; |
| 830 |
T5U = FNMS(KP707106781, T5T, T5E); |
| 831 |
T6l = FMA(KP707106781, T5T, T5E); |
| 832 |
T64 = T62 + T63; |
| 833 |
T65 = FNMS(KP707106781, T64, T61); |
| 834 |
T6k = FMA(KP707106781, T64, T61); |
| 835 |
T66 = FNMS(KP668178637, T65, T5U); |
| 836 |
T6q = FMA(KP198912367, T6k, T6l); |
| 837 |
T6a = FMA(KP668178637, T5U, T65); |
| 838 |
T6m = FNMS(KP198912367, T6l, T6k); |
| 839 |
} |
| 840 |
{
|
| 841 |
E T5l, T6i, T5w, T6h, T5k, T5v; |
| 842 |
T5k = T5c + T5j; |
| 843 |
T5l = FNMS(KP707106781, T5k, T55); |
| 844 |
T6i = FMA(KP707106781, T5k, T55); |
| 845 |
T5v = T5t + T5u; |
| 846 |
T5w = FNMS(KP707106781, T5v, T5s); |
| 847 |
T6h = FMA(KP707106781, T5v, T5s); |
| 848 |
T5x = FMA(KP668178637, T5w, T5l); |
| 849 |
T6p = FNMS(KP198912367, T6h, T6i); |
| 850 |
T69 = FNMS(KP668178637, T5l, T5w); |
| 851 |
T6j = FMA(KP198912367, T6i, T6h); |
| 852 |
} |
| 853 |
} |
| 854 |
{
|
| 855 |
E T4Y, T67, T9j, T9k; |
| 856 |
T4Y = FMA(KP923879532, T4X, T4s); |
| 857 |
T67 = T5x - T66; |
| 858 |
ri[WS(rs, 21)] = FNMS(KP831469612, T67, T4Y);
|
| 859 |
ri[WS(rs, 5)] = FMA(KP831469612, T67, T4Y);
|
| 860 |
T9j = FMA(KP923879532, T9i, T9h); |
| 861 |
T9k = T6a - T69; |
| 862 |
ii[WS(rs, 5)] = FMA(KP831469612, T9k, T9j);
|
| 863 |
ii[WS(rs, 21)] = FNMS(KP831469612, T9k, T9j);
|
| 864 |
} |
| 865 |
{
|
| 866 |
E T68, T6b, T9l, T9m; |
| 867 |
T68 = FNMS(KP923879532, T4X, T4s); |
| 868 |
T6b = T69 + T6a; |
| 869 |
ri[WS(rs, 13)] = FNMS(KP831469612, T6b, T68);
|
| 870 |
ri[WS(rs, 29)] = FMA(KP831469612, T6b, T68);
|
| 871 |
T9l = FNMS(KP923879532, T9i, T9h); |
| 872 |
T9m = T5x + T66; |
| 873 |
ii[WS(rs, 13)] = FNMS(KP831469612, T9m, T9l);
|
| 874 |
ii[WS(rs, 29)] = FMA(KP831469612, T9m, T9l);
|
| 875 |
} |
| 876 |
{
|
| 877 |
E T6g, T6n, T9d, T9e; |
| 878 |
T6g = FMA(KP923879532, T6f, T6c); |
| 879 |
T6n = T6j + T6m; |
| 880 |
ri[WS(rs, 17)] = FNMS(KP980785280, T6n, T6g);
|
| 881 |
ri[WS(rs, 1)] = FMA(KP980785280, T6n, T6g);
|
| 882 |
T9d = FMA(KP923879532, T9c, T9b); |
| 883 |
T9e = T6p + T6q; |
| 884 |
ii[WS(rs, 1)] = FMA(KP980785280, T9e, T9d);
|
| 885 |
ii[WS(rs, 17)] = FNMS(KP980785280, T9e, T9d);
|
| 886 |
} |
| 887 |
{
|
| 888 |
E T6o, T6r, T9f, T9g; |
| 889 |
T6o = FNMS(KP923879532, T6f, T6c); |
| 890 |
T6r = T6p - T6q; |
| 891 |
ri[WS(rs, 25)] = FNMS(KP980785280, T6r, T6o);
|
| 892 |
ri[WS(rs, 9)] = FMA(KP980785280, T6r, T6o);
|
| 893 |
T9f = FNMS(KP923879532, T9c, T9b); |
| 894 |
T9g = T6m - T6j; |
| 895 |
ii[WS(rs, 9)] = FMA(KP980785280, T9g, T9f);
|
| 896 |
ii[WS(rs, 25)] = FNMS(KP980785280, T9g, T9f);
|
| 897 |
} |
| 898 |
} |
| 899 |
{
|
| 900 |
E T6w, T6Y, T6D, T9w, T9p, T9v, T71, T9q, T6S, T7c, T6W, T78, T6L, T7b, T6V; |
| 901 |
E T75; |
| 902 |
{
|
| 903 |
E T6s, T6v, T6Z, T70; |
| 904 |
T6s = T46 - T4b; |
| 905 |
T6v = T6t - T6u; |
| 906 |
T6w = FMA(KP707106781, T6v, T6s); |
| 907 |
T6Y = FNMS(KP707106781, T6v, T6s); |
| 908 |
{
|
| 909 |
E T6z, T6C, T9n, T9o; |
| 910 |
T6z = FMA(KP414213562, T6y, T6x); |
| 911 |
T6C = FNMS(KP414213562, T6B, T6A); |
| 912 |
T6D = T6z - T6C; |
| 913 |
T9w = T6z + T6C; |
| 914 |
T9n = T98 + T97; |
| 915 |
T9o = T4q - T4j; |
| 916 |
T9p = FMA(KP707106781, T9o, T9n); |
| 917 |
T9v = FNMS(KP707106781, T9o, T9n); |
| 918 |
} |
| 919 |
T6Z = FNMS(KP414213562, T6x, T6y); |
| 920 |
T70 = FMA(KP414213562, T6A, T6B); |
| 921 |
T71 = T6Z + T70; |
| 922 |
T9q = T70 - T6Z; |
| 923 |
{
|
| 924 |
E T6O, T77, T6R, T76, T6N, T6Q; |
| 925 |
T6N = T5S - T5L; |
| 926 |
T6O = FNMS(KP707106781, T6N, T6M); |
| 927 |
T77 = FMA(KP707106781, T6N, T6M); |
| 928 |
T6Q = T62 - T63; |
| 929 |
T6R = FNMS(KP707106781, T6Q, T6P); |
| 930 |
T76 = FMA(KP707106781, T6Q, T6P); |
| 931 |
T6S = FNMS(KP668178637, T6R, T6O); |
| 932 |
T7c = FMA(KP198912367, T76, T77); |
| 933 |
T6W = FMA(KP668178637, T6O, T6R); |
| 934 |
T78 = FNMS(KP198912367, T77, T76); |
| 935 |
} |
| 936 |
{
|
| 937 |
E T6H, T74, T6K, T73, T6G, T6J; |
| 938 |
T6G = T5j - T5c; |
| 939 |
T6H = FNMS(KP707106781, T6G, T6F); |
| 940 |
T74 = FMA(KP707106781, T6G, T6F); |
| 941 |
T6J = T5t - T5u; |
| 942 |
T6K = FNMS(KP707106781, T6J, T6I); |
| 943 |
T73 = FMA(KP707106781, T6J, T6I); |
| 944 |
T6L = FMA(KP668178637, T6K, T6H); |
| 945 |
T7b = FNMS(KP198912367, T73, T74); |
| 946 |
T6V = FNMS(KP668178637, T6H, T6K); |
| 947 |
T75 = FMA(KP198912367, T74, T73); |
| 948 |
} |
| 949 |
} |
| 950 |
{
|
| 951 |
E T6E, T6T, T9r, T9s; |
| 952 |
T6E = FMA(KP923879532, T6D, T6w); |
| 953 |
T6T = T6L + T6S; |
| 954 |
ri[WS(rs, 19)] = FNMS(KP831469612, T6T, T6E);
|
| 955 |
ri[WS(rs, 3)] = FMA(KP831469612, T6T, T6E);
|
| 956 |
T9r = FMA(KP923879532, T9q, T9p); |
| 957 |
T9s = T6V + T6W; |
| 958 |
ii[WS(rs, 3)] = FMA(KP831469612, T9s, T9r);
|
| 959 |
ii[WS(rs, 19)] = FNMS(KP831469612, T9s, T9r);
|
| 960 |
} |
| 961 |
{
|
| 962 |
E T6U, T6X, T9t, T9u; |
| 963 |
T6U = FNMS(KP923879532, T6D, T6w); |
| 964 |
T6X = T6V - T6W; |
| 965 |
ri[WS(rs, 27)] = FNMS(KP831469612, T6X, T6U);
|
| 966 |
ri[WS(rs, 11)] = FMA(KP831469612, T6X, T6U);
|
| 967 |
T9t = FNMS(KP923879532, T9q, T9p); |
| 968 |
T9u = T6S - T6L; |
| 969 |
ii[WS(rs, 11)] = FMA(KP831469612, T9u, T9t);
|
| 970 |
ii[WS(rs, 27)] = FNMS(KP831469612, T9u, T9t);
|
| 971 |
} |
| 972 |
{
|
| 973 |
E T72, T79, T9x, T9y; |
| 974 |
T72 = FNMS(KP923879532, T71, T6Y); |
| 975 |
T79 = T75 - T78; |
| 976 |
ri[WS(rs, 23)] = FNMS(KP980785280, T79, T72);
|
| 977 |
ri[WS(rs, 7)] = FMA(KP980785280, T79, T72);
|
| 978 |
T9x = FNMS(KP923879532, T9w, T9v); |
| 979 |
T9y = T7c - T7b; |
| 980 |
ii[WS(rs, 7)] = FMA(KP980785280, T9y, T9x);
|
| 981 |
ii[WS(rs, 23)] = FNMS(KP980785280, T9y, T9x);
|
| 982 |
} |
| 983 |
{
|
| 984 |
E T7a, T7d, T9z, T9A; |
| 985 |
T7a = FMA(KP923879532, T71, T6Y); |
| 986 |
T7d = T7b + T7c; |
| 987 |
ri[WS(rs, 15)] = FNMS(KP980785280, T7d, T7a);
|
| 988 |
ri[WS(rs, 31)] = FMA(KP980785280, T7d, T7a);
|
| 989 |
T9z = FMA(KP923879532, T9w, T9v); |
| 990 |
T9A = T75 + T78; |
| 991 |
ii[WS(rs, 15)] = FNMS(KP980785280, T9A, T9z);
|
| 992 |
ii[WS(rs, 31)] = FMA(KP980785280, T9A, T9z);
|
| 993 |
} |
| 994 |
} |
| 995 |
} |
| 996 |
} |
| 997 |
} |
| 998 |
} |
| 999 |
|
| 1000 |
static const tw_instr twinstr[] = { |
| 1001 |
{TW_CEXP, 0, 1},
|
| 1002 |
{TW_CEXP, 0, 3},
|
| 1003 |
{TW_CEXP, 0, 9},
|
| 1004 |
{TW_CEXP, 0, 27},
|
| 1005 |
{TW_NEXT, 1, 0}
|
| 1006 |
}; |
| 1007 |
|
| 1008 |
static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {236, 98, 252, 0}, 0, 0, 0 }; |
| 1009 |
|
| 1010 |
void X(codelet_t2_32) (planner *p) {
|
| 1011 |
X(kdft_dit_register) (p, t2_32, &desc); |
| 1012 |
} |
| 1013 |
#else
|
| 1014 |
|
| 1015 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -name t2_32 -include dft/scalar/t.h */
|
| 1016 |
|
| 1017 |
/*
|
| 1018 |
* This function contains 488 FP additions, 280 FP multiplications,
|
| 1019 |
* (or, 376 additions, 168 multiplications, 112 fused multiply/add),
|
| 1020 |
* 158 stack variables, 7 constants, and 128 memory accesses
|
| 1021 |
*/
|
| 1022 |
#include "dft/scalar/t.h" |
| 1023 |
|
| 1024 |
static void t2_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 1025 |
{
|
| 1026 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 1027 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 1028 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 1029 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 1030 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 1031 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 1032 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 1033 |
{
|
| 1034 |
INT m; |
| 1035 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { |
| 1036 |
E T2, T5, T3, T6, T8, TM, TO, Td, T9, Te, Th, Tl, TD, TH, T1y; |
| 1037 |
E T1H, T15, T1A, T11, T1F, T1n, T1p, T2q, T2I, T2u, T2K, T2V, T3b, T2Z, T3d; |
| 1038 |
E Tu, Ty, T3l, T3n, T1t, T1v, T2f, T2h, T1a, T1e, T32, T34, T1W, T1Y, T2C; |
| 1039 |
E T2E, Tg, TR, Tk, TS, Tm, TV, To, TT, T1M, T21, T1P, T22, T1Q, T25; |
| 1040 |
E T1S, T23; |
| 1041 |
{
|
| 1042 |
E Ts, T1d, Tx, T18, Tt, T1c, Tw, T19, TB, T14, TG, TZ, TC, T13, TF; |
| 1043 |
E T10; |
| 1044 |
{
|
| 1045 |
E T4, Tc, T7, Tb; |
| 1046 |
T2 = W[0];
|
| 1047 |
T5 = W[1];
|
| 1048 |
T3 = W[2];
|
| 1049 |
T6 = W[3];
|
| 1050 |
T4 = T2 * T3; |
| 1051 |
Tc = T5 * T3; |
| 1052 |
T7 = T5 * T6; |
| 1053 |
Tb = T2 * T6; |
| 1054 |
T8 = T4 + T7; |
| 1055 |
TM = T4 - T7; |
| 1056 |
TO = Tb + Tc; |
| 1057 |
Td = Tb - Tc; |
| 1058 |
T9 = W[4];
|
| 1059 |
Ts = T2 * T9; |
| 1060 |
T1d = T6 * T9; |
| 1061 |
Tx = T5 * T9; |
| 1062 |
T18 = T3 * T9; |
| 1063 |
Te = W[5];
|
| 1064 |
Tt = T5 * Te; |
| 1065 |
T1c = T3 * Te; |
| 1066 |
Tw = T2 * Te; |
| 1067 |
T19 = T6 * Te; |
| 1068 |
Th = W[6];
|
| 1069 |
TB = T3 * Th; |
| 1070 |
T14 = T5 * Th; |
| 1071 |
TG = T6 * Th; |
| 1072 |
TZ = T2 * Th; |
| 1073 |
Tl = W[7];
|
| 1074 |
TC = T6 * Tl; |
| 1075 |
T13 = T2 * Tl; |
| 1076 |
TF = T3 * Tl; |
| 1077 |
T10 = T5 * Tl; |
| 1078 |
} |
| 1079 |
TD = TB + TC; |
| 1080 |
TH = TF - TG; |
| 1081 |
T1y = TZ + T10; |
| 1082 |
T1H = TF + TG; |
| 1083 |
T15 = T13 + T14; |
| 1084 |
T1A = T13 - T14; |
| 1085 |
T11 = TZ - T10; |
| 1086 |
T1F = TB - TC; |
| 1087 |
T1n = FMA(T9, Th, Te * Tl); |
| 1088 |
T1p = FNMS(Te, Th, T9 * Tl); |
| 1089 |
{
|
| 1090 |
E T2o, T2p, T2s, T2t; |
| 1091 |
T2o = T8 * Th; |
| 1092 |
T2p = Td * Tl; |
| 1093 |
T2q = T2o + T2p; |
| 1094 |
T2I = T2o - T2p; |
| 1095 |
T2s = T8 * Tl; |
| 1096 |
T2t = Td * Th; |
| 1097 |
T2u = T2s - T2t; |
| 1098 |
T2K = T2s + T2t; |
| 1099 |
} |
| 1100 |
{
|
| 1101 |
E T2T, T2U, T2X, T2Y; |
| 1102 |
T2T = TM * Th; |
| 1103 |
T2U = TO * Tl; |
| 1104 |
T2V = T2T - T2U; |
| 1105 |
T3b = T2T + T2U; |
| 1106 |
T2X = TM * Tl; |
| 1107 |
T2Y = TO * Th; |
| 1108 |
T2Z = T2X + T2Y; |
| 1109 |
T3d = T2X - T2Y; |
| 1110 |
Tu = Ts + Tt; |
| 1111 |
Ty = Tw - Tx; |
| 1112 |
T3l = FMA(Tu, Th, Ty * Tl); |
| 1113 |
T3n = FNMS(Ty, Th, Tu * Tl); |
| 1114 |
} |
| 1115 |
T1t = Ts - Tt; |
| 1116 |
T1v = Tw + Tx; |
| 1117 |
T2f = FMA(T1t, Th, T1v * Tl); |
| 1118 |
T2h = FNMS(T1v, Th, T1t * Tl); |
| 1119 |
T1a = T18 - T19; |
| 1120 |
T1e = T1c + T1d; |
| 1121 |
T32 = FMA(T1a, Th, T1e * Tl); |
| 1122 |
T34 = FNMS(T1e, Th, T1a * Tl); |
| 1123 |
T1W = T18 + T19; |
| 1124 |
T1Y = T1c - T1d; |
| 1125 |
T2C = FMA(T1W, Th, T1Y * Tl); |
| 1126 |
T2E = FNMS(T1Y, Th, T1W * Tl); |
| 1127 |
{
|
| 1128 |
E Ta, Tf, Ti, Tj; |
| 1129 |
Ta = T8 * T9; |
| 1130 |
Tf = Td * Te; |
| 1131 |
Tg = Ta - Tf; |
| 1132 |
TR = Ta + Tf; |
| 1133 |
Ti = T8 * Te; |
| 1134 |
Tj = Td * T9; |
| 1135 |
Tk = Ti + Tj; |
| 1136 |
TS = Ti - Tj; |
| 1137 |
} |
| 1138 |
Tm = FMA(Tg, Th, Tk * Tl); |
| 1139 |
TV = FNMS(TS, Th, TR * Tl); |
| 1140 |
To = FNMS(Tk, Th, Tg * Tl); |
| 1141 |
TT = FMA(TR, Th, TS * Tl); |
| 1142 |
{
|
| 1143 |
E T1K, T1L, T1N, T1O; |
| 1144 |
T1K = TM * T9; |
| 1145 |
T1L = TO * Te; |
| 1146 |
T1M = T1K - T1L; |
| 1147 |
T21 = T1K + T1L; |
| 1148 |
T1N = TM * Te; |
| 1149 |
T1O = TO * T9; |
| 1150 |
T1P = T1N + T1O; |
| 1151 |
T22 = T1N - T1O; |
| 1152 |
} |
| 1153 |
T1Q = FMA(T1M, Th, T1P * Tl); |
| 1154 |
T25 = FNMS(T22, Th, T21 * Tl); |
| 1155 |
T1S = FNMS(T1P, Th, T1M * Tl); |
| 1156 |
T23 = FMA(T21, Th, T22 * Tl); |
| 1157 |
} |
| 1158 |
{
|
| 1159 |
E TL, T6f, T8c, T8q, T3F, T5t, T7I, T7W, T2y, T6B, T6y, T7j, T4k, T5J, T4B; |
| 1160 |
E T5G, T3h, T6H, T6O, T7o, T4L, T5N, T52, T5Q, T1i, T7V, T6i, T7D, T3K, T5u; |
| 1161 |
E T3P, T5v, T1E, T6n, T6m, T7e, T3W, T5y, T41, T5z, T29, T6p, T6s, T7f, T47; |
| 1162 |
E T5B, T4c, T5C, T2R, T6z, T6E, T7k, T4v, T5H, T4E, T5K, T3y, T6P, T6K, T7p; |
| 1163 |
E T4W, T5R, T55, T5O; |
| 1164 |
{
|
| 1165 |
E T1, T7G, Tq, T7F, TA, T3C, TJ, T3D, Tn, Tp; |
| 1166 |
T1 = ri[0];
|
| 1167 |
T7G = ii[0];
|
| 1168 |
Tn = ri[WS(rs, 16)];
|
| 1169 |
Tp = ii[WS(rs, 16)];
|
| 1170 |
Tq = FMA(Tm, Tn, To * Tp); |
| 1171 |
T7F = FNMS(To, Tn, Tm * Tp); |
| 1172 |
{
|
| 1173 |
E Tv, Tz, TE, TI; |
| 1174 |
Tv = ri[WS(rs, 8)];
|
| 1175 |
Tz = ii[WS(rs, 8)];
|
| 1176 |
TA = FMA(Tu, Tv, Ty * Tz); |
| 1177 |
T3C = FNMS(Ty, Tv, Tu * Tz); |
| 1178 |
TE = ri[WS(rs, 24)];
|
| 1179 |
TI = ii[WS(rs, 24)];
|
| 1180 |
TJ = FMA(TD, TE, TH * TI); |
| 1181 |
T3D = FNMS(TH, TE, TD * TI); |
| 1182 |
} |
| 1183 |
{
|
| 1184 |
E Tr, TK, T8a, T8b; |
| 1185 |
Tr = T1 + Tq; |
| 1186 |
TK = TA + TJ; |
| 1187 |
TL = Tr + TK; |
| 1188 |
T6f = Tr - TK; |
| 1189 |
T8a = T7G - T7F; |
| 1190 |
T8b = TA - TJ; |
| 1191 |
T8c = T8a - T8b; |
| 1192 |
T8q = T8b + T8a; |
| 1193 |
} |
| 1194 |
{
|
| 1195 |
E T3B, T3E, T7E, T7H; |
| 1196 |
T3B = T1 - Tq; |
| 1197 |
T3E = T3C - T3D; |
| 1198 |
T3F = T3B - T3E; |
| 1199 |
T5t = T3B + T3E; |
| 1200 |
T7E = T3C + T3D; |
| 1201 |
T7H = T7F + T7G; |
| 1202 |
T7I = T7E + T7H; |
| 1203 |
T7W = T7H - T7E; |
| 1204 |
} |
| 1205 |
} |
| 1206 |
{
|
| 1207 |
E T2e, T4g, T2w, T4z, T2j, T4h, T2n, T4y; |
| 1208 |
{
|
| 1209 |
E T2c, T2d, T2r, T2v; |
| 1210 |
T2c = ri[WS(rs, 1)];
|
| 1211 |
T2d = ii[WS(rs, 1)];
|
| 1212 |
T2e = FMA(T2, T2c, T5 * T2d); |
| 1213 |
T4g = FNMS(T5, T2c, T2 * T2d); |
| 1214 |
T2r = ri[WS(rs, 25)];
|
| 1215 |
T2v = ii[WS(rs, 25)];
|
| 1216 |
T2w = FMA(T2q, T2r, T2u * T2v); |
| 1217 |
T4z = FNMS(T2u, T2r, T2q * T2v); |
| 1218 |
} |
| 1219 |
{
|
| 1220 |
E T2g, T2i, T2l, T2m; |
| 1221 |
T2g = ri[WS(rs, 17)];
|
| 1222 |
T2i = ii[WS(rs, 17)];
|
| 1223 |
T2j = FMA(T2f, T2g, T2h * T2i); |
| 1224 |
T4h = FNMS(T2h, T2g, T2f * T2i); |
| 1225 |
T2l = ri[WS(rs, 9)];
|
| 1226 |
T2m = ii[WS(rs, 9)];
|
| 1227 |
T2n = FMA(T9, T2l, Te * T2m); |
| 1228 |
T4y = FNMS(Te, T2l, T9 * T2m); |
| 1229 |
} |
| 1230 |
{
|
| 1231 |
E T2k, T2x, T6w, T6x; |
| 1232 |
T2k = T2e + T2j; |
| 1233 |
T2x = T2n + T2w; |
| 1234 |
T2y = T2k + T2x; |
| 1235 |
T6B = T2k - T2x; |
| 1236 |
T6w = T4g + T4h; |
| 1237 |
T6x = T4y + T4z; |
| 1238 |
T6y = T6w - T6x; |
| 1239 |
T7j = T6w + T6x; |
| 1240 |
} |
| 1241 |
{
|
| 1242 |
E T4i, T4j, T4x, T4A; |
| 1243 |
T4i = T4g - T4h; |
| 1244 |
T4j = T2n - T2w; |
| 1245 |
T4k = T4i + T4j; |
| 1246 |
T5J = T4i - T4j; |
| 1247 |
T4x = T2e - T2j; |
| 1248 |
T4A = T4y - T4z; |
| 1249 |
T4B = T4x - T4A; |
| 1250 |
T5G = T4x + T4A; |
| 1251 |
} |
| 1252 |
} |
| 1253 |
{
|
| 1254 |
E T31, T4Y, T3f, T4J, T36, T4Z, T3a, T4I; |
| 1255 |
{
|
| 1256 |
E T2W, T30, T3c, T3e; |
| 1257 |
T2W = ri[WS(rs, 31)];
|
| 1258 |
T30 = ii[WS(rs, 31)];
|
| 1259 |
T31 = FMA(T2V, T2W, T2Z * T30); |
| 1260 |
T4Y = FNMS(T2Z, T2W, T2V * T30); |
| 1261 |
T3c = ri[WS(rs, 23)];
|
| 1262 |
T3e = ii[WS(rs, 23)];
|
| 1263 |
T3f = FMA(T3b, T3c, T3d * T3e); |
| 1264 |
T4J = FNMS(T3d, T3c, T3b * T3e); |
| 1265 |
} |
| 1266 |
{
|
| 1267 |
E T33, T35, T38, T39; |
| 1268 |
T33 = ri[WS(rs, 15)];
|
| 1269 |
T35 = ii[WS(rs, 15)];
|
| 1270 |
T36 = FMA(T32, T33, T34 * T35); |
| 1271 |
T4Z = FNMS(T34, T33, T32 * T35); |
| 1272 |
T38 = ri[WS(rs, 7)];
|
| 1273 |
T39 = ii[WS(rs, 7)];
|
| 1274 |
T3a = FMA(TR, T38, TS * T39); |
| 1275 |
T4I = FNMS(TS, T38, TR * T39); |
| 1276 |
} |
| 1277 |
{
|
| 1278 |
E T37, T3g, T6M, T6N; |
| 1279 |
T37 = T31 + T36; |
| 1280 |
T3g = T3a + T3f; |
| 1281 |
T3h = T37 + T3g; |
| 1282 |
T6H = T37 - T3g; |
| 1283 |
T6M = T4Y + T4Z; |
| 1284 |
T6N = T4I + T4J; |
| 1285 |
T6O = T6M - T6N; |
| 1286 |
T7o = T6M + T6N; |
| 1287 |
} |
| 1288 |
{
|
| 1289 |
E T4H, T4K, T50, T51; |
| 1290 |
T4H = T31 - T36; |
| 1291 |
T4K = T4I - T4J; |
| 1292 |
T4L = T4H - T4K; |
| 1293 |
T5N = T4H + T4K; |
| 1294 |
T50 = T4Y - T4Z; |
| 1295 |
T51 = T3a - T3f; |
| 1296 |
T52 = T50 + T51; |
| 1297 |
T5Q = T50 - T51; |
| 1298 |
} |
| 1299 |
} |
| 1300 |
{
|
| 1301 |
E TQ, T3G, T1g, T3N, TX, T3H, T17, T3M; |
| 1302 |
{
|
| 1303 |
E TN, TP, T1b, T1f; |
| 1304 |
TN = ri[WS(rs, 4)];
|
| 1305 |
TP = ii[WS(rs, 4)];
|
| 1306 |
TQ = FMA(TM, TN, TO * TP); |
| 1307 |
T3G = FNMS(TO, TN, TM * TP); |
| 1308 |
T1b = ri[WS(rs, 12)];
|
| 1309 |
T1f = ii[WS(rs, 12)];
|
| 1310 |
T1g = FMA(T1a, T1b, T1e * T1f); |
| 1311 |
T3N = FNMS(T1e, T1b, T1a * T1f); |
| 1312 |
} |
| 1313 |
{
|
| 1314 |
E TU, TW, T12, T16; |
| 1315 |
TU = ri[WS(rs, 20)];
|
| 1316 |
TW = ii[WS(rs, 20)];
|
| 1317 |
TX = FMA(TT, TU, TV * TW); |
| 1318 |
T3H = FNMS(TV, TU, TT * TW); |
| 1319 |
T12 = ri[WS(rs, 28)];
|
| 1320 |
T16 = ii[WS(rs, 28)];
|
| 1321 |
T17 = FMA(T11, T12, T15 * T16); |
| 1322 |
T3M = FNMS(T15, T12, T11 * T16); |
| 1323 |
} |
| 1324 |
{
|
| 1325 |
E TY, T1h, T6g, T6h; |
| 1326 |
TY = TQ + TX; |
| 1327 |
T1h = T17 + T1g; |
| 1328 |
T1i = TY + T1h; |
| 1329 |
T7V = T1h - TY; |
| 1330 |
T6g = T3G + T3H; |
| 1331 |
T6h = T3M + T3N; |
| 1332 |
T6i = T6g - T6h; |
| 1333 |
T7D = T6g + T6h; |
| 1334 |
} |
| 1335 |
{
|
| 1336 |
E T3I, T3J, T3L, T3O; |
| 1337 |
T3I = T3G - T3H; |
| 1338 |
T3J = TQ - TX; |
| 1339 |
T3K = T3I - T3J; |
| 1340 |
T5u = T3J + T3I; |
| 1341 |
T3L = T17 - T1g; |
| 1342 |
T3O = T3M - T3N; |
| 1343 |
T3P = T3L + T3O; |
| 1344 |
T5v = T3L - T3O; |
| 1345 |
} |
| 1346 |
} |
| 1347 |
{
|
| 1348 |
E T1m, T3S, T1C, T3Z, T1r, T3T, T1x, T3Y; |
| 1349 |
{
|
| 1350 |
E T1k, T1l, T1z, T1B; |
| 1351 |
T1k = ri[WS(rs, 2)];
|
| 1352 |
T1l = ii[WS(rs, 2)];
|
| 1353 |
T1m = FMA(T8, T1k, Td * T1l); |
| 1354 |
T3S = FNMS(Td, T1k, T8 * T1l); |
| 1355 |
T1z = ri[WS(rs, 26)];
|
| 1356 |
T1B = ii[WS(rs, 26)];
|
| 1357 |
T1C = FMA(T1y, T1z, T1A * T1B); |
| 1358 |
T3Z = FNMS(T1A, T1z, T1y * T1B); |
| 1359 |
} |
| 1360 |
{
|
| 1361 |
E T1o, T1q, T1u, T1w; |
| 1362 |
T1o = ri[WS(rs, 18)];
|
| 1363 |
T1q = ii[WS(rs, 18)];
|
| 1364 |
T1r = FMA(T1n, T1o, T1p * T1q); |
| 1365 |
T3T = FNMS(T1p, T1o, T1n * T1q); |
| 1366 |
T1u = ri[WS(rs, 10)];
|
| 1367 |
T1w = ii[WS(rs, 10)];
|
| 1368 |
T1x = FMA(T1t, T1u, T1v * T1w); |
| 1369 |
T3Y = FNMS(T1v, T1u, T1t * T1w); |
| 1370 |
} |
| 1371 |
{
|
| 1372 |
E T1s, T1D, T6k, T6l; |
| 1373 |
T1s = T1m + T1r; |
| 1374 |
T1D = T1x + T1C; |
| 1375 |
T1E = T1s + T1D; |
| 1376 |
T6n = T1s - T1D; |
| 1377 |
T6k = T3S + T3T; |
| 1378 |
T6l = T3Y + T3Z; |
| 1379 |
T6m = T6k - T6l; |
| 1380 |
T7e = T6k + T6l; |
| 1381 |
} |
| 1382 |
{
|
| 1383 |
E T3U, T3V, T3X, T40; |
| 1384 |
T3U = T3S - T3T; |
| 1385 |
T3V = T1x - T1C; |
| 1386 |
T3W = T3U + T3V; |
| 1387 |
T5y = T3U - T3V; |
| 1388 |
T3X = T1m - T1r; |
| 1389 |
T40 = T3Y - T3Z; |
| 1390 |
T41 = T3X - T40; |
| 1391 |
T5z = T3X + T40; |
| 1392 |
} |
| 1393 |
} |
| 1394 |
{
|
| 1395 |
E T1J, T43, T27, T4a, T1U, T44, T20, T49; |
| 1396 |
{
|
| 1397 |
E T1G, T1I, T24, T26; |
| 1398 |
T1G = ri[WS(rs, 30)];
|
| 1399 |
T1I = ii[WS(rs, 30)];
|
| 1400 |
T1J = FMA(T1F, T1G, T1H * T1I); |
| 1401 |
T43 = FNMS(T1H, T1G, T1F * T1I); |
| 1402 |
T24 = ri[WS(rs, 22)];
|
| 1403 |
T26 = ii[WS(rs, 22)];
|
| 1404 |
T27 = FMA(T23, T24, T25 * T26); |
| 1405 |
T4a = FNMS(T25, T24, T23 * T26); |
| 1406 |
} |
| 1407 |
{
|
| 1408 |
E T1R, T1T, T1X, T1Z; |
| 1409 |
T1R = ri[WS(rs, 14)];
|
| 1410 |
T1T = ii[WS(rs, 14)];
|
| 1411 |
T1U = FMA(T1Q, T1R, T1S * T1T); |
| 1412 |
T44 = FNMS(T1S, T1R, T1Q * T1T); |
| 1413 |
T1X = ri[WS(rs, 6)];
|
| 1414 |
T1Z = ii[WS(rs, 6)];
|
| 1415 |
T20 = FMA(T1W, T1X, T1Y * T1Z); |
| 1416 |
T49 = FNMS(T1Y, T1X, T1W * T1Z); |
| 1417 |
} |
| 1418 |
{
|
| 1419 |
E T1V, T28, T6q, T6r; |
| 1420 |
T1V = T1J + T1U; |
| 1421 |
T28 = T20 + T27; |
| 1422 |
T29 = T1V + T28; |
| 1423 |
T6p = T1V - T28; |
| 1424 |
T6q = T43 + T44; |
| 1425 |
T6r = T49 + T4a; |
| 1426 |
T6s = T6q - T6r; |
| 1427 |
T7f = T6q + T6r; |
| 1428 |
} |
| 1429 |
{
|
| 1430 |
E T45, T46, T48, T4b; |
| 1431 |
T45 = T43 - T44; |
| 1432 |
T46 = T20 - T27; |
| 1433 |
T47 = T45 + T46; |
| 1434 |
T5B = T45 - T46; |
| 1435 |
T48 = T1J - T1U; |
| 1436 |
T4b = T49 - T4a; |
| 1437 |
T4c = T48 - T4b; |
| 1438 |
T5C = T48 + T4b; |
| 1439 |
} |
| 1440 |
} |
| 1441 |
{
|
| 1442 |
E T2B, T4r, T2G, T4s, T4q, T4t, T2M, T4m, T2P, T4n, T4l, T4o; |
| 1443 |
{
|
| 1444 |
E T2z, T2A, T2D, T2F; |
| 1445 |
T2z = ri[WS(rs, 5)];
|
| 1446 |
T2A = ii[WS(rs, 5)];
|
| 1447 |
T2B = FMA(T21, T2z, T22 * T2A); |
| 1448 |
T4r = FNMS(T22, T2z, T21 * T2A); |
| 1449 |
T2D = ri[WS(rs, 21)];
|
| 1450 |
T2F = ii[WS(rs, 21)];
|
| 1451 |
T2G = FMA(T2C, T2D, T2E * T2F); |
| 1452 |
T4s = FNMS(T2E, T2D, T2C * T2F); |
| 1453 |
} |
| 1454 |
T4q = T2B - T2G; |
| 1455 |
T4t = T4r - T4s; |
| 1456 |
{
|
| 1457 |
E T2J, T2L, T2N, T2O; |
| 1458 |
T2J = ri[WS(rs, 29)];
|
| 1459 |
T2L = ii[WS(rs, 29)];
|
| 1460 |
T2M = FMA(T2I, T2J, T2K * T2L); |
| 1461 |
T4m = FNMS(T2K, T2J, T2I * T2L); |
| 1462 |
T2N = ri[WS(rs, 13)];
|
| 1463 |
T2O = ii[WS(rs, 13)];
|
| 1464 |
T2P = FMA(T1M, T2N, T1P * T2O); |
| 1465 |
T4n = FNMS(T1P, T2N, T1M * T2O); |
| 1466 |
} |
| 1467 |
T4l = T2M - T2P; |
| 1468 |
T4o = T4m - T4n; |
| 1469 |
{
|
| 1470 |
E T2H, T2Q, T6C, T6D; |
| 1471 |
T2H = T2B + T2G; |
| 1472 |
T2Q = T2M + T2P; |
| 1473 |
T2R = T2H + T2Q; |
| 1474 |
T6z = T2Q - T2H; |
| 1475 |
T6C = T4r + T4s; |
| 1476 |
T6D = T4m + T4n; |
| 1477 |
T6E = T6C - T6D; |
| 1478 |
T7k = T6C + T6D; |
| 1479 |
} |
| 1480 |
{
|
| 1481 |
E T4p, T4u, T4C, T4D; |
| 1482 |
T4p = T4l - T4o; |
| 1483 |
T4u = T4q + T4t; |
| 1484 |
T4v = KP707106781 * (T4p - T4u); |
| 1485 |
T5H = KP707106781 * (T4u + T4p); |
| 1486 |
T4C = T4t - T4q; |
| 1487 |
T4D = T4l + T4o; |
| 1488 |
T4E = KP707106781 * (T4C - T4D); |
| 1489 |
T5K = KP707106781 * (T4C + T4D); |
| 1490 |
} |
| 1491 |
} |
| 1492 |
{
|
| 1493 |
E T3k, T4M, T3p, T4N, T4O, T4P, T3t, T4S, T3w, T4T, T4R, T4U; |
| 1494 |
{
|
| 1495 |
E T3i, T3j, T3m, T3o; |
| 1496 |
T3i = ri[WS(rs, 3)];
|
| 1497 |
T3j = ii[WS(rs, 3)];
|
| 1498 |
T3k = FMA(T3, T3i, T6 * T3j); |
| 1499 |
T4M = FNMS(T6, T3i, T3 * T3j); |
| 1500 |
T3m = ri[WS(rs, 19)];
|
| 1501 |
T3o = ii[WS(rs, 19)];
|
| 1502 |
T3p = FMA(T3l, T3m, T3n * T3o); |
| 1503 |
T4N = FNMS(T3n, T3m, T3l * T3o); |
| 1504 |
} |
| 1505 |
T4O = T4M - T4N; |
| 1506 |
T4P = T3k - T3p; |
| 1507 |
{
|
| 1508 |
E T3r, T3s, T3u, T3v; |
| 1509 |
T3r = ri[WS(rs, 27)];
|
| 1510 |
T3s = ii[WS(rs, 27)];
|
| 1511 |
T3t = FMA(Th, T3r, Tl * T3s); |
| 1512 |
T4S = FNMS(Tl, T3r, Th * T3s); |
| 1513 |
T3u = ri[WS(rs, 11)];
|
| 1514 |
T3v = ii[WS(rs, 11)];
|
| 1515 |
T3w = FMA(Tg, T3u, Tk * T3v); |
| 1516 |
T4T = FNMS(Tk, T3u, Tg * T3v); |
| 1517 |
} |
| 1518 |
T4R = T3t - T3w; |
| 1519 |
T4U = T4S - T4T; |
| 1520 |
{
|
| 1521 |
E T3q, T3x, T6I, T6J; |
| 1522 |
T3q = T3k + T3p; |
| 1523 |
T3x = T3t + T3w; |
| 1524 |
T3y = T3q + T3x; |
| 1525 |
T6P = T3x - T3q; |
| 1526 |
T6I = T4M + T4N; |
| 1527 |
T6J = T4S + T4T; |
| 1528 |
T6K = T6I - T6J; |
| 1529 |
T7p = T6I + T6J; |
| 1530 |
} |
| 1531 |
{
|
| 1532 |
E T4Q, T4V, T53, T54; |
| 1533 |
T4Q = T4O - T4P; |
| 1534 |
T4V = T4R + T4U; |
| 1535 |
T4W = KP707106781 * (T4Q - T4V); |
| 1536 |
T5R = KP707106781 * (T4Q + T4V); |
| 1537 |
T53 = T4R - T4U; |
| 1538 |
T54 = T4P + T4O; |
| 1539 |
T55 = KP707106781 * (T53 - T54); |
| 1540 |
T5O = KP707106781 * (T54 + T53); |
| 1541 |
} |
| 1542 |
} |
| 1543 |
{
|
| 1544 |
E T2b, T7x, T7K, T7M, T3A, T7L, T7A, T7B; |
| 1545 |
{
|
| 1546 |
E T1j, T2a, T7C, T7J; |
| 1547 |
T1j = TL + T1i; |
| 1548 |
T2a = T1E + T29; |
| 1549 |
T2b = T1j + T2a; |
| 1550 |
T7x = T1j - T2a; |
| 1551 |
T7C = T7e + T7f; |
| 1552 |
T7J = T7D + T7I; |
| 1553 |
T7K = T7C + T7J; |
| 1554 |
T7M = T7J - T7C; |
| 1555 |
} |
| 1556 |
{
|
| 1557 |
E T2S, T3z, T7y, T7z; |
| 1558 |
T2S = T2y + T2R; |
| 1559 |
T3z = T3h + T3y; |
| 1560 |
T3A = T2S + T3z; |
| 1561 |
T7L = T3z - T2S; |
| 1562 |
T7y = T7j + T7k; |
| 1563 |
T7z = T7o + T7p; |
| 1564 |
T7A = T7y - T7z; |
| 1565 |
T7B = T7y + T7z; |
| 1566 |
} |
| 1567 |
ri[WS(rs, 16)] = T2b - T3A;
|
| 1568 |
ii[WS(rs, 16)] = T7K - T7B;
|
| 1569 |
ri[0] = T2b + T3A;
|
| 1570 |
ii[0] = T7B + T7K;
|
| 1571 |
ri[WS(rs, 24)] = T7x - T7A;
|
| 1572 |
ii[WS(rs, 24)] = T7M - T7L;
|
| 1573 |
ri[WS(rs, 8)] = T7x + T7A;
|
| 1574 |
ii[WS(rs, 8)] = T7L + T7M;
|
| 1575 |
} |
| 1576 |
{
|
| 1577 |
E T7h, T7t, T7Q, T7S, T7m, T7u, T7r, T7v; |
| 1578 |
{
|
| 1579 |
E T7d, T7g, T7O, T7P; |
| 1580 |
T7d = TL - T1i; |
| 1581 |
T7g = T7e - T7f; |
| 1582 |
T7h = T7d + T7g; |
| 1583 |
T7t = T7d - T7g; |
| 1584 |
T7O = T29 - T1E; |
| 1585 |
T7P = T7I - T7D; |
| 1586 |
T7Q = T7O + T7P; |
| 1587 |
T7S = T7P - T7O; |
| 1588 |
} |
| 1589 |
{
|
| 1590 |
E T7i, T7l, T7n, T7q; |
| 1591 |
T7i = T2y - T2R; |
| 1592 |
T7l = T7j - T7k; |
| 1593 |
T7m = T7i + T7l; |
| 1594 |
T7u = T7l - T7i; |
| 1595 |
T7n = T3h - T3y; |
| 1596 |
T7q = T7o - T7p; |
| 1597 |
T7r = T7n - T7q; |
| 1598 |
T7v = T7n + T7q; |
| 1599 |
} |
| 1600 |
{
|
| 1601 |
E T7s, T7N, T7w, T7R; |
| 1602 |
T7s = KP707106781 * (T7m + T7r); |
| 1603 |
ri[WS(rs, 20)] = T7h - T7s;
|
| 1604 |
ri[WS(rs, 4)] = T7h + T7s;
|
| 1605 |
T7N = KP707106781 * (T7u + T7v); |
| 1606 |
ii[WS(rs, 4)] = T7N + T7Q;
|
| 1607 |
ii[WS(rs, 20)] = T7Q - T7N;
|
| 1608 |
T7w = KP707106781 * (T7u - T7v); |
| 1609 |
ri[WS(rs, 28)] = T7t - T7w;
|
| 1610 |
ri[WS(rs, 12)] = T7t + T7w;
|
| 1611 |
T7R = KP707106781 * (T7r - T7m); |
| 1612 |
ii[WS(rs, 12)] = T7R + T7S;
|
| 1613 |
ii[WS(rs, 28)] = T7S - T7R;
|
| 1614 |
} |
| 1615 |
} |
| 1616 |
{
|
| 1617 |
E T6j, T7X, T83, T6X, T6u, T7U, T77, T7b, T70, T82, T6G, T6U, T74, T7a, T6R; |
| 1618 |
E T6V; |
| 1619 |
{
|
| 1620 |
E T6o, T6t, T6A, T6F; |
| 1621 |
T6j = T6f - T6i; |
| 1622 |
T7X = T7V + T7W; |
| 1623 |
T83 = T7W - T7V; |
| 1624 |
T6X = T6f + T6i; |
| 1625 |
T6o = T6m - T6n; |
| 1626 |
T6t = T6p + T6s; |
| 1627 |
T6u = KP707106781 * (T6o - T6t); |
| 1628 |
T7U = KP707106781 * (T6o + T6t); |
| 1629 |
{
|
| 1630 |
E T75, T76, T6Y, T6Z; |
| 1631 |
T75 = T6H + T6K; |
| 1632 |
T76 = T6O + T6P; |
| 1633 |
T77 = FNMS(KP382683432, T76, KP923879532 * T75); |
| 1634 |
T7b = FMA(KP923879532, T76, KP382683432 * T75); |
| 1635 |
T6Y = T6n + T6m; |
| 1636 |
T6Z = T6p - T6s; |
| 1637 |
T70 = KP707106781 * (T6Y + T6Z); |
| 1638 |
T82 = KP707106781 * (T6Z - T6Y); |
| 1639 |
} |
| 1640 |
T6A = T6y - T6z; |
| 1641 |
T6F = T6B - T6E; |
| 1642 |
T6G = FMA(KP923879532, T6A, KP382683432 * T6F); |
| 1643 |
T6U = FNMS(KP923879532, T6F, KP382683432 * T6A); |
| 1644 |
{
|
| 1645 |
E T72, T73, T6L, T6Q; |
| 1646 |
T72 = T6y + T6z; |
| 1647 |
T73 = T6B + T6E; |
| 1648 |
T74 = FMA(KP382683432, T72, KP923879532 * T73); |
| 1649 |
T7a = FNMS(KP382683432, T73, KP923879532 * T72); |
| 1650 |
T6L = T6H - T6K; |
| 1651 |
T6Q = T6O - T6P; |
| 1652 |
T6R = FNMS(KP923879532, T6Q, KP382683432 * T6L); |
| 1653 |
T6V = FMA(KP382683432, T6Q, KP923879532 * T6L); |
| 1654 |
} |
| 1655 |
} |
| 1656 |
{
|
| 1657 |
E T6v, T6S, T81, T84; |
| 1658 |
T6v = T6j + T6u; |
| 1659 |
T6S = T6G + T6R; |
| 1660 |
ri[WS(rs, 22)] = T6v - T6S;
|
| 1661 |
ri[WS(rs, 6)] = T6v + T6S;
|
| 1662 |
T81 = T6U + T6V; |
| 1663 |
T84 = T82 + T83; |
| 1664 |
ii[WS(rs, 6)] = T81 + T84;
|
| 1665 |
ii[WS(rs, 22)] = T84 - T81;
|
| 1666 |
} |
| 1667 |
{
|
| 1668 |
E T6T, T6W, T85, T86; |
| 1669 |
T6T = T6j - T6u; |
| 1670 |
T6W = T6U - T6V; |
| 1671 |
ri[WS(rs, 30)] = T6T - T6W;
|
| 1672 |
ri[WS(rs, 14)] = T6T + T6W;
|
| 1673 |
T85 = T6R - T6G; |
| 1674 |
T86 = T83 - T82; |
| 1675 |
ii[WS(rs, 14)] = T85 + T86;
|
| 1676 |
ii[WS(rs, 30)] = T86 - T85;
|
| 1677 |
} |
| 1678 |
{
|
| 1679 |
E T71, T78, T7T, T7Y; |
| 1680 |
T71 = T6X + T70; |
| 1681 |
T78 = T74 + T77; |
| 1682 |
ri[WS(rs, 18)] = T71 - T78;
|
| 1683 |
ri[WS(rs, 2)] = T71 + T78;
|
| 1684 |
T7T = T7a + T7b; |
| 1685 |
T7Y = T7U + T7X; |
| 1686 |
ii[WS(rs, 2)] = T7T + T7Y;
|
| 1687 |
ii[WS(rs, 18)] = T7Y - T7T;
|
| 1688 |
} |
| 1689 |
{
|
| 1690 |
E T79, T7c, T7Z, T80; |
| 1691 |
T79 = T6X - T70; |
| 1692 |
T7c = T7a - T7b; |
| 1693 |
ri[WS(rs, 26)] = T79 - T7c;
|
| 1694 |
ri[WS(rs, 10)] = T79 + T7c;
|
| 1695 |
T7Z = T77 - T74; |
| 1696 |
T80 = T7X - T7U; |
| 1697 |
ii[WS(rs, 10)] = T7Z + T80;
|
| 1698 |
ii[WS(rs, 26)] = T80 - T7Z;
|
| 1699 |
} |
| 1700 |
} |
| 1701 |
{
|
| 1702 |
E T3R, T5d, T8r, T8x, T4e, T8o, T5n, T5r, T4G, T5a, T5g, T8w, T5k, T5q, T57; |
| 1703 |
E T5b, T3Q, T8p; |
| 1704 |
T3Q = KP707106781 * (T3K - T3P); |
| 1705 |
T3R = T3F - T3Q; |
| 1706 |
T5d = T3F + T3Q; |
| 1707 |
T8p = KP707106781 * (T5v - T5u); |
| 1708 |
T8r = T8p + T8q; |
| 1709 |
T8x = T8q - T8p; |
| 1710 |
{
|
| 1711 |
E T42, T4d, T5l, T5m; |
| 1712 |
T42 = FNMS(KP923879532, T41, KP382683432 * T3W); |
| 1713 |
T4d = FMA(KP382683432, T47, KP923879532 * T4c); |
| 1714 |
T4e = T42 - T4d; |
| 1715 |
T8o = T42 + T4d; |
| 1716 |
T5l = T4L + T4W; |
| 1717 |
T5m = T52 + T55; |
| 1718 |
T5n = FNMS(KP555570233, T5m, KP831469612 * T5l); |
| 1719 |
T5r = FMA(KP831469612, T5m, KP555570233 * T5l); |
| 1720 |
} |
| 1721 |
{
|
| 1722 |
E T4w, T4F, T5e, T5f; |
| 1723 |
T4w = T4k - T4v; |
| 1724 |
T4F = T4B - T4E; |
| 1725 |
T4G = FMA(KP980785280, T4w, KP195090322 * T4F); |
| 1726 |
T5a = FNMS(KP980785280, T4F, KP195090322 * T4w); |
| 1727 |
T5e = FMA(KP923879532, T3W, KP382683432 * T41); |
| 1728 |
T5f = FNMS(KP923879532, T47, KP382683432 * T4c); |
| 1729 |
T5g = T5e + T5f; |
| 1730 |
T8w = T5f - T5e; |
| 1731 |
} |
| 1732 |
{
|
| 1733 |
E T5i, T5j, T4X, T56; |
| 1734 |
T5i = T4k + T4v; |
| 1735 |
T5j = T4B + T4E; |
| 1736 |
T5k = FMA(KP555570233, T5i, KP831469612 * T5j); |
| 1737 |
T5q = FNMS(KP555570233, T5j, KP831469612 * T5i); |
| 1738 |
T4X = T4L - T4W; |
| 1739 |
T56 = T52 - T55; |
| 1740 |
T57 = FNMS(KP980785280, T56, KP195090322 * T4X); |
| 1741 |
T5b = FMA(KP195090322, T56, KP980785280 * T4X); |
| 1742 |
} |
| 1743 |
{
|
| 1744 |
E T4f, T58, T8v, T8y; |
| 1745 |
T4f = T3R + T4e; |
| 1746 |
T58 = T4G + T57; |
| 1747 |
ri[WS(rs, 23)] = T4f - T58;
|
| 1748 |
ri[WS(rs, 7)] = T4f + T58;
|
| 1749 |
T8v = T5a + T5b; |
| 1750 |
T8y = T8w + T8x; |
| 1751 |
ii[WS(rs, 7)] = T8v + T8y;
|
| 1752 |
ii[WS(rs, 23)] = T8y - T8v;
|
| 1753 |
} |
| 1754 |
{
|
| 1755 |
E T59, T5c, T8z, T8A; |
| 1756 |
T59 = T3R - T4e; |
| 1757 |
T5c = T5a - T5b; |
| 1758 |
ri[WS(rs, 31)] = T59 - T5c;
|
| 1759 |
ri[WS(rs, 15)] = T59 + T5c;
|
| 1760 |
T8z = T57 - T4G; |
| 1761 |
T8A = T8x - T8w; |
| 1762 |
ii[WS(rs, 15)] = T8z + T8A;
|
| 1763 |
ii[WS(rs, 31)] = T8A - T8z;
|
| 1764 |
} |
| 1765 |
{
|
| 1766 |
E T5h, T5o, T8n, T8s; |
| 1767 |
T5h = T5d + T5g; |
| 1768 |
T5o = T5k + T5n; |
| 1769 |
ri[WS(rs, 19)] = T5h - T5o;
|
| 1770 |
ri[WS(rs, 3)] = T5h + T5o;
|
| 1771 |
T8n = T5q + T5r; |
| 1772 |
T8s = T8o + T8r; |
| 1773 |
ii[WS(rs, 3)] = T8n + T8s;
|
| 1774 |
ii[WS(rs, 19)] = T8s - T8n;
|
| 1775 |
} |
| 1776 |
{
|
| 1777 |
E T5p, T5s, T8t, T8u; |
| 1778 |
T5p = T5d - T5g; |
| 1779 |
T5s = T5q - T5r; |
| 1780 |
ri[WS(rs, 27)] = T5p - T5s;
|
| 1781 |
ri[WS(rs, 11)] = T5p + T5s;
|
| 1782 |
T8t = T5n - T5k; |
| 1783 |
T8u = T8r - T8o; |
| 1784 |
ii[WS(rs, 11)] = T8t + T8u;
|
| 1785 |
ii[WS(rs, 27)] = T8u - T8t;
|
| 1786 |
} |
| 1787 |
} |
| 1788 |
{
|
| 1789 |
E T5x, T5Z, T8d, T8j, T5E, T88, T69, T6d, T5M, T5W, T62, T8i, T66, T6c, T5T; |
| 1790 |
E T5X, T5w, T89; |
| 1791 |
T5w = KP707106781 * (T5u + T5v); |
| 1792 |
T5x = T5t - T5w; |
| 1793 |
T5Z = T5t + T5w; |
| 1794 |
T89 = KP707106781 * (T3K + T3P); |
| 1795 |
T8d = T89 + T8c; |
| 1796 |
T8j = T8c - T89; |
| 1797 |
{
|
| 1798 |
E T5A, T5D, T67, T68; |
| 1799 |
T5A = FNMS(KP382683432, T5z, KP923879532 * T5y); |
| 1800 |
T5D = FMA(KP923879532, T5B, KP382683432 * T5C); |
| 1801 |
T5E = T5A - T5D; |
| 1802 |
T88 = T5A + T5D; |
| 1803 |
T67 = T5N + T5O; |
| 1804 |
T68 = T5Q + T5R; |
| 1805 |
T69 = FNMS(KP195090322, T68, KP980785280 * T67); |
| 1806 |
T6d = FMA(KP195090322, T67, KP980785280 * T68); |
| 1807 |
} |
| 1808 |
{
|
| 1809 |
E T5I, T5L, T60, T61; |
| 1810 |
T5I = T5G - T5H; |
| 1811 |
T5L = T5J - T5K; |
| 1812 |
T5M = FMA(KP555570233, T5I, KP831469612 * T5L); |
| 1813 |
T5W = FNMS(KP831469612, T5I, KP555570233 * T5L); |
| 1814 |
T60 = FMA(KP382683432, T5y, KP923879532 * T5z); |
| 1815 |
T61 = FNMS(KP382683432, T5B, KP923879532 * T5C); |
| 1816 |
T62 = T60 + T61; |
| 1817 |
T8i = T61 - T60; |
| 1818 |
} |
| 1819 |
{
|
| 1820 |
E T64, T65, T5P, T5S; |
| 1821 |
T64 = T5G + T5H; |
| 1822 |
T65 = T5J + T5K; |
| 1823 |
T66 = FMA(KP980785280, T64, KP195090322 * T65); |
| 1824 |
T6c = FNMS(KP195090322, T64, KP980785280 * T65); |
| 1825 |
T5P = T5N - T5O; |
| 1826 |
T5S = T5Q - T5R; |
| 1827 |
T5T = FNMS(KP831469612, T5S, KP555570233 * T5P); |
| 1828 |
T5X = FMA(KP831469612, T5P, KP555570233 * T5S); |
| 1829 |
} |
| 1830 |
{
|
| 1831 |
E T5F, T5U, T8h, T8k; |
| 1832 |
T5F = T5x + T5E; |
| 1833 |
T5U = T5M + T5T; |
| 1834 |
ri[WS(rs, 21)] = T5F - T5U;
|
| 1835 |
ri[WS(rs, 5)] = T5F + T5U;
|
| 1836 |
T8h = T5W + T5X; |
| 1837 |
T8k = T8i + T8j; |
| 1838 |
ii[WS(rs, 5)] = T8h + T8k;
|
| 1839 |
ii[WS(rs, 21)] = T8k - T8h;
|
| 1840 |
} |
| 1841 |
{
|
| 1842 |
E T5V, T5Y, T8l, T8m; |
| 1843 |
T5V = T5x - T5E; |
| 1844 |
T5Y = T5W - T5X; |
| 1845 |
ri[WS(rs, 29)] = T5V - T5Y;
|
| 1846 |
ri[WS(rs, 13)] = T5V + T5Y;
|
| 1847 |
T8l = T5T - T5M; |
| 1848 |
T8m = T8j - T8i; |
| 1849 |
ii[WS(rs, 13)] = T8l + T8m;
|
| 1850 |
ii[WS(rs, 29)] = T8m - T8l;
|
| 1851 |
} |
| 1852 |
{
|
| 1853 |
E T63, T6a, T87, T8e; |
| 1854 |
T63 = T5Z + T62; |
| 1855 |
T6a = T66 + T69; |
| 1856 |
ri[WS(rs, 17)] = T63 - T6a;
|
| 1857 |
ri[WS(rs, 1)] = T63 + T6a;
|
| 1858 |
T87 = T6c + T6d; |
| 1859 |
T8e = T88 + T8d; |
| 1860 |
ii[WS(rs, 1)] = T87 + T8e;
|
| 1861 |
ii[WS(rs, 17)] = T8e - T87;
|
| 1862 |
} |
| 1863 |
{
|
| 1864 |
E T6b, T6e, T8f, T8g; |
| 1865 |
T6b = T5Z - T62; |
| 1866 |
T6e = T6c - T6d; |
| 1867 |
ri[WS(rs, 25)] = T6b - T6e;
|
| 1868 |
ri[WS(rs, 9)] = T6b + T6e;
|
| 1869 |
T8f = T69 - T66; |
| 1870 |
T8g = T8d - T88; |
| 1871 |
ii[WS(rs, 9)] = T8f + T8g;
|
| 1872 |
ii[WS(rs, 25)] = T8g - T8f;
|
| 1873 |
} |
| 1874 |
} |
| 1875 |
} |
| 1876 |
} |
| 1877 |
} |
| 1878 |
} |
| 1879 |
|
| 1880 |
static const tw_instr twinstr[] = { |
| 1881 |
{TW_CEXP, 0, 1},
|
| 1882 |
{TW_CEXP, 0, 3},
|
| 1883 |
{TW_CEXP, 0, 9},
|
| 1884 |
{TW_CEXP, 0, 27},
|
| 1885 |
{TW_NEXT, 1, 0}
|
| 1886 |
}; |
| 1887 |
|
| 1888 |
static const ct_desc desc = { 32, "t2_32", twinstr, &GENUS, {376, 168, 112, 0}, 0, 0, 0 }; |
| 1889 |
|
| 1890 |
void X(codelet_t2_32) (planner *p) {
|
| 1891 |
X(kdft_dit_register) (p, t2_32, &desc); |
| 1892 |
} |
| 1893 |
#endif
|