To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t2_20.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (29.3 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:26 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 276 FP additions, 198 FP multiplications,
|
| 32 |
* (or, 136 additions, 58 multiplications, 140 fused multiply/add),
|
| 33 |
* 95 stack variables, 4 constants, and 80 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 42 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 43 |
{
|
| 44 |
INT m; |
| 45 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
| 46 |
E T2, Th, Tf, T6, T5, Ti, Tl, T1n, T3, Tt, Tv, T7, T17, T1L, T24; |
| 47 |
E Tb, T13, T1P, T21, T1b, T1D, T1A, T1H, T1f, TA, Tw, Tq, Tm, TK, T1S; |
| 48 |
E TO, T1p, T1q, T1u, T2n, T2k, T2h, T2d; |
| 49 |
{
|
| 50 |
E Tk, Ta, T1e, T4, T1a, Tj, T12, T1G, T16, T1K, Tg, Tz; |
| 51 |
T2 = W[0];
|
| 52 |
Th = W[3];
|
| 53 |
Tf = W[2];
|
| 54 |
Tg = T2 * Tf; |
| 55 |
Tk = T2 * Th; |
| 56 |
T6 = W[5];
|
| 57 |
Ta = T2 * T6; |
| 58 |
T1e = Tf * T6; |
| 59 |
T5 = W[1];
|
| 60 |
Ti = FNMS(T5, Th, Tg); |
| 61 |
Tl = FMA(T5, Tf, Tk); |
| 62 |
T1n = FMA(T5, Th, Tg); |
| 63 |
T3 = W[4];
|
| 64 |
T4 = T2 * T3; |
| 65 |
T1a = Tf * T3; |
| 66 |
Tj = Ti * T3; |
| 67 |
Tt = W[6];
|
| 68 |
T12 = Tf * Tt; |
| 69 |
T1G = T2 * Tt; |
| 70 |
Tv = W[7];
|
| 71 |
T16 = Tf * Tv; |
| 72 |
T1K = T2 * Tv; |
| 73 |
T7 = FNMS(T5, T6, T4); |
| 74 |
T17 = FNMS(Th, Tt, T16); |
| 75 |
T1L = FNMS(T5, Tt, T1K); |
| 76 |
T24 = FMA(Th, T3, T1e); |
| 77 |
Tb = FMA(T5, T3, Ta); |
| 78 |
T13 = FMA(Th, Tv, T12); |
| 79 |
T1P = FNMS(Tl, T6, Tj); |
| 80 |
T21 = FNMS(Th, T6, T1a); |
| 81 |
T1b = FMA(Th, T6, T1a); |
| 82 |
T1D = FNMS(T5, T3, Ta); |
| 83 |
T1A = FMA(T5, T6, T4); |
| 84 |
T1H = FMA(T5, Tv, T1G); |
| 85 |
T1f = FNMS(Th, T3, T1e); |
| 86 |
Tz = Ti * Tv; |
| 87 |
TA = FNMS(Tl, Tt, Tz); |
| 88 |
{
|
| 89 |
E Tu, Tp, TJ, TN; |
| 90 |
Tu = Ti * Tt; |
| 91 |
Tw = FMA(Tl, Tv, Tu); |
| 92 |
Tp = Ti * T6; |
| 93 |
Tq = FNMS(Tl, T3, Tp); |
| 94 |
Tm = FMA(Tl, T6, Tj); |
| 95 |
TJ = Tm * Tt; |
| 96 |
TN = Tm * Tv; |
| 97 |
TK = FMA(Tq, Tv, TJ); |
| 98 |
T1S = FMA(Tl, T3, Tp); |
| 99 |
TO = FNMS(Tq, Tt, TN); |
| 100 |
{
|
| 101 |
E T1o, T2g, T1t, T2c; |
| 102 |
T1o = T1n * T3; |
| 103 |
T2g = T1n * Tv; |
| 104 |
T1t = T1n * T6; |
| 105 |
T2c = T1n * Tt; |
| 106 |
T1p = FNMS(T5, Tf, Tk); |
| 107 |
T1q = FNMS(T1p, T6, T1o); |
| 108 |
T1u = FMA(T1p, T3, T1t); |
| 109 |
T2n = FNMS(T1p, T3, T1t); |
| 110 |
T2k = FMA(T1p, T6, T1o); |
| 111 |
T2h = FNMS(T1p, Tt, T2g); |
| 112 |
T2d = FMA(T1p, Tv, T2c); |
| 113 |
} |
| 114 |
} |
| 115 |
} |
| 116 |
{
|
| 117 |
E Te, T2C, T4L, T57, TD, T58, T2H, T4H, T11, T2v, T4k, T4v, T2P, T3P, T3C; |
| 118 |
E T3Z, T2r, T2z, T4g, T4z, T3b, T3T, T3u, T43, T20, T2y, T4d, T4y, T34, T3S; |
| 119 |
E T3n, T42, T1y, T2w, T4n, T4w, T2W, T3Q, T3J, T40; |
| 120 |
{
|
| 121 |
E T1, T4K, T8, T9, Tc, T4I, Td, T4J; |
| 122 |
T1 = ri[0];
|
| 123 |
T4K = ii[0];
|
| 124 |
T8 = ri[WS(rs, 10)];
|
| 125 |
T9 = T7 * T8; |
| 126 |
Tc = ii[WS(rs, 10)];
|
| 127 |
T4I = T7 * Tc; |
| 128 |
Td = FMA(Tb, Tc, T9); |
| 129 |
Te = T1 + Td; |
| 130 |
T2C = T1 - Td; |
| 131 |
T4J = FNMS(Tb, T8, T4I); |
| 132 |
T4L = T4J + T4K; |
| 133 |
T57 = T4K - T4J; |
| 134 |
} |
| 135 |
{
|
| 136 |
E Tn, To, Tr, T2D, Tx, Ty, TB, T2F; |
| 137 |
Tn = ri[WS(rs, 5)];
|
| 138 |
To = Tm * Tn; |
| 139 |
Tr = ii[WS(rs, 5)];
|
| 140 |
T2D = Tm * Tr; |
| 141 |
Tx = ri[WS(rs, 15)];
|
| 142 |
Ty = Tw * Tx; |
| 143 |
TB = ii[WS(rs, 15)];
|
| 144 |
T2F = Tw * TB; |
| 145 |
{
|
| 146 |
E Ts, TC, T2E, T2G; |
| 147 |
Ts = FMA(Tq, Tr, To); |
| 148 |
TC = FMA(TA, TB, Ty); |
| 149 |
TD = Ts + TC; |
| 150 |
T58 = Ts - TC; |
| 151 |
T2E = FNMS(Tq, Tn, T2D); |
| 152 |
T2G = FNMS(TA, Tx, T2F); |
| 153 |
T2H = T2E - T2G; |
| 154 |
T4H = T2E + T2G; |
| 155 |
} |
| 156 |
} |
| 157 |
{
|
| 158 |
E TI, T3x, TZ, T2N, TQ, T3z, TV, T2L; |
| 159 |
{
|
| 160 |
E TF, TG, TH, T3w; |
| 161 |
TF = ri[WS(rs, 4)];
|
| 162 |
TG = Ti * TF; |
| 163 |
TH = ii[WS(rs, 4)];
|
| 164 |
T3w = Ti * TH; |
| 165 |
TI = FMA(Tl, TH, TG); |
| 166 |
T3x = FNMS(Tl, TF, T3w); |
| 167 |
} |
| 168 |
{
|
| 169 |
E TW, TX, TY, T2M; |
| 170 |
TW = ri[WS(rs, 19)];
|
| 171 |
TX = Tt * TW; |
| 172 |
TY = ii[WS(rs, 19)];
|
| 173 |
T2M = Tt * TY; |
| 174 |
TZ = FMA(Tv, TY, TX); |
| 175 |
T2N = FNMS(Tv, TW, T2M); |
| 176 |
} |
| 177 |
{
|
| 178 |
E TL, TM, TP, T3y; |
| 179 |
TL = ri[WS(rs, 14)];
|
| 180 |
TM = TK * TL; |
| 181 |
TP = ii[WS(rs, 14)];
|
| 182 |
T3y = TK * TP; |
| 183 |
TQ = FMA(TO, TP, TM); |
| 184 |
T3z = FNMS(TO, TL, T3y); |
| 185 |
} |
| 186 |
{
|
| 187 |
E TS, TT, TU, T2K; |
| 188 |
TS = ri[WS(rs, 9)];
|
| 189 |
TT = T3 * TS; |
| 190 |
TU = ii[WS(rs, 9)];
|
| 191 |
T2K = T3 * TU; |
| 192 |
TV = FMA(T6, TU, TT); |
| 193 |
T2L = FNMS(T6, TS, T2K); |
| 194 |
} |
| 195 |
{
|
| 196 |
E TR, T10, T4i, T4j; |
| 197 |
TR = TI + TQ; |
| 198 |
T10 = TV + TZ; |
| 199 |
T11 = TR - T10; |
| 200 |
T2v = TR + T10; |
| 201 |
T4i = T3x + T3z; |
| 202 |
T4j = T2L + T2N; |
| 203 |
T4k = T4i - T4j; |
| 204 |
T4v = T4i + T4j; |
| 205 |
} |
| 206 |
{
|
| 207 |
E T2J, T2O, T3A, T3B; |
| 208 |
T2J = TI - TQ; |
| 209 |
T2O = T2L - T2N; |
| 210 |
T2P = T2J - T2O; |
| 211 |
T3P = T2J + T2O; |
| 212 |
T3A = T3x - T3z; |
| 213 |
T3B = TV - TZ; |
| 214 |
T3C = T3A + T3B; |
| 215 |
T3Z = T3A - T3B; |
| 216 |
} |
| 217 |
} |
| 218 |
{
|
| 219 |
E T26, T3p, T2p, T39, T2a, T3r, T2j, T37; |
| 220 |
{
|
| 221 |
E T22, T23, T25, T3o; |
| 222 |
T22 = ri[WS(rs, 12)];
|
| 223 |
T23 = T21 * T22; |
| 224 |
T25 = ii[WS(rs, 12)];
|
| 225 |
T3o = T21 * T25; |
| 226 |
T26 = FMA(T24, T25, T23); |
| 227 |
T3p = FNMS(T24, T22, T3o); |
| 228 |
} |
| 229 |
{
|
| 230 |
E T2l, T2m, T2o, T38; |
| 231 |
T2l = ri[WS(rs, 7)];
|
| 232 |
T2m = T2k * T2l; |
| 233 |
T2o = ii[WS(rs, 7)];
|
| 234 |
T38 = T2k * T2o; |
| 235 |
T2p = FMA(T2n, T2o, T2m); |
| 236 |
T39 = FNMS(T2n, T2l, T38); |
| 237 |
} |
| 238 |
{
|
| 239 |
E T27, T28, T29, T3q; |
| 240 |
T27 = ri[WS(rs, 2)];
|
| 241 |
T28 = T1n * T27; |
| 242 |
T29 = ii[WS(rs, 2)];
|
| 243 |
T3q = T1n * T29; |
| 244 |
T2a = FMA(T1p, T29, T28); |
| 245 |
T3r = FNMS(T1p, T27, T3q); |
| 246 |
} |
| 247 |
{
|
| 248 |
E T2e, T2f, T2i, T36; |
| 249 |
T2e = ri[WS(rs, 17)];
|
| 250 |
T2f = T2d * T2e; |
| 251 |
T2i = ii[WS(rs, 17)];
|
| 252 |
T36 = T2d * T2i; |
| 253 |
T2j = FMA(T2h, T2i, T2f); |
| 254 |
T37 = FNMS(T2h, T2e, T36); |
| 255 |
} |
| 256 |
{
|
| 257 |
E T2b, T2q, T4e, T4f; |
| 258 |
T2b = T26 + T2a; |
| 259 |
T2q = T2j + T2p; |
| 260 |
T2r = T2b - T2q; |
| 261 |
T2z = T2b + T2q; |
| 262 |
T4e = T3p + T3r; |
| 263 |
T4f = T37 + T39; |
| 264 |
T4g = T4e - T4f; |
| 265 |
T4z = T4e + T4f; |
| 266 |
} |
| 267 |
{
|
| 268 |
E T35, T3a, T3s, T3t; |
| 269 |
T35 = T26 - T2a; |
| 270 |
T3a = T37 - T39; |
| 271 |
T3b = T35 - T3a; |
| 272 |
T3T = T35 + T3a; |
| 273 |
T3s = T3p - T3r; |
| 274 |
T3t = T2j - T2p; |
| 275 |
T3u = T3s + T3t; |
| 276 |
T43 = T3s - T3t; |
| 277 |
} |
| 278 |
} |
| 279 |
{
|
| 280 |
E T1F, T3i, T1Y, T32, T1N, T3k, T1U, T30; |
| 281 |
{
|
| 282 |
E T1B, T1C, T1E, T3h; |
| 283 |
T1B = ri[WS(rs, 8)];
|
| 284 |
T1C = T1A * T1B; |
| 285 |
T1E = ii[WS(rs, 8)];
|
| 286 |
T3h = T1A * T1E; |
| 287 |
T1F = FMA(T1D, T1E, T1C); |
| 288 |
T3i = FNMS(T1D, T1B, T3h); |
| 289 |
} |
| 290 |
{
|
| 291 |
E T1V, T1W, T1X, T31; |
| 292 |
T1V = ri[WS(rs, 3)];
|
| 293 |
T1W = Tf * T1V; |
| 294 |
T1X = ii[WS(rs, 3)];
|
| 295 |
T31 = Tf * T1X; |
| 296 |
T1Y = FMA(Th, T1X, T1W); |
| 297 |
T32 = FNMS(Th, T1V, T31); |
| 298 |
} |
| 299 |
{
|
| 300 |
E T1I, T1J, T1M, T3j; |
| 301 |
T1I = ri[WS(rs, 18)];
|
| 302 |
T1J = T1H * T1I; |
| 303 |
T1M = ii[WS(rs, 18)];
|
| 304 |
T3j = T1H * T1M; |
| 305 |
T1N = FMA(T1L, T1M, T1J); |
| 306 |
T3k = FNMS(T1L, T1I, T3j); |
| 307 |
} |
| 308 |
{
|
| 309 |
E T1Q, T1R, T1T, T2Z; |
| 310 |
T1Q = ri[WS(rs, 13)];
|
| 311 |
T1R = T1P * T1Q; |
| 312 |
T1T = ii[WS(rs, 13)];
|
| 313 |
T2Z = T1P * T1T; |
| 314 |
T1U = FMA(T1S, T1T, T1R); |
| 315 |
T30 = FNMS(T1S, T1Q, T2Z); |
| 316 |
} |
| 317 |
{
|
| 318 |
E T1O, T1Z, T4b, T4c; |
| 319 |
T1O = T1F + T1N; |
| 320 |
T1Z = T1U + T1Y; |
| 321 |
T20 = T1O - T1Z; |
| 322 |
T2y = T1O + T1Z; |
| 323 |
T4b = T3i + T3k; |
| 324 |
T4c = T30 + T32; |
| 325 |
T4d = T4b - T4c; |
| 326 |
T4y = T4b + T4c; |
| 327 |
} |
| 328 |
{
|
| 329 |
E T2Y, T33, T3l, T3m; |
| 330 |
T2Y = T1F - T1N; |
| 331 |
T33 = T30 - T32; |
| 332 |
T34 = T2Y - T33; |
| 333 |
T3S = T2Y + T33; |
| 334 |
T3l = T3i - T3k; |
| 335 |
T3m = T1U - T1Y; |
| 336 |
T3n = T3l + T3m; |
| 337 |
T42 = T3l - T3m; |
| 338 |
} |
| 339 |
} |
| 340 |
{
|
| 341 |
E T19, T3E, T1w, T2U, T1h, T3G, T1m, T2S; |
| 342 |
{
|
| 343 |
E T14, T15, T18, T3D; |
| 344 |
T14 = ri[WS(rs, 16)];
|
| 345 |
T15 = T13 * T14; |
| 346 |
T18 = ii[WS(rs, 16)];
|
| 347 |
T3D = T13 * T18; |
| 348 |
T19 = FMA(T17, T18, T15); |
| 349 |
T3E = FNMS(T17, T14, T3D); |
| 350 |
} |
| 351 |
{
|
| 352 |
E T1r, T1s, T1v, T2T; |
| 353 |
T1r = ri[WS(rs, 11)];
|
| 354 |
T1s = T1q * T1r; |
| 355 |
T1v = ii[WS(rs, 11)];
|
| 356 |
T2T = T1q * T1v; |
| 357 |
T1w = FMA(T1u, T1v, T1s); |
| 358 |
T2U = FNMS(T1u, T1r, T2T); |
| 359 |
} |
| 360 |
{
|
| 361 |
E T1c, T1d, T1g, T3F; |
| 362 |
T1c = ri[WS(rs, 6)];
|
| 363 |
T1d = T1b * T1c; |
| 364 |
T1g = ii[WS(rs, 6)];
|
| 365 |
T3F = T1b * T1g; |
| 366 |
T1h = FMA(T1f, T1g, T1d); |
| 367 |
T3G = FNMS(T1f, T1c, T3F); |
| 368 |
} |
| 369 |
{
|
| 370 |
E T1j, T1k, T1l, T2R; |
| 371 |
T1j = ri[WS(rs, 1)];
|
| 372 |
T1k = T2 * T1j; |
| 373 |
T1l = ii[WS(rs, 1)];
|
| 374 |
T2R = T2 * T1l; |
| 375 |
T1m = FMA(T5, T1l, T1k); |
| 376 |
T2S = FNMS(T5, T1j, T2R); |
| 377 |
} |
| 378 |
{
|
| 379 |
E T1i, T1x, T4l, T4m; |
| 380 |
T1i = T19 + T1h; |
| 381 |
T1x = T1m + T1w; |
| 382 |
T1y = T1i - T1x; |
| 383 |
T2w = T1i + T1x; |
| 384 |
T4l = T3E + T3G; |
| 385 |
T4m = T2S + T2U; |
| 386 |
T4n = T4l - T4m; |
| 387 |
T4w = T4l + T4m; |
| 388 |
} |
| 389 |
{
|
| 390 |
E T2Q, T2V, T3H, T3I; |
| 391 |
T2Q = T19 - T1h; |
| 392 |
T2V = T2S - T2U; |
| 393 |
T2W = T2Q - T2V; |
| 394 |
T3Q = T2Q + T2V; |
| 395 |
T3H = T3E - T3G; |
| 396 |
T3I = T1m - T1w; |
| 397 |
T3J = T3H + T3I; |
| 398 |
T40 = T3H - T3I; |
| 399 |
} |
| 400 |
} |
| 401 |
{
|
| 402 |
E T4p, T4r, TE, T2t, T48, T49, T4q, T4a; |
| 403 |
{
|
| 404 |
E T4h, T4o, T1z, T2s; |
| 405 |
T4h = T4d - T4g; |
| 406 |
T4o = T4k - T4n; |
| 407 |
T4p = FNMS(KP618033988, T4o, T4h); |
| 408 |
T4r = FMA(KP618033988, T4h, T4o); |
| 409 |
TE = Te - TD; |
| 410 |
T1z = T11 + T1y; |
| 411 |
T2s = T20 + T2r; |
| 412 |
T2t = T1z + T2s; |
| 413 |
T48 = FNMS(KP250000000, T2t, TE); |
| 414 |
T49 = T1z - T2s; |
| 415 |
} |
| 416 |
ri[WS(rs, 10)] = TE + T2t;
|
| 417 |
T4q = FMA(KP559016994, T49, T48); |
| 418 |
ri[WS(rs, 14)] = FNMS(KP951056516, T4r, T4q);
|
| 419 |
ri[WS(rs, 6)] = FMA(KP951056516, T4r, T4q);
|
| 420 |
T4a = FNMS(KP559016994, T49, T48); |
| 421 |
ri[WS(rs, 2)] = FNMS(KP951056516, T4p, T4a);
|
| 422 |
ri[WS(rs, 18)] = FMA(KP951056516, T4p, T4a);
|
| 423 |
} |
| 424 |
{
|
| 425 |
E T54, T56, T4V, T4Y, T4Z, T50, T55, T51; |
| 426 |
{
|
| 427 |
E T52, T53, T4W, T4X; |
| 428 |
T52 = T20 - T2r; |
| 429 |
T53 = T11 - T1y; |
| 430 |
T54 = FNMS(KP618033988, T53, T52); |
| 431 |
T56 = FMA(KP618033988, T52, T53); |
| 432 |
T4V = T4L - T4H; |
| 433 |
T4W = T4k + T4n; |
| 434 |
T4X = T4d + T4g; |
| 435 |
T4Y = T4W + T4X; |
| 436 |
T4Z = FNMS(KP250000000, T4Y, T4V); |
| 437 |
T50 = T4W - T4X; |
| 438 |
} |
| 439 |
ii[WS(rs, 10)] = T4Y + T4V;
|
| 440 |
T55 = FMA(KP559016994, T50, T4Z); |
| 441 |
ii[WS(rs, 6)] = FNMS(KP951056516, T56, T55);
|
| 442 |
ii[WS(rs, 14)] = FMA(KP951056516, T56, T55);
|
| 443 |
T51 = FNMS(KP559016994, T50, T4Z); |
| 444 |
ii[WS(rs, 2)] = FMA(KP951056516, T54, T51);
|
| 445 |
ii[WS(rs, 18)] = FNMS(KP951056516, T54, T51);
|
| 446 |
} |
| 447 |
{
|
| 448 |
E T4B, T4D, T2u, T2B, T4s, T4t, T4C, T4u; |
| 449 |
{
|
| 450 |
E T4x, T4A, T2x, T2A; |
| 451 |
T4x = T4v - T4w; |
| 452 |
T4A = T4y - T4z; |
| 453 |
T4B = FMA(KP618033988, T4A, T4x); |
| 454 |
T4D = FNMS(KP618033988, T4x, T4A); |
| 455 |
T2u = Te + TD; |
| 456 |
T2x = T2v + T2w; |
| 457 |
T2A = T2y + T2z; |
| 458 |
T2B = T2x + T2A; |
| 459 |
T4s = FNMS(KP250000000, T2B, T2u); |
| 460 |
T4t = T2x - T2A; |
| 461 |
} |
| 462 |
ri[0] = T2u + T2B;
|
| 463 |
T4C = FNMS(KP559016994, T4t, T4s); |
| 464 |
ri[WS(rs, 12)] = FNMS(KP951056516, T4D, T4C);
|
| 465 |
ri[WS(rs, 8)] = FMA(KP951056516, T4D, T4C);
|
| 466 |
T4u = FMA(KP559016994, T4t, T4s); |
| 467 |
ri[WS(rs, 4)] = FNMS(KP951056516, T4B, T4u);
|
| 468 |
ri[WS(rs, 16)] = FMA(KP951056516, T4B, T4u);
|
| 469 |
} |
| 470 |
{
|
| 471 |
E T4S, T4U, T4M, T4G, T4N, T4O, T4T, T4P; |
| 472 |
{
|
| 473 |
E T4Q, T4R, T4E, T4F; |
| 474 |
T4Q = T2v - T2w; |
| 475 |
T4R = T2y - T2z; |
| 476 |
T4S = FMA(KP618033988, T4R, T4Q); |
| 477 |
T4U = FNMS(KP618033988, T4Q, T4R); |
| 478 |
T4M = T4H + T4L; |
| 479 |
T4E = T4v + T4w; |
| 480 |
T4F = T4y + T4z; |
| 481 |
T4G = T4E + T4F; |
| 482 |
T4N = FNMS(KP250000000, T4G, T4M); |
| 483 |
T4O = T4E - T4F; |
| 484 |
} |
| 485 |
ii[0] = T4G + T4M;
|
| 486 |
T4T = FNMS(KP559016994, T4O, T4N); |
| 487 |
ii[WS(rs, 8)] = FNMS(KP951056516, T4U, T4T);
|
| 488 |
ii[WS(rs, 12)] = FMA(KP951056516, T4U, T4T);
|
| 489 |
T4P = FMA(KP559016994, T4O, T4N); |
| 490 |
ii[WS(rs, 4)] = FMA(KP951056516, T4S, T4P);
|
| 491 |
ii[WS(rs, 16)] = FNMS(KP951056516, T4S, T4P);
|
| 492 |
} |
| 493 |
{
|
| 494 |
E T3L, T3N, T2I, T3d, T3e, T3f, T3M, T3g; |
| 495 |
{
|
| 496 |
E T3v, T3K, T2X, T3c; |
| 497 |
T3v = T3n - T3u; |
| 498 |
T3K = T3C - T3J; |
| 499 |
T3L = FNMS(KP618033988, T3K, T3v); |
| 500 |
T3N = FMA(KP618033988, T3v, T3K); |
| 501 |
T2I = T2C - T2H; |
| 502 |
T2X = T2P + T2W; |
| 503 |
T3c = T34 + T3b; |
| 504 |
T3d = T2X + T3c; |
| 505 |
T3e = FNMS(KP250000000, T3d, T2I); |
| 506 |
T3f = T2X - T3c; |
| 507 |
} |
| 508 |
ri[WS(rs, 15)] = T2I + T3d;
|
| 509 |
T3M = FMA(KP559016994, T3f, T3e); |
| 510 |
ri[WS(rs, 11)] = FMA(KP951056516, T3N, T3M);
|
| 511 |
ri[WS(rs, 19)] = FNMS(KP951056516, T3N, T3M);
|
| 512 |
T3g = FNMS(KP559016994, T3f, T3e); |
| 513 |
ri[WS(rs, 3)] = FMA(KP951056516, T3L, T3g);
|
| 514 |
ri[WS(rs, 7)] = FNMS(KP951056516, T3L, T3g);
|
| 515 |
} |
| 516 |
{
|
| 517 |
E T5u, T5w, T5l, T5o, T5p, T5q, T5v, T5r; |
| 518 |
{
|
| 519 |
E T5s, T5t, T5m, T5n; |
| 520 |
T5s = T34 - T3b; |
| 521 |
T5t = T2P - T2W; |
| 522 |
T5u = FNMS(KP618033988, T5t, T5s); |
| 523 |
T5w = FMA(KP618033988, T5s, T5t); |
| 524 |
T5l = T58 + T57; |
| 525 |
T5m = T3C + T3J; |
| 526 |
T5n = T3n + T3u; |
| 527 |
T5o = T5m + T5n; |
| 528 |
T5p = FNMS(KP250000000, T5o, T5l); |
| 529 |
T5q = T5m - T5n; |
| 530 |
} |
| 531 |
ii[WS(rs, 15)] = T5o + T5l;
|
| 532 |
T5v = FMA(KP559016994, T5q, T5p); |
| 533 |
ii[WS(rs, 11)] = FNMS(KP951056516, T5w, T5v);
|
| 534 |
ii[WS(rs, 19)] = FMA(KP951056516, T5w, T5v);
|
| 535 |
T5r = FNMS(KP559016994, T5q, T5p); |
| 536 |
ii[WS(rs, 3)] = FNMS(KP951056516, T5u, T5r);
|
| 537 |
ii[WS(rs, 7)] = FMA(KP951056516, T5u, T5r);
|
| 538 |
} |
| 539 |
{
|
| 540 |
E T45, T47, T3O, T3V, T3W, T3X, T46, T3Y; |
| 541 |
{
|
| 542 |
E T41, T44, T3R, T3U; |
| 543 |
T41 = T3Z - T40; |
| 544 |
T44 = T42 - T43; |
| 545 |
T45 = FMA(KP618033988, T44, T41); |
| 546 |
T47 = FNMS(KP618033988, T41, T44); |
| 547 |
T3O = T2C + T2H; |
| 548 |
T3R = T3P + T3Q; |
| 549 |
T3U = T3S + T3T; |
| 550 |
T3V = T3R + T3U; |
| 551 |
T3W = FNMS(KP250000000, T3V, T3O); |
| 552 |
T3X = T3R - T3U; |
| 553 |
} |
| 554 |
ri[WS(rs, 5)] = T3O + T3V;
|
| 555 |
T46 = FNMS(KP559016994, T3X, T3W); |
| 556 |
ri[WS(rs, 13)] = FMA(KP951056516, T47, T46);
|
| 557 |
ri[WS(rs, 17)] = FNMS(KP951056516, T47, T46);
|
| 558 |
T3Y = FMA(KP559016994, T3X, T3W); |
| 559 |
ri[WS(rs, 1)] = FMA(KP951056516, T45, T3Y);
|
| 560 |
ri[WS(rs, 9)] = FNMS(KP951056516, T45, T3Y);
|
| 561 |
} |
| 562 |
{
|
| 563 |
E T5i, T5k, T59, T5c, T5d, T5e, T5j, T5f; |
| 564 |
{
|
| 565 |
E T5g, T5h, T5a, T5b; |
| 566 |
T5g = T3P - T3Q; |
| 567 |
T5h = T3S - T3T; |
| 568 |
T5i = FMA(KP618033988, T5h, T5g); |
| 569 |
T5k = FNMS(KP618033988, T5g, T5h); |
| 570 |
T59 = T57 - T58; |
| 571 |
T5a = T3Z + T40; |
| 572 |
T5b = T42 + T43; |
| 573 |
T5c = T5a + T5b; |
| 574 |
T5d = FNMS(KP250000000, T5c, T59); |
| 575 |
T5e = T5a - T5b; |
| 576 |
} |
| 577 |
ii[WS(rs, 5)] = T5c + T59;
|
| 578 |
T5j = FNMS(KP559016994, T5e, T5d); |
| 579 |
ii[WS(rs, 13)] = FNMS(KP951056516, T5k, T5j);
|
| 580 |
ii[WS(rs, 17)] = FMA(KP951056516, T5k, T5j);
|
| 581 |
T5f = FMA(KP559016994, T5e, T5d); |
| 582 |
ii[WS(rs, 1)] = FNMS(KP951056516, T5i, T5f);
|
| 583 |
ii[WS(rs, 9)] = FMA(KP951056516, T5i, T5f);
|
| 584 |
} |
| 585 |
} |
| 586 |
} |
| 587 |
} |
| 588 |
} |
| 589 |
|
| 590 |
static const tw_instr twinstr[] = { |
| 591 |
{TW_CEXP, 0, 1},
|
| 592 |
{TW_CEXP, 0, 3},
|
| 593 |
{TW_CEXP, 0, 9},
|
| 594 |
{TW_CEXP, 0, 19},
|
| 595 |
{TW_NEXT, 1, 0}
|
| 596 |
}; |
| 597 |
|
| 598 |
static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {136, 58, 140, 0}, 0, 0, 0 }; |
| 599 |
|
| 600 |
void X(codelet_t2_20) (planner *p) {
|
| 601 |
X(kdft_dit_register) (p, t2_20, &desc); |
| 602 |
} |
| 603 |
#else
|
| 604 |
|
| 605 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 20 -name t2_20 -include dft/scalar/t.h */
|
| 606 |
|
| 607 |
/*
|
| 608 |
* This function contains 276 FP additions, 164 FP multiplications,
|
| 609 |
* (or, 204 additions, 92 multiplications, 72 fused multiply/add),
|
| 610 |
* 123 stack variables, 4 constants, and 80 memory accesses
|
| 611 |
*/
|
| 612 |
#include "dft/scalar/t.h" |
| 613 |
|
| 614 |
static void t2_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 615 |
{
|
| 616 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 617 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 618 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 619 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 620 |
{
|
| 621 |
INT m; |
| 622 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
| 623 |
E T2, T5, Tg, Ti, Tk, To, T1h, T1f, T6, T3, T8, T14, T1Q, Tc, T1O; |
| 624 |
E T1v, T18, T1t, T1n, T24, T1j, T22, Tq, Tu, T1E, T1G, Tx, Ty, Tz, TJ; |
| 625 |
E T1Z, TB, T1X, T1A, TZ, TL, T1y, TX; |
| 626 |
{
|
| 627 |
E T7, T16, Ta, T13, T4, T17, Tb, T12; |
| 628 |
{
|
| 629 |
E Th, Tn, Tj, Tm; |
| 630 |
T2 = W[0];
|
| 631 |
T5 = W[1];
|
| 632 |
Tg = W[2];
|
| 633 |
Ti = W[3];
|
| 634 |
Th = T2 * Tg; |
| 635 |
Tn = T5 * Tg; |
| 636 |
Tj = T5 * Ti; |
| 637 |
Tm = T2 * Ti; |
| 638 |
Tk = Th - Tj; |
| 639 |
To = Tm + Tn; |
| 640 |
T1h = Tm - Tn; |
| 641 |
T1f = Th + Tj; |
| 642 |
T6 = W[5];
|
| 643 |
T7 = T5 * T6; |
| 644 |
T16 = Tg * T6; |
| 645 |
Ta = T2 * T6; |
| 646 |
T13 = Ti * T6; |
| 647 |
T3 = W[4];
|
| 648 |
T4 = T2 * T3; |
| 649 |
T17 = Ti * T3; |
| 650 |
Tb = T5 * T3; |
| 651 |
T12 = Tg * T3; |
| 652 |
} |
| 653 |
T8 = T4 - T7; |
| 654 |
T14 = T12 + T13; |
| 655 |
T1Q = T16 + T17; |
| 656 |
Tc = Ta + Tb; |
| 657 |
T1O = T12 - T13; |
| 658 |
T1v = Ta - Tb; |
| 659 |
T18 = T16 - T17; |
| 660 |
T1t = T4 + T7; |
| 661 |
{
|
| 662 |
E T1l, T1m, T1g, T1i; |
| 663 |
T1l = T1f * T6; |
| 664 |
T1m = T1h * T3; |
| 665 |
T1n = T1l + T1m; |
| 666 |
T24 = T1l - T1m; |
| 667 |
T1g = T1f * T3; |
| 668 |
T1i = T1h * T6; |
| 669 |
T1j = T1g - T1i; |
| 670 |
T22 = T1g + T1i; |
| 671 |
{
|
| 672 |
E Tl, Tp, Ts, Tt; |
| 673 |
Tl = Tk * T3; |
| 674 |
Tp = To * T6; |
| 675 |
Tq = Tl + Tp; |
| 676 |
Ts = Tk * T6; |
| 677 |
Tt = To * T3; |
| 678 |
Tu = Ts - Tt; |
| 679 |
T1E = Tl - Tp; |
| 680 |
T1G = Ts + Tt; |
| 681 |
Tx = W[6];
|
| 682 |
Ty = W[7];
|
| 683 |
Tz = FMA(Tk, Tx, To * Ty); |
| 684 |
TJ = FMA(Tq, Tx, Tu * Ty); |
| 685 |
T1Z = FNMS(T1h, Tx, T1f * Ty); |
| 686 |
TB = FNMS(To, Tx, Tk * Ty); |
| 687 |
T1X = FMA(T1f, Tx, T1h * Ty); |
| 688 |
T1A = FNMS(T5, Tx, T2 * Ty); |
| 689 |
TZ = FNMS(Ti, Tx, Tg * Ty); |
| 690 |
TL = FNMS(Tu, Tx, Tq * Ty); |
| 691 |
T1y = FMA(T2, Tx, T5 * Ty); |
| 692 |
TX = FMA(Tg, Tx, Ti * Ty); |
| 693 |
} |
| 694 |
} |
| 695 |
} |
| 696 |
{
|
| 697 |
E TF, T2b, T4A, T4J, T2K, T3r, T4a, T4m, T1N, T28, T29, T3C, T3F, T4o, T3X; |
| 698 |
E T3Y, T44, T2f, T2g, T2h, T2n, T2s, T4L, T3g, T3h, T4w, T3n, T3o, T3p, T30; |
| 699 |
E T35, T36, TW, T1r, T1s, T3J, T3M, T4n, T3U, T3V, T43, T2c, T2d, T2e, T2y; |
| 700 |
E T2D, T4K, T3d, T3e, T4v, T3k, T3l, T3m, T2P, T2U, T2V; |
| 701 |
{
|
| 702 |
E T1, T48, Te, T47, Tw, T2H, TD, T2I, T9, Td; |
| 703 |
T1 = ri[0];
|
| 704 |
T48 = ii[0];
|
| 705 |
T9 = ri[WS(rs, 10)];
|
| 706 |
Td = ii[WS(rs, 10)];
|
| 707 |
Te = FMA(T8, T9, Tc * Td); |
| 708 |
T47 = FNMS(Tc, T9, T8 * Td); |
| 709 |
{
|
| 710 |
E Tr, Tv, TA, TC; |
| 711 |
Tr = ri[WS(rs, 5)];
|
| 712 |
Tv = ii[WS(rs, 5)];
|
| 713 |
Tw = FMA(Tq, Tr, Tu * Tv); |
| 714 |
T2H = FNMS(Tu, Tr, Tq * Tv); |
| 715 |
TA = ri[WS(rs, 15)];
|
| 716 |
TC = ii[WS(rs, 15)];
|
| 717 |
TD = FMA(Tz, TA, TB * TC); |
| 718 |
T2I = FNMS(TB, TA, Tz * TC); |
| 719 |
} |
| 720 |
{
|
| 721 |
E Tf, TE, T4y, T4z; |
| 722 |
Tf = T1 + Te; |
| 723 |
TE = Tw + TD; |
| 724 |
TF = Tf - TE; |
| 725 |
T2b = Tf + TE; |
| 726 |
T4y = T48 - T47; |
| 727 |
T4z = Tw - TD; |
| 728 |
T4A = T4y - T4z; |
| 729 |
T4J = T4z + T4y; |
| 730 |
} |
| 731 |
{
|
| 732 |
E T2G, T2J, T46, T49; |
| 733 |
T2G = T1 - Te; |
| 734 |
T2J = T2H - T2I; |
| 735 |
T2K = T2G - T2J; |
| 736 |
T3r = T2G + T2J; |
| 737 |
T46 = T2H + T2I; |
| 738 |
T49 = T47 + T48; |
| 739 |
T4a = T46 + T49; |
| 740 |
T4m = T49 - T46; |
| 741 |
} |
| 742 |
} |
| 743 |
{
|
| 744 |
E T1D, T3A, T2l, T2W, T27, T3E, T2r, T34, T1M, T3B, T2m, T2Z, T1W, T3D, T2q; |
| 745 |
E T31; |
| 746 |
{
|
| 747 |
E T1x, T2j, T1C, T2k; |
| 748 |
{
|
| 749 |
E T1u, T1w, T1z, T1B; |
| 750 |
T1u = ri[WS(rs, 8)];
|
| 751 |
T1w = ii[WS(rs, 8)];
|
| 752 |
T1x = FMA(T1t, T1u, T1v * T1w); |
| 753 |
T2j = FNMS(T1v, T1u, T1t * T1w); |
| 754 |
T1z = ri[WS(rs, 18)];
|
| 755 |
T1B = ii[WS(rs, 18)];
|
| 756 |
T1C = FMA(T1y, T1z, T1A * T1B); |
| 757 |
T2k = FNMS(T1A, T1z, T1y * T1B); |
| 758 |
} |
| 759 |
T1D = T1x + T1C; |
| 760 |
T3A = T2j + T2k; |
| 761 |
T2l = T2j - T2k; |
| 762 |
T2W = T1x - T1C; |
| 763 |
} |
| 764 |
{
|
| 765 |
E T21, T32, T26, T33; |
| 766 |
{
|
| 767 |
E T1Y, T20, T23, T25; |
| 768 |
T1Y = ri[WS(rs, 17)];
|
| 769 |
T20 = ii[WS(rs, 17)];
|
| 770 |
T21 = FMA(T1X, T1Y, T1Z * T20); |
| 771 |
T32 = FNMS(T1Z, T1Y, T1X * T20); |
| 772 |
T23 = ri[WS(rs, 7)];
|
| 773 |
T25 = ii[WS(rs, 7)];
|
| 774 |
T26 = FMA(T22, T23, T24 * T25); |
| 775 |
T33 = FNMS(T24, T23, T22 * T25); |
| 776 |
} |
| 777 |
T27 = T21 + T26; |
| 778 |
T3E = T32 + T33; |
| 779 |
T2r = T21 - T26; |
| 780 |
T34 = T32 - T33; |
| 781 |
} |
| 782 |
{
|
| 783 |
E T1I, T2X, T1L, T2Y; |
| 784 |
{
|
| 785 |
E T1F, T1H, T1J, T1K; |
| 786 |
T1F = ri[WS(rs, 13)];
|
| 787 |
T1H = ii[WS(rs, 13)];
|
| 788 |
T1I = FMA(T1E, T1F, T1G * T1H); |
| 789 |
T2X = FNMS(T1G, T1F, T1E * T1H); |
| 790 |
T1J = ri[WS(rs, 3)];
|
| 791 |
T1K = ii[WS(rs, 3)];
|
| 792 |
T1L = FMA(Tg, T1J, Ti * T1K); |
| 793 |
T2Y = FNMS(Ti, T1J, Tg * T1K); |
| 794 |
} |
| 795 |
T1M = T1I + T1L; |
| 796 |
T3B = T2X + T2Y; |
| 797 |
T2m = T1I - T1L; |
| 798 |
T2Z = T2X - T2Y; |
| 799 |
} |
| 800 |
{
|
| 801 |
E T1S, T2o, T1V, T2p; |
| 802 |
{
|
| 803 |
E T1P, T1R, T1T, T1U; |
| 804 |
T1P = ri[WS(rs, 12)];
|
| 805 |
T1R = ii[WS(rs, 12)];
|
| 806 |
T1S = FMA(T1O, T1P, T1Q * T1R); |
| 807 |
T2o = FNMS(T1Q, T1P, T1O * T1R); |
| 808 |
T1T = ri[WS(rs, 2)];
|
| 809 |
T1U = ii[WS(rs, 2)];
|
| 810 |
T1V = FMA(T1f, T1T, T1h * T1U); |
| 811 |
T2p = FNMS(T1h, T1T, T1f * T1U); |
| 812 |
} |
| 813 |
T1W = T1S + T1V; |
| 814 |
T3D = T2o + T2p; |
| 815 |
T2q = T2o - T2p; |
| 816 |
T31 = T1S - T1V; |
| 817 |
} |
| 818 |
T1N = T1D - T1M; |
| 819 |
T28 = T1W - T27; |
| 820 |
T29 = T1N + T28; |
| 821 |
T3C = T3A - T3B; |
| 822 |
T3F = T3D - T3E; |
| 823 |
T4o = T3C + T3F; |
| 824 |
T3X = T3A + T3B; |
| 825 |
T3Y = T3D + T3E; |
| 826 |
T44 = T3X + T3Y; |
| 827 |
T2f = T1D + T1M; |
| 828 |
T2g = T1W + T27; |
| 829 |
T2h = T2f + T2g; |
| 830 |
T2n = T2l + T2m; |
| 831 |
T2s = T2q + T2r; |
| 832 |
T4L = T2n + T2s; |
| 833 |
T3g = T2l - T2m; |
| 834 |
T3h = T2q - T2r; |
| 835 |
T4w = T3g + T3h; |
| 836 |
T3n = T2W + T2Z; |
| 837 |
T3o = T31 + T34; |
| 838 |
T3p = T3n + T3o; |
| 839 |
T30 = T2W - T2Z; |
| 840 |
T35 = T31 - T34; |
| 841 |
T36 = T30 + T35; |
| 842 |
} |
| 843 |
{
|
| 844 |
E TO, T3H, T2w, T2L, T1q, T3L, T2C, T2T, TV, T3I, T2x, T2O, T1b, T3K, T2B; |
| 845 |
E T2Q; |
| 846 |
{
|
| 847 |
E TI, T2u, TN, T2v; |
| 848 |
{
|
| 849 |
E TG, TH, TK, TM; |
| 850 |
TG = ri[WS(rs, 4)];
|
| 851 |
TH = ii[WS(rs, 4)];
|
| 852 |
TI = FMA(Tk, TG, To * TH); |
| 853 |
T2u = FNMS(To, TG, Tk * TH); |
| 854 |
TK = ri[WS(rs, 14)];
|
| 855 |
TM = ii[WS(rs, 14)];
|
| 856 |
TN = FMA(TJ, TK, TL * TM); |
| 857 |
T2v = FNMS(TL, TK, TJ * TM); |
| 858 |
} |
| 859 |
TO = TI + TN; |
| 860 |
T3H = T2u + T2v; |
| 861 |
T2w = T2u - T2v; |
| 862 |
T2L = TI - TN; |
| 863 |
} |
| 864 |
{
|
| 865 |
E T1e, T2R, T1p, T2S; |
| 866 |
{
|
| 867 |
E T1c, T1d, T1k, T1o; |
| 868 |
T1c = ri[WS(rs, 1)];
|
| 869 |
T1d = ii[WS(rs, 1)];
|
| 870 |
T1e = FMA(T2, T1c, T5 * T1d); |
| 871 |
T2R = FNMS(T5, T1c, T2 * T1d); |
| 872 |
T1k = ri[WS(rs, 11)];
|
| 873 |
T1o = ii[WS(rs, 11)];
|
| 874 |
T1p = FMA(T1j, T1k, T1n * T1o); |
| 875 |
T2S = FNMS(T1n, T1k, T1j * T1o); |
| 876 |
} |
| 877 |
T1q = T1e + T1p; |
| 878 |
T3L = T2R + T2S; |
| 879 |
T2C = T1e - T1p; |
| 880 |
T2T = T2R - T2S; |
| 881 |
} |
| 882 |
{
|
| 883 |
E TR, T2M, TU, T2N; |
| 884 |
{
|
| 885 |
E TP, TQ, TS, TT; |
| 886 |
TP = ri[WS(rs, 9)];
|
| 887 |
TQ = ii[WS(rs, 9)];
|
| 888 |
TR = FMA(T3, TP, T6 * TQ); |
| 889 |
T2M = FNMS(T6, TP, T3 * TQ); |
| 890 |
TS = ri[WS(rs, 19)];
|
| 891 |
TT = ii[WS(rs, 19)];
|
| 892 |
TU = FMA(Tx, TS, Ty * TT); |
| 893 |
T2N = FNMS(Ty, TS, Tx * TT); |
| 894 |
} |
| 895 |
TV = TR + TU; |
| 896 |
T3I = T2M + T2N; |
| 897 |
T2x = TR - TU; |
| 898 |
T2O = T2M - T2N; |
| 899 |
} |
| 900 |
{
|
| 901 |
E T11, T2z, T1a, T2A; |
| 902 |
{
|
| 903 |
E TY, T10, T15, T19; |
| 904 |
TY = ri[WS(rs, 16)];
|
| 905 |
T10 = ii[WS(rs, 16)];
|
| 906 |
T11 = FMA(TX, TY, TZ * T10); |
| 907 |
T2z = FNMS(TZ, TY, TX * T10); |
| 908 |
T15 = ri[WS(rs, 6)];
|
| 909 |
T19 = ii[WS(rs, 6)];
|
| 910 |
T1a = FMA(T14, T15, T18 * T19); |
| 911 |
T2A = FNMS(T18, T15, T14 * T19); |
| 912 |
} |
| 913 |
T1b = T11 + T1a; |
| 914 |
T3K = T2z + T2A; |
| 915 |
T2B = T2z - T2A; |
| 916 |
T2Q = T11 - T1a; |
| 917 |
} |
| 918 |
TW = TO - TV; |
| 919 |
T1r = T1b - T1q; |
| 920 |
T1s = TW + T1r; |
| 921 |
T3J = T3H - T3I; |
| 922 |
T3M = T3K - T3L; |
| 923 |
T4n = T3J + T3M; |
| 924 |
T3U = T3H + T3I; |
| 925 |
T3V = T3K + T3L; |
| 926 |
T43 = T3U + T3V; |
| 927 |
T2c = TO + TV; |
| 928 |
T2d = T1b + T1q; |
| 929 |
T2e = T2c + T2d; |
| 930 |
T2y = T2w + T2x; |
| 931 |
T2D = T2B + T2C; |
| 932 |
T4K = T2y + T2D; |
| 933 |
T3d = T2w - T2x; |
| 934 |
T3e = T2B - T2C; |
| 935 |
T4v = T3d + T3e; |
| 936 |
T3k = T2L + T2O; |
| 937 |
T3l = T2Q + T2T; |
| 938 |
T3m = T3k + T3l; |
| 939 |
T2P = T2L - T2O; |
| 940 |
T2U = T2Q - T2T; |
| 941 |
T2V = T2P + T2U; |
| 942 |
} |
| 943 |
{
|
| 944 |
E T3y, T2a, T3x, T3O, T3Q, T3G, T3N, T3P, T3z; |
| 945 |
T3y = KP559016994 * (T1s - T29); |
| 946 |
T2a = T1s + T29; |
| 947 |
T3x = FNMS(KP250000000, T2a, TF); |
| 948 |
T3G = T3C - T3F; |
| 949 |
T3N = T3J - T3M; |
| 950 |
T3O = FNMS(KP587785252, T3N, KP951056516 * T3G); |
| 951 |
T3Q = FMA(KP951056516, T3N, KP587785252 * T3G); |
| 952 |
ri[WS(rs, 10)] = TF + T2a;
|
| 953 |
T3P = T3y + T3x; |
| 954 |
ri[WS(rs, 14)] = T3P - T3Q;
|
| 955 |
ri[WS(rs, 6)] = T3P + T3Q;
|
| 956 |
T3z = T3x - T3y; |
| 957 |
ri[WS(rs, 2)] = T3z - T3O;
|
| 958 |
ri[WS(rs, 18)] = T3z + T3O;
|
| 959 |
} |
| 960 |
{
|
| 961 |
E T4r, T4p, T4q, T4l, T4u, T4j, T4k, T4t, T4s; |
| 962 |
T4r = KP559016994 * (T4n - T4o); |
| 963 |
T4p = T4n + T4o; |
| 964 |
T4q = FNMS(KP250000000, T4p, T4m); |
| 965 |
T4j = T1N - T28; |
| 966 |
T4k = TW - T1r; |
| 967 |
T4l = FNMS(KP587785252, T4k, KP951056516 * T4j); |
| 968 |
T4u = FMA(KP951056516, T4k, KP587785252 * T4j); |
| 969 |
ii[WS(rs, 10)] = T4p + T4m;
|
| 970 |
T4t = T4r + T4q; |
| 971 |
ii[WS(rs, 6)] = T4t - T4u;
|
| 972 |
ii[WS(rs, 14)] = T4u + T4t;
|
| 973 |
T4s = T4q - T4r; |
| 974 |
ii[WS(rs, 2)] = T4l + T4s;
|
| 975 |
ii[WS(rs, 18)] = T4s - T4l;
|
| 976 |
} |
| 977 |
{
|
| 978 |
E T3R, T2i, T3S, T40, T42, T3W, T3Z, T41, T3T; |
| 979 |
T3R = KP559016994 * (T2e - T2h); |
| 980 |
T2i = T2e + T2h; |
| 981 |
T3S = FNMS(KP250000000, T2i, T2b); |
| 982 |
T3W = T3U - T3V; |
| 983 |
T3Z = T3X - T3Y; |
| 984 |
T40 = FMA(KP951056516, T3W, KP587785252 * T3Z); |
| 985 |
T42 = FNMS(KP587785252, T3W, KP951056516 * T3Z); |
| 986 |
ri[0] = T2b + T2i;
|
| 987 |
T41 = T3S - T3R; |
| 988 |
ri[WS(rs, 12)] = T41 - T42;
|
| 989 |
ri[WS(rs, 8)] = T41 + T42;
|
| 990 |
T3T = T3R + T3S; |
| 991 |
ri[WS(rs, 4)] = T3T - T40;
|
| 992 |
ri[WS(rs, 16)] = T3T + T40;
|
| 993 |
} |
| 994 |
{
|
| 995 |
E T4e, T45, T4f, T4d, T4i, T4b, T4c, T4h, T4g; |
| 996 |
T4e = KP559016994 * (T43 - T44); |
| 997 |
T45 = T43 + T44; |
| 998 |
T4f = FNMS(KP250000000, T45, T4a); |
| 999 |
T4b = T2c - T2d; |
| 1000 |
T4c = T2f - T2g; |
| 1001 |
T4d = FMA(KP951056516, T4b, KP587785252 * T4c); |
| 1002 |
T4i = FNMS(KP587785252, T4b, KP951056516 * T4c); |
| 1003 |
ii[0] = T45 + T4a;
|
| 1004 |
T4h = T4f - T4e; |
| 1005 |
ii[WS(rs, 8)] = T4h - T4i;
|
| 1006 |
ii[WS(rs, 12)] = T4i + T4h;
|
| 1007 |
T4g = T4e + T4f; |
| 1008 |
ii[WS(rs, 4)] = T4d + T4g;
|
| 1009 |
ii[WS(rs, 16)] = T4g - T4d;
|
| 1010 |
} |
| 1011 |
{
|
| 1012 |
E T39, T37, T38, T2F, T3b, T2t, T2E, T3c, T3a; |
| 1013 |
T39 = KP559016994 * (T2V - T36); |
| 1014 |
T37 = T2V + T36; |
| 1015 |
T38 = FNMS(KP250000000, T37, T2K); |
| 1016 |
T2t = T2n - T2s; |
| 1017 |
T2E = T2y - T2D; |
| 1018 |
T2F = FNMS(KP587785252, T2E, KP951056516 * T2t); |
| 1019 |
T3b = FMA(KP951056516, T2E, KP587785252 * T2t); |
| 1020 |
ri[WS(rs, 15)] = T2K + T37;
|
| 1021 |
T3c = T39 + T38; |
| 1022 |
ri[WS(rs, 11)] = T3b + T3c;
|
| 1023 |
ri[WS(rs, 19)] = T3c - T3b;
|
| 1024 |
T3a = T38 - T39; |
| 1025 |
ri[WS(rs, 3)] = T2F + T3a;
|
| 1026 |
ri[WS(rs, 7)] = T3a - T2F;
|
| 1027 |
} |
| 1028 |
{
|
| 1029 |
E T4O, T4M, T4N, T4S, T4U, T4Q, T4R, T4T, T4P; |
| 1030 |
T4O = KP559016994 * (T4K - T4L); |
| 1031 |
T4M = T4K + T4L; |
| 1032 |
T4N = FNMS(KP250000000, T4M, T4J); |
| 1033 |
T4Q = T30 - T35; |
| 1034 |
T4R = T2P - T2U; |
| 1035 |
T4S = FNMS(KP587785252, T4R, KP951056516 * T4Q); |
| 1036 |
T4U = FMA(KP951056516, T4R, KP587785252 * T4Q); |
| 1037 |
ii[WS(rs, 15)] = T4M + T4J;
|
| 1038 |
T4T = T4O + T4N; |
| 1039 |
ii[WS(rs, 11)] = T4T - T4U;
|
| 1040 |
ii[WS(rs, 19)] = T4U + T4T;
|
| 1041 |
T4P = T4N - T4O; |
| 1042 |
ii[WS(rs, 3)] = T4P - T4S;
|
| 1043 |
ii[WS(rs, 7)] = T4S + T4P;
|
| 1044 |
} |
| 1045 |
{
|
| 1046 |
E T3q, T3s, T3t, T3j, T3v, T3f, T3i, T3w, T3u; |
| 1047 |
T3q = KP559016994 * (T3m - T3p); |
| 1048 |
T3s = T3m + T3p; |
| 1049 |
T3t = FNMS(KP250000000, T3s, T3r); |
| 1050 |
T3f = T3d - T3e; |
| 1051 |
T3i = T3g - T3h; |
| 1052 |
T3j = FMA(KP951056516, T3f, KP587785252 * T3i); |
| 1053 |
T3v = FNMS(KP587785252, T3f, KP951056516 * T3i); |
| 1054 |
ri[WS(rs, 5)] = T3r + T3s;
|
| 1055 |
T3w = T3t - T3q; |
| 1056 |
ri[WS(rs, 13)] = T3v + T3w;
|
| 1057 |
ri[WS(rs, 17)] = T3w - T3v;
|
| 1058 |
T3u = T3q + T3t; |
| 1059 |
ri[WS(rs, 1)] = T3j + T3u;
|
| 1060 |
ri[WS(rs, 9)] = T3u - T3j;
|
| 1061 |
} |
| 1062 |
{
|
| 1063 |
E T4x, T4B, T4C, T4G, T4I, T4E, T4F, T4H, T4D; |
| 1064 |
T4x = KP559016994 * (T4v - T4w); |
| 1065 |
T4B = T4v + T4w; |
| 1066 |
T4C = FNMS(KP250000000, T4B, T4A); |
| 1067 |
T4E = T3k - T3l; |
| 1068 |
T4F = T3n - T3o; |
| 1069 |
T4G = FMA(KP951056516, T4E, KP587785252 * T4F); |
| 1070 |
T4I = FNMS(KP587785252, T4E, KP951056516 * T4F); |
| 1071 |
ii[WS(rs, 5)] = T4B + T4A;
|
| 1072 |
T4H = T4C - T4x; |
| 1073 |
ii[WS(rs, 13)] = T4H - T4I;
|
| 1074 |
ii[WS(rs, 17)] = T4I + T4H;
|
| 1075 |
T4D = T4x + T4C; |
| 1076 |
ii[WS(rs, 1)] = T4D - T4G;
|
| 1077 |
ii[WS(rs, 9)] = T4G + T4D;
|
| 1078 |
} |
| 1079 |
} |
| 1080 |
} |
| 1081 |
} |
| 1082 |
} |
| 1083 |
|
| 1084 |
static const tw_instr twinstr[] = { |
| 1085 |
{TW_CEXP, 0, 1},
|
| 1086 |
{TW_CEXP, 0, 3},
|
| 1087 |
{TW_CEXP, 0, 9},
|
| 1088 |
{TW_CEXP, 0, 19},
|
| 1089 |
{TW_NEXT, 1, 0}
|
| 1090 |
}; |
| 1091 |
|
| 1092 |
static const ct_desc desc = { 20, "t2_20", twinstr, &GENUS, {204, 92, 72, 0}, 0, 0, 0 }; |
| 1093 |
|
| 1094 |
void X(codelet_t2_20) (planner *p) {
|
| 1095 |
X(kdft_dit_register) (p, t2_20, &desc); |
| 1096 |
} |
| 1097 |
#endif
|