To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t2_16.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (21.9 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:19 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 196 FP additions, 134 FP multiplications,
|
| 32 |
* (or, 104 additions, 42 multiplications, 92 fused multiply/add),
|
| 33 |
* 90 stack variables, 3 constants, and 64 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 40 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 41 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 42 |
{
|
| 43 |
INT m; |
| 44 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { |
| 45 |
E T2, Tf, TM, TO, T3, T6, T5, Th, Tz, Ti, T7, TZ, TT, Tq, TW; |
| 46 |
E Tb, Tu, TP, TI, TF, TC, T1z, T1O, T1D, T1L, Tm, T1f, T1p, T1j, T1m; |
| 47 |
{
|
| 48 |
E TN, TS, T4, Tp, Ta, Tt, Tl, Tg; |
| 49 |
T2 = W[0];
|
| 50 |
Tf = W[2];
|
| 51 |
Tg = T2 * Tf; |
| 52 |
TM = W[6];
|
| 53 |
TN = T2 * TM; |
| 54 |
TO = W[7];
|
| 55 |
TS = T2 * TO; |
| 56 |
T3 = W[4];
|
| 57 |
T4 = T2 * T3; |
| 58 |
Tp = Tf * T3; |
| 59 |
T6 = W[5];
|
| 60 |
Ta = T2 * T6; |
| 61 |
Tt = Tf * T6; |
| 62 |
T5 = W[1];
|
| 63 |
Th = W[3];
|
| 64 |
Tl = T2 * Th; |
| 65 |
Tz = FMA(T5, Th, Tg); |
| 66 |
Ti = FNMS(T5, Th, Tg); |
| 67 |
T7 = FMA(T5, T6, T4); |
| 68 |
TZ = FNMS(Th, T3, Tt); |
| 69 |
TT = FNMS(T5, TM, TS); |
| 70 |
Tq = FNMS(Th, T6, Tp); |
| 71 |
TW = FMA(Th, T6, Tp); |
| 72 |
Tb = FNMS(T5, T3, Ta); |
| 73 |
Tu = FMA(Th, T3, Tt); |
| 74 |
TP = FMA(T5, TO, TN); |
| 75 |
TI = FMA(T5, T3, Ta); |
| 76 |
TF = FNMS(T5, T6, T4); |
| 77 |
{
|
| 78 |
E T1y, T1C, T1e, T1i; |
| 79 |
T1y = Tz * T3; |
| 80 |
T1C = Tz * T6; |
| 81 |
TC = FNMS(T5, Tf, Tl); |
| 82 |
T1z = FMA(TC, T6, T1y); |
| 83 |
T1O = FMA(TC, T3, T1C); |
| 84 |
T1D = FNMS(TC, T3, T1C); |
| 85 |
T1L = FNMS(TC, T6, T1y); |
| 86 |
T1e = Ti * T3; |
| 87 |
T1i = Ti * T6; |
| 88 |
Tm = FMA(T5, Tf, Tl); |
| 89 |
T1f = FMA(Tm, T6, T1e); |
| 90 |
T1p = FMA(Tm, T3, T1i); |
| 91 |
T1j = FNMS(Tm, T3, T1i); |
| 92 |
T1m = FNMS(Tm, T6, T1e); |
| 93 |
} |
| 94 |
} |
| 95 |
{
|
| 96 |
E Te, T1U, T3A, T3L, T1G, T2D, T2A, T3h, T1R, T2B, T2I, T3i, Tx, T3M, T1Z; |
| 97 |
E T3w, TL, T26, T25, T37, T1d, T2o, T2l, T3c, T1s, T2m, T2t, T3d, T12, T28; |
| 98 |
E T2d, T38; |
| 99 |
{
|
| 100 |
E T1, T3z, T8, T9, Tc, T3x, Td, T3y; |
| 101 |
T1 = ri[0];
|
| 102 |
T3z = ii[0];
|
| 103 |
T8 = ri[WS(rs, 8)];
|
| 104 |
T9 = T7 * T8; |
| 105 |
Tc = ii[WS(rs, 8)];
|
| 106 |
T3x = T7 * Tc; |
| 107 |
Td = FMA(Tb, Tc, T9); |
| 108 |
Te = T1 + Td; |
| 109 |
T1U = T1 - Td; |
| 110 |
T3y = FNMS(Tb, T8, T3x); |
| 111 |
T3A = T3y + T3z; |
| 112 |
T3L = T3z - T3y; |
| 113 |
} |
| 114 |
{
|
| 115 |
E T1u, T1v, T1w, T2w, T1A, T1B, T1E, T2y; |
| 116 |
T1u = ri[WS(rs, 15)];
|
| 117 |
T1v = TM * T1u; |
| 118 |
T1w = ii[WS(rs, 15)];
|
| 119 |
T2w = TM * T1w; |
| 120 |
T1A = ri[WS(rs, 7)];
|
| 121 |
T1B = T1z * T1A; |
| 122 |
T1E = ii[WS(rs, 7)];
|
| 123 |
T2y = T1z * T1E; |
| 124 |
{
|
| 125 |
E T1x, T1F, T2x, T2z; |
| 126 |
T1x = FMA(TO, T1w, T1v); |
| 127 |
T1F = FMA(T1D, T1E, T1B); |
| 128 |
T1G = T1x + T1F; |
| 129 |
T2D = T1x - T1F; |
| 130 |
T2x = FNMS(TO, T1u, T2w); |
| 131 |
T2z = FNMS(T1D, T1A, T2y); |
| 132 |
T2A = T2x - T2z; |
| 133 |
T3h = T2x + T2z; |
| 134 |
} |
| 135 |
} |
| 136 |
{
|
| 137 |
E T1H, T1I, T1J, T2E, T1M, T1N, T1P, T2G; |
| 138 |
T1H = ri[WS(rs, 3)];
|
| 139 |
T1I = Tf * T1H; |
| 140 |
T1J = ii[WS(rs, 3)];
|
| 141 |
T2E = Tf * T1J; |
| 142 |
T1M = ri[WS(rs, 11)];
|
| 143 |
T1N = T1L * T1M; |
| 144 |
T1P = ii[WS(rs, 11)];
|
| 145 |
T2G = T1L * T1P; |
| 146 |
{
|
| 147 |
E T1K, T1Q, T2F, T2H; |
| 148 |
T1K = FMA(Th, T1J, T1I); |
| 149 |
T1Q = FMA(T1O, T1P, T1N); |
| 150 |
T1R = T1K + T1Q; |
| 151 |
T2B = T1K - T1Q; |
| 152 |
T2F = FNMS(Th, T1H, T2E); |
| 153 |
T2H = FNMS(T1O, T1M, T2G); |
| 154 |
T2I = T2F - T2H; |
| 155 |
T3i = T2F + T2H; |
| 156 |
} |
| 157 |
} |
| 158 |
{
|
| 159 |
E Tj, Tk, Tn, T1V, Tr, Ts, Tv, T1X; |
| 160 |
Tj = ri[WS(rs, 4)];
|
| 161 |
Tk = Ti * Tj; |
| 162 |
Tn = ii[WS(rs, 4)];
|
| 163 |
T1V = Ti * Tn; |
| 164 |
Tr = ri[WS(rs, 12)];
|
| 165 |
Ts = Tq * Tr; |
| 166 |
Tv = ii[WS(rs, 12)];
|
| 167 |
T1X = Tq * Tv; |
| 168 |
{
|
| 169 |
E To, Tw, T1W, T1Y; |
| 170 |
To = FMA(Tm, Tn, Tk); |
| 171 |
Tw = FMA(Tu, Tv, Ts); |
| 172 |
Tx = To + Tw; |
| 173 |
T3M = To - Tw; |
| 174 |
T1W = FNMS(Tm, Tj, T1V); |
| 175 |
T1Y = FNMS(Tu, Tr, T1X); |
| 176 |
T1Z = T1W - T1Y; |
| 177 |
T3w = T1W + T1Y; |
| 178 |
} |
| 179 |
} |
| 180 |
{
|
| 181 |
E TA, TB, TD, T21, TG, TH, TJ, T23; |
| 182 |
TA = ri[WS(rs, 2)];
|
| 183 |
TB = Tz * TA; |
| 184 |
TD = ii[WS(rs, 2)];
|
| 185 |
T21 = Tz * TD; |
| 186 |
TG = ri[WS(rs, 10)];
|
| 187 |
TH = TF * TG; |
| 188 |
TJ = ii[WS(rs, 10)];
|
| 189 |
T23 = TF * TJ; |
| 190 |
{
|
| 191 |
E TE, TK, T22, T24; |
| 192 |
TE = FMA(TC, TD, TB); |
| 193 |
TK = FMA(TI, TJ, TH); |
| 194 |
TL = TE + TK; |
| 195 |
T26 = TE - TK; |
| 196 |
T22 = FNMS(TC, TA, T21); |
| 197 |
T24 = FNMS(TI, TG, T23); |
| 198 |
T25 = T22 - T24; |
| 199 |
T37 = T22 + T24; |
| 200 |
} |
| 201 |
} |
| 202 |
{
|
| 203 |
E T15, T16, T17, T2h, T19, T1a, T1b, T2j; |
| 204 |
T15 = ri[WS(rs, 1)];
|
| 205 |
T16 = T2 * T15; |
| 206 |
T17 = ii[WS(rs, 1)];
|
| 207 |
T2h = T2 * T17; |
| 208 |
T19 = ri[WS(rs, 9)];
|
| 209 |
T1a = T3 * T19; |
| 210 |
T1b = ii[WS(rs, 9)];
|
| 211 |
T2j = T3 * T1b; |
| 212 |
{
|
| 213 |
E T18, T1c, T2i, T2k; |
| 214 |
T18 = FMA(T5, T17, T16); |
| 215 |
T1c = FMA(T6, T1b, T1a); |
| 216 |
T1d = T18 + T1c; |
| 217 |
T2o = T18 - T1c; |
| 218 |
T2i = FNMS(T5, T15, T2h); |
| 219 |
T2k = FNMS(T6, T19, T2j); |
| 220 |
T2l = T2i - T2k; |
| 221 |
T3c = T2i + T2k; |
| 222 |
} |
| 223 |
} |
| 224 |
{
|
| 225 |
E T1g, T1h, T1k, T2p, T1n, T1o, T1q, T2r; |
| 226 |
T1g = ri[WS(rs, 5)];
|
| 227 |
T1h = T1f * T1g; |
| 228 |
T1k = ii[WS(rs, 5)];
|
| 229 |
T2p = T1f * T1k; |
| 230 |
T1n = ri[WS(rs, 13)];
|
| 231 |
T1o = T1m * T1n; |
| 232 |
T1q = ii[WS(rs, 13)];
|
| 233 |
T2r = T1m * T1q; |
| 234 |
{
|
| 235 |
E T1l, T1r, T2q, T2s; |
| 236 |
T1l = FMA(T1j, T1k, T1h); |
| 237 |
T1r = FMA(T1p, T1q, T1o); |
| 238 |
T1s = T1l + T1r; |
| 239 |
T2m = T1l - T1r; |
| 240 |
T2q = FNMS(T1j, T1g, T2p); |
| 241 |
T2s = FNMS(T1p, T1n, T2r); |
| 242 |
T2t = T2q - T2s; |
| 243 |
T3d = T2q + T2s; |
| 244 |
} |
| 245 |
} |
| 246 |
{
|
| 247 |
E TQ, TR, TU, T29, TX, TY, T10, T2b; |
| 248 |
TQ = ri[WS(rs, 14)];
|
| 249 |
TR = TP * TQ; |
| 250 |
TU = ii[WS(rs, 14)];
|
| 251 |
T29 = TP * TU; |
| 252 |
TX = ri[WS(rs, 6)];
|
| 253 |
TY = TW * TX; |
| 254 |
T10 = ii[WS(rs, 6)];
|
| 255 |
T2b = TW * T10; |
| 256 |
{
|
| 257 |
E TV, T11, T2a, T2c; |
| 258 |
TV = FMA(TT, TU, TR); |
| 259 |
T11 = FMA(TZ, T10, TY); |
| 260 |
T12 = TV + T11; |
| 261 |
T28 = TV - T11; |
| 262 |
T2a = FNMS(TT, TQ, T29); |
| 263 |
T2c = FNMS(TZ, TX, T2b); |
| 264 |
T2d = T2a - T2c; |
| 265 |
T38 = T2a + T2c; |
| 266 |
} |
| 267 |
} |
| 268 |
{
|
| 269 |
E T14, T3q, T3C, T3E, T1T, T3D, T3t, T3u; |
| 270 |
{
|
| 271 |
E Ty, T13, T3v, T3B; |
| 272 |
Ty = Te + Tx; |
| 273 |
T13 = TL + T12; |
| 274 |
T14 = Ty + T13; |
| 275 |
T3q = Ty - T13; |
| 276 |
T3v = T37 + T38; |
| 277 |
T3B = T3w + T3A; |
| 278 |
T3C = T3v + T3B; |
| 279 |
T3E = T3B - T3v; |
| 280 |
} |
| 281 |
{
|
| 282 |
E T1t, T1S, T3r, T3s; |
| 283 |
T1t = T1d + T1s; |
| 284 |
T1S = T1G + T1R; |
| 285 |
T1T = T1t + T1S; |
| 286 |
T3D = T1S - T1t; |
| 287 |
T3r = T3c + T3d; |
| 288 |
T3s = T3h + T3i; |
| 289 |
T3t = T3r - T3s; |
| 290 |
T3u = T3r + T3s; |
| 291 |
} |
| 292 |
ri[WS(rs, 8)] = T14 - T1T;
|
| 293 |
ii[WS(rs, 8)] = T3C - T3u;
|
| 294 |
ri[0] = T14 + T1T;
|
| 295 |
ii[0] = T3u + T3C;
|
| 296 |
ri[WS(rs, 12)] = T3q - T3t;
|
| 297 |
ii[WS(rs, 12)] = T3E - T3D;
|
| 298 |
ri[WS(rs, 4)] = T3q + T3t;
|
| 299 |
ii[WS(rs, 4)] = T3D + T3E;
|
| 300 |
} |
| 301 |
{
|
| 302 |
E T3a, T3m, T3H, T3J, T3f, T3n, T3k, T3o; |
| 303 |
{
|
| 304 |
E T36, T39, T3F, T3G; |
| 305 |
T36 = Te - Tx; |
| 306 |
T39 = T37 - T38; |
| 307 |
T3a = T36 + T39; |
| 308 |
T3m = T36 - T39; |
| 309 |
T3F = T12 - TL; |
| 310 |
T3G = T3A - T3w; |
| 311 |
T3H = T3F + T3G; |
| 312 |
T3J = T3G - T3F; |
| 313 |
} |
| 314 |
{
|
| 315 |
E T3b, T3e, T3g, T3j; |
| 316 |
T3b = T1d - T1s; |
| 317 |
T3e = T3c - T3d; |
| 318 |
T3f = T3b + T3e; |
| 319 |
T3n = T3e - T3b; |
| 320 |
T3g = T1G - T1R; |
| 321 |
T3j = T3h - T3i; |
| 322 |
T3k = T3g - T3j; |
| 323 |
T3o = T3g + T3j; |
| 324 |
} |
| 325 |
{
|
| 326 |
E T3l, T3I, T3p, T3K; |
| 327 |
T3l = T3f + T3k; |
| 328 |
ri[WS(rs, 10)] = FNMS(KP707106781, T3l, T3a);
|
| 329 |
ri[WS(rs, 2)] = FMA(KP707106781, T3l, T3a);
|
| 330 |
T3I = T3n + T3o; |
| 331 |
ii[WS(rs, 2)] = FMA(KP707106781, T3I, T3H);
|
| 332 |
ii[WS(rs, 10)] = FNMS(KP707106781, T3I, T3H);
|
| 333 |
T3p = T3n - T3o; |
| 334 |
ri[WS(rs, 14)] = FNMS(KP707106781, T3p, T3m);
|
| 335 |
ri[WS(rs, 6)] = FMA(KP707106781, T3p, T3m);
|
| 336 |
T3K = T3k - T3f; |
| 337 |
ii[WS(rs, 6)] = FMA(KP707106781, T3K, T3J);
|
| 338 |
ii[WS(rs, 14)] = FNMS(KP707106781, T3K, T3J);
|
| 339 |
} |
| 340 |
} |
| 341 |
{
|
| 342 |
E T20, T3N, T3T, T2Q, T2f, T3O, T30, T34, T2T, T3U, T2v, T2N, T2X, T33, T2K; |
| 343 |
E T2O; |
| 344 |
{
|
| 345 |
E T27, T2e, T2n, T2u; |
| 346 |
T20 = T1U - T1Z; |
| 347 |
T3N = T3L - T3M; |
| 348 |
T3T = T3M + T3L; |
| 349 |
T2Q = T1U + T1Z; |
| 350 |
T27 = T25 - T26; |
| 351 |
T2e = T28 + T2d; |
| 352 |
T2f = T27 - T2e; |
| 353 |
T3O = T27 + T2e; |
| 354 |
{
|
| 355 |
E T2Y, T2Z, T2R, T2S; |
| 356 |
T2Y = T2D + T2I; |
| 357 |
T2Z = T2A - T2B; |
| 358 |
T30 = FNMS(KP414213562, T2Z, T2Y); |
| 359 |
T34 = FMA(KP414213562, T2Y, T2Z); |
| 360 |
T2R = T26 + T25; |
| 361 |
T2S = T28 - T2d; |
| 362 |
T2T = T2R + T2S; |
| 363 |
T3U = T2S - T2R; |
| 364 |
} |
| 365 |
T2n = T2l + T2m; |
| 366 |
T2u = T2o - T2t; |
| 367 |
T2v = FMA(KP414213562, T2u, T2n); |
| 368 |
T2N = FNMS(KP414213562, T2n, T2u); |
| 369 |
{
|
| 370 |
E T2V, T2W, T2C, T2J; |
| 371 |
T2V = T2o + T2t; |
| 372 |
T2W = T2l - T2m; |
| 373 |
T2X = FMA(KP414213562, T2W, T2V); |
| 374 |
T33 = FNMS(KP414213562, T2V, T2W); |
| 375 |
T2C = T2A + T2B; |
| 376 |
T2J = T2D - T2I; |
| 377 |
T2K = FNMS(KP414213562, T2J, T2C); |
| 378 |
T2O = FMA(KP414213562, T2C, T2J); |
| 379 |
} |
| 380 |
} |
| 381 |
{
|
| 382 |
E T2g, T2L, T3V, T3W; |
| 383 |
T2g = FMA(KP707106781, T2f, T20); |
| 384 |
T2L = T2v - T2K; |
| 385 |
ri[WS(rs, 11)] = FNMS(KP923879532, T2L, T2g);
|
| 386 |
ri[WS(rs, 3)] = FMA(KP923879532, T2L, T2g);
|
| 387 |
T3V = FMA(KP707106781, T3U, T3T); |
| 388 |
T3W = T2O - T2N; |
| 389 |
ii[WS(rs, 3)] = FMA(KP923879532, T3W, T3V);
|
| 390 |
ii[WS(rs, 11)] = FNMS(KP923879532, T3W, T3V);
|
| 391 |
} |
| 392 |
{
|
| 393 |
E T2M, T2P, T3X, T3Y; |
| 394 |
T2M = FNMS(KP707106781, T2f, T20); |
| 395 |
T2P = T2N + T2O; |
| 396 |
ri[WS(rs, 7)] = FNMS(KP923879532, T2P, T2M);
|
| 397 |
ri[WS(rs, 15)] = FMA(KP923879532, T2P, T2M);
|
| 398 |
T3X = FNMS(KP707106781, T3U, T3T); |
| 399 |
T3Y = T2v + T2K; |
| 400 |
ii[WS(rs, 7)] = FNMS(KP923879532, T3Y, T3X);
|
| 401 |
ii[WS(rs, 15)] = FMA(KP923879532, T3Y, T3X);
|
| 402 |
} |
| 403 |
{
|
| 404 |
E T2U, T31, T3P, T3Q; |
| 405 |
T2U = FMA(KP707106781, T2T, T2Q); |
| 406 |
T31 = T2X + T30; |
| 407 |
ri[WS(rs, 9)] = FNMS(KP923879532, T31, T2U);
|
| 408 |
ri[WS(rs, 1)] = FMA(KP923879532, T31, T2U);
|
| 409 |
T3P = FMA(KP707106781, T3O, T3N); |
| 410 |
T3Q = T33 + T34; |
| 411 |
ii[WS(rs, 1)] = FMA(KP923879532, T3Q, T3P);
|
| 412 |
ii[WS(rs, 9)] = FNMS(KP923879532, T3Q, T3P);
|
| 413 |
} |
| 414 |
{
|
| 415 |
E T32, T35, T3R, T3S; |
| 416 |
T32 = FNMS(KP707106781, T2T, T2Q); |
| 417 |
T35 = T33 - T34; |
| 418 |
ri[WS(rs, 13)] = FNMS(KP923879532, T35, T32);
|
| 419 |
ri[WS(rs, 5)] = FMA(KP923879532, T35, T32);
|
| 420 |
T3R = FNMS(KP707106781, T3O, T3N); |
| 421 |
T3S = T30 - T2X; |
| 422 |
ii[WS(rs, 5)] = FMA(KP923879532, T3S, T3R);
|
| 423 |
ii[WS(rs, 13)] = FNMS(KP923879532, T3S, T3R);
|
| 424 |
} |
| 425 |
} |
| 426 |
} |
| 427 |
} |
| 428 |
} |
| 429 |
} |
| 430 |
|
| 431 |
static const tw_instr twinstr[] = { |
| 432 |
{TW_CEXP, 0, 1},
|
| 433 |
{TW_CEXP, 0, 3},
|
| 434 |
{TW_CEXP, 0, 9},
|
| 435 |
{TW_CEXP, 0, 15},
|
| 436 |
{TW_NEXT, 1, 0}
|
| 437 |
}; |
| 438 |
|
| 439 |
static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {104, 42, 92, 0}, 0, 0, 0 }; |
| 440 |
|
| 441 |
void X(codelet_t2_16) (planner *p) {
|
| 442 |
X(kdft_dit_register) (p, t2_16, &desc); |
| 443 |
} |
| 444 |
#else
|
| 445 |
|
| 446 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -name t2_16 -include dft/scalar/t.h */
|
| 447 |
|
| 448 |
/*
|
| 449 |
* This function contains 196 FP additions, 108 FP multiplications,
|
| 450 |
* (or, 156 additions, 68 multiplications, 40 fused multiply/add),
|
| 451 |
* 82 stack variables, 3 constants, and 64 memory accesses
|
| 452 |
*/
|
| 453 |
#include "dft/scalar/t.h" |
| 454 |
|
| 455 |
static void t2_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 456 |
{
|
| 457 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 458 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 459 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 460 |
{
|
| 461 |
INT m; |
| 462 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(32, rs)) { |
| 463 |
E T2, T5, Tg, Ti, Tk, To, TE, TC, T6, T3, T8, TW, TJ, Tt, TU; |
| 464 |
E Tc, Tx, TH, TN, TO, TP, TR, T1f, T1k, T1b, T1i, T1y, T1H, T1u, T1F; |
| 465 |
{
|
| 466 |
E T7, Tv, Ta, Ts, T4, Tw, Tb, Tr; |
| 467 |
{
|
| 468 |
E Th, Tn, Tj, Tm; |
| 469 |
T2 = W[0];
|
| 470 |
T5 = W[1];
|
| 471 |
Tg = W[2];
|
| 472 |
Ti = W[3];
|
| 473 |
Th = T2 * Tg; |
| 474 |
Tn = T5 * Tg; |
| 475 |
Tj = T5 * Ti; |
| 476 |
Tm = T2 * Ti; |
| 477 |
Tk = Th - Tj; |
| 478 |
To = Tm + Tn; |
| 479 |
TE = Tm - Tn; |
| 480 |
TC = Th + Tj; |
| 481 |
T6 = W[5];
|
| 482 |
T7 = T5 * T6; |
| 483 |
Tv = Tg * T6; |
| 484 |
Ta = T2 * T6; |
| 485 |
Ts = Ti * T6; |
| 486 |
T3 = W[4];
|
| 487 |
T4 = T2 * T3; |
| 488 |
Tw = Ti * T3; |
| 489 |
Tb = T5 * T3; |
| 490 |
Tr = Tg * T3; |
| 491 |
} |
| 492 |
T8 = T4 + T7; |
| 493 |
TW = Tv - Tw; |
| 494 |
TJ = Ta + Tb; |
| 495 |
Tt = Tr - Ts; |
| 496 |
TU = Tr + Ts; |
| 497 |
Tc = Ta - Tb; |
| 498 |
Tx = Tv + Tw; |
| 499 |
TH = T4 - T7; |
| 500 |
TN = W[6];
|
| 501 |
TO = W[7];
|
| 502 |
TP = FMA(T2, TN, T5 * TO); |
| 503 |
TR = FNMS(T5, TN, T2 * TO); |
| 504 |
{
|
| 505 |
E T1d, T1e, T19, T1a; |
| 506 |
T1d = Tk * T6; |
| 507 |
T1e = To * T3; |
| 508 |
T1f = T1d - T1e; |
| 509 |
T1k = T1d + T1e; |
| 510 |
T19 = Tk * T3; |
| 511 |
T1a = To * T6; |
| 512 |
T1b = T19 + T1a; |
| 513 |
T1i = T19 - T1a; |
| 514 |
} |
| 515 |
{
|
| 516 |
E T1w, T1x, T1s, T1t; |
| 517 |
T1w = TC * T6; |
| 518 |
T1x = TE * T3; |
| 519 |
T1y = T1w - T1x; |
| 520 |
T1H = T1w + T1x; |
| 521 |
T1s = TC * T3; |
| 522 |
T1t = TE * T6; |
| 523 |
T1u = T1s + T1t; |
| 524 |
T1F = T1s - T1t; |
| 525 |
} |
| 526 |
} |
| 527 |
{
|
| 528 |
E Tf, T3r, T1N, T3e, TA, T3s, T1Q, T3b, TM, T2M, T1W, T2w, TZ, T2N, T21; |
| 529 |
E T2x, T1B, T1K, T2V, T2W, T2X, T2Y, T2j, T2D, T2o, T2E, T18, T1n, T2Q, T2R; |
| 530 |
E T2S, T2T, T28, T2A, T2d, T2B; |
| 531 |
{
|
| 532 |
E T1, T3d, Te, T3c, T9, Td; |
| 533 |
T1 = ri[0];
|
| 534 |
T3d = ii[0];
|
| 535 |
T9 = ri[WS(rs, 8)];
|
| 536 |
Td = ii[WS(rs, 8)];
|
| 537 |
Te = FMA(T8, T9, Tc * Td); |
| 538 |
T3c = FNMS(Tc, T9, T8 * Td); |
| 539 |
Tf = T1 + Te; |
| 540 |
T3r = T3d - T3c; |
| 541 |
T1N = T1 - Te; |
| 542 |
T3e = T3c + T3d; |
| 543 |
} |
| 544 |
{
|
| 545 |
E Tq, T1O, Tz, T1P; |
| 546 |
{
|
| 547 |
E Tl, Tp, Tu, Ty; |
| 548 |
Tl = ri[WS(rs, 4)];
|
| 549 |
Tp = ii[WS(rs, 4)];
|
| 550 |
Tq = FMA(Tk, Tl, To * Tp); |
| 551 |
T1O = FNMS(To, Tl, Tk * Tp); |
| 552 |
Tu = ri[WS(rs, 12)];
|
| 553 |
Ty = ii[WS(rs, 12)];
|
| 554 |
Tz = FMA(Tt, Tu, Tx * Ty); |
| 555 |
T1P = FNMS(Tx, Tu, Tt * Ty); |
| 556 |
} |
| 557 |
TA = Tq + Tz; |
| 558 |
T3s = Tq - Tz; |
| 559 |
T1Q = T1O - T1P; |
| 560 |
T3b = T1O + T1P; |
| 561 |
} |
| 562 |
{
|
| 563 |
E TG, T1S, TL, T1T, T1U, T1V; |
| 564 |
{
|
| 565 |
E TD, TF, TI, TK; |
| 566 |
TD = ri[WS(rs, 2)];
|
| 567 |
TF = ii[WS(rs, 2)];
|
| 568 |
TG = FMA(TC, TD, TE * TF); |
| 569 |
T1S = FNMS(TE, TD, TC * TF); |
| 570 |
TI = ri[WS(rs, 10)];
|
| 571 |
TK = ii[WS(rs, 10)];
|
| 572 |
TL = FMA(TH, TI, TJ * TK); |
| 573 |
T1T = FNMS(TJ, TI, TH * TK); |
| 574 |
} |
| 575 |
TM = TG + TL; |
| 576 |
T2M = T1S + T1T; |
| 577 |
T1U = T1S - T1T; |
| 578 |
T1V = TG - TL; |
| 579 |
T1W = T1U - T1V; |
| 580 |
T2w = T1V + T1U; |
| 581 |
} |
| 582 |
{
|
| 583 |
E TT, T1Y, TY, T1Z, T1X, T20; |
| 584 |
{
|
| 585 |
E TQ, TS, TV, TX; |
| 586 |
TQ = ri[WS(rs, 14)];
|
| 587 |
TS = ii[WS(rs, 14)];
|
| 588 |
TT = FMA(TP, TQ, TR * TS); |
| 589 |
T1Y = FNMS(TR, TQ, TP * TS); |
| 590 |
TV = ri[WS(rs, 6)];
|
| 591 |
TX = ii[WS(rs, 6)];
|
| 592 |
TY = FMA(TU, TV, TW * TX); |
| 593 |
T1Z = FNMS(TW, TV, TU * TX); |
| 594 |
} |
| 595 |
TZ = TT + TY; |
| 596 |
T2N = T1Y + T1Z; |
| 597 |
T1X = TT - TY; |
| 598 |
T20 = T1Y - T1Z; |
| 599 |
T21 = T1X + T20; |
| 600 |
T2x = T1X - T20; |
| 601 |
} |
| 602 |
{
|
| 603 |
E T1r, T2k, T1J, T2h, T1A, T2l, T1E, T2g; |
| 604 |
{
|
| 605 |
E T1p, T1q, T1G, T1I; |
| 606 |
T1p = ri[WS(rs, 15)];
|
| 607 |
T1q = ii[WS(rs, 15)];
|
| 608 |
T1r = FMA(TN, T1p, TO * T1q); |
| 609 |
T2k = FNMS(TO, T1p, TN * T1q); |
| 610 |
T1G = ri[WS(rs, 11)];
|
| 611 |
T1I = ii[WS(rs, 11)];
|
| 612 |
T1J = FMA(T1F, T1G, T1H * T1I); |
| 613 |
T2h = FNMS(T1H, T1G, T1F * T1I); |
| 614 |
} |
| 615 |
{
|
| 616 |
E T1v, T1z, T1C, T1D; |
| 617 |
T1v = ri[WS(rs, 7)];
|
| 618 |
T1z = ii[WS(rs, 7)];
|
| 619 |
T1A = FMA(T1u, T1v, T1y * T1z); |
| 620 |
T2l = FNMS(T1y, T1v, T1u * T1z); |
| 621 |
T1C = ri[WS(rs, 3)];
|
| 622 |
T1D = ii[WS(rs, 3)];
|
| 623 |
T1E = FMA(Tg, T1C, Ti * T1D); |
| 624 |
T2g = FNMS(Ti, T1C, Tg * T1D); |
| 625 |
} |
| 626 |
T1B = T1r + T1A; |
| 627 |
T1K = T1E + T1J; |
| 628 |
T2V = T1B - T1K; |
| 629 |
T2W = T2k + T2l; |
| 630 |
T2X = T2g + T2h; |
| 631 |
T2Y = T2W - T2X; |
| 632 |
{
|
| 633 |
E T2f, T2i, T2m, T2n; |
| 634 |
T2f = T1r - T1A; |
| 635 |
T2i = T2g - T2h; |
| 636 |
T2j = T2f - T2i; |
| 637 |
T2D = T2f + T2i; |
| 638 |
T2m = T2k - T2l; |
| 639 |
T2n = T1E - T1J; |
| 640 |
T2o = T2m + T2n; |
| 641 |
T2E = T2m - T2n; |
| 642 |
} |
| 643 |
} |
| 644 |
{
|
| 645 |
E T14, T24, T1m, T2b, T17, T25, T1h, T2a; |
| 646 |
{
|
| 647 |
E T12, T13, T1j, T1l; |
| 648 |
T12 = ri[WS(rs, 1)];
|
| 649 |
T13 = ii[WS(rs, 1)];
|
| 650 |
T14 = FMA(T2, T12, T5 * T13); |
| 651 |
T24 = FNMS(T5, T12, T2 * T13); |
| 652 |
T1j = ri[WS(rs, 13)];
|
| 653 |
T1l = ii[WS(rs, 13)];
|
| 654 |
T1m = FMA(T1i, T1j, T1k * T1l); |
| 655 |
T2b = FNMS(T1k, T1j, T1i * T1l); |
| 656 |
} |
| 657 |
{
|
| 658 |
E T15, T16, T1c, T1g; |
| 659 |
T15 = ri[WS(rs, 9)];
|
| 660 |
T16 = ii[WS(rs, 9)];
|
| 661 |
T17 = FMA(T3, T15, T6 * T16); |
| 662 |
T25 = FNMS(T6, T15, T3 * T16); |
| 663 |
T1c = ri[WS(rs, 5)];
|
| 664 |
T1g = ii[WS(rs, 5)];
|
| 665 |
T1h = FMA(T1b, T1c, T1f * T1g); |
| 666 |
T2a = FNMS(T1f, T1c, T1b * T1g); |
| 667 |
} |
| 668 |
T18 = T14 + T17; |
| 669 |
T1n = T1h + T1m; |
| 670 |
T2Q = T18 - T1n; |
| 671 |
T2R = T24 + T25; |
| 672 |
T2S = T2a + T2b; |
| 673 |
T2T = T2R - T2S; |
| 674 |
{
|
| 675 |
E T26, T27, T29, T2c; |
| 676 |
T26 = T24 - T25; |
| 677 |
T27 = T1h - T1m; |
| 678 |
T28 = T26 + T27; |
| 679 |
T2A = T26 - T27; |
| 680 |
T29 = T14 - T17; |
| 681 |
T2c = T2a - T2b; |
| 682 |
T2d = T29 - T2c; |
| 683 |
T2B = T29 + T2c; |
| 684 |
} |
| 685 |
} |
| 686 |
{
|
| 687 |
E T23, T2r, T3A, T3C, T2q, T3B, T2u, T3x; |
| 688 |
{
|
| 689 |
E T1R, T22, T3y, T3z; |
| 690 |
T1R = T1N - T1Q; |
| 691 |
T22 = KP707106781 * (T1W - T21); |
| 692 |
T23 = T1R + T22; |
| 693 |
T2r = T1R - T22; |
| 694 |
T3y = KP707106781 * (T2x - T2w); |
| 695 |
T3z = T3s + T3r; |
| 696 |
T3A = T3y + T3z; |
| 697 |
T3C = T3z - T3y; |
| 698 |
} |
| 699 |
{
|
| 700 |
E T2e, T2p, T2s, T2t; |
| 701 |
T2e = FMA(KP923879532, T28, KP382683432 * T2d); |
| 702 |
T2p = FNMS(KP923879532, T2o, KP382683432 * T2j); |
| 703 |
T2q = T2e + T2p; |
| 704 |
T3B = T2p - T2e; |
| 705 |
T2s = FNMS(KP923879532, T2d, KP382683432 * T28); |
| 706 |
T2t = FMA(KP382683432, T2o, KP923879532 * T2j); |
| 707 |
T2u = T2s - T2t; |
| 708 |
T3x = T2s + T2t; |
| 709 |
} |
| 710 |
ri[WS(rs, 11)] = T23 - T2q;
|
| 711 |
ii[WS(rs, 11)] = T3A - T3x;
|
| 712 |
ri[WS(rs, 3)] = T23 + T2q;
|
| 713 |
ii[WS(rs, 3)] = T3x + T3A;
|
| 714 |
ri[WS(rs, 15)] = T2r - T2u;
|
| 715 |
ii[WS(rs, 15)] = T3C - T3B;
|
| 716 |
ri[WS(rs, 7)] = T2r + T2u;
|
| 717 |
ii[WS(rs, 7)] = T3B + T3C;
|
| 718 |
} |
| 719 |
{
|
| 720 |
E T2P, T31, T3m, T3o, T30, T3n, T34, T3j; |
| 721 |
{
|
| 722 |
E T2L, T2O, T3k, T3l; |
| 723 |
T2L = Tf - TA; |
| 724 |
T2O = T2M - T2N; |
| 725 |
T2P = T2L + T2O; |
| 726 |
T31 = T2L - T2O; |
| 727 |
T3k = TZ - TM; |
| 728 |
T3l = T3e - T3b; |
| 729 |
T3m = T3k + T3l; |
| 730 |
T3o = T3l - T3k; |
| 731 |
} |
| 732 |
{
|
| 733 |
E T2U, T2Z, T32, T33; |
| 734 |
T2U = T2Q + T2T; |
| 735 |
T2Z = T2V - T2Y; |
| 736 |
T30 = KP707106781 * (T2U + T2Z); |
| 737 |
T3n = KP707106781 * (T2Z - T2U); |
| 738 |
T32 = T2T - T2Q; |
| 739 |
T33 = T2V + T2Y; |
| 740 |
T34 = KP707106781 * (T32 - T33); |
| 741 |
T3j = KP707106781 * (T32 + T33); |
| 742 |
} |
| 743 |
ri[WS(rs, 10)] = T2P - T30;
|
| 744 |
ii[WS(rs, 10)] = T3m - T3j;
|
| 745 |
ri[WS(rs, 2)] = T2P + T30;
|
| 746 |
ii[WS(rs, 2)] = T3j + T3m;
|
| 747 |
ri[WS(rs, 14)] = T31 - T34;
|
| 748 |
ii[WS(rs, 14)] = T3o - T3n;
|
| 749 |
ri[WS(rs, 6)] = T31 + T34;
|
| 750 |
ii[WS(rs, 6)] = T3n + T3o;
|
| 751 |
} |
| 752 |
{
|
| 753 |
E T2z, T2H, T3u, T3w, T2G, T3v, T2K, T3p; |
| 754 |
{
|
| 755 |
E T2v, T2y, T3q, T3t; |
| 756 |
T2v = T1N + T1Q; |
| 757 |
T2y = KP707106781 * (T2w + T2x); |
| 758 |
T2z = T2v + T2y; |
| 759 |
T2H = T2v - T2y; |
| 760 |
T3q = KP707106781 * (T1W + T21); |
| 761 |
T3t = T3r - T3s; |
| 762 |
T3u = T3q + T3t; |
| 763 |
T3w = T3t - T3q; |
| 764 |
} |
| 765 |
{
|
| 766 |
E T2C, T2F, T2I, T2J; |
| 767 |
T2C = FMA(KP382683432, T2A, KP923879532 * T2B); |
| 768 |
T2F = FNMS(KP382683432, T2E, KP923879532 * T2D); |
| 769 |
T2G = T2C + T2F; |
| 770 |
T3v = T2F - T2C; |
| 771 |
T2I = FNMS(KP382683432, T2B, KP923879532 * T2A); |
| 772 |
T2J = FMA(KP923879532, T2E, KP382683432 * T2D); |
| 773 |
T2K = T2I - T2J; |
| 774 |
T3p = T2I + T2J; |
| 775 |
} |
| 776 |
ri[WS(rs, 9)] = T2z - T2G;
|
| 777 |
ii[WS(rs, 9)] = T3u - T3p;
|
| 778 |
ri[WS(rs, 1)] = T2z + T2G;
|
| 779 |
ii[WS(rs, 1)] = T3p + T3u;
|
| 780 |
ri[WS(rs, 13)] = T2H - T2K;
|
| 781 |
ii[WS(rs, 13)] = T3w - T3v;
|
| 782 |
ri[WS(rs, 5)] = T2H + T2K;
|
| 783 |
ii[WS(rs, 5)] = T3v + T3w;
|
| 784 |
} |
| 785 |
{
|
| 786 |
E T11, T35, T3g, T3i, T1M, T3h, T38, T39; |
| 787 |
{
|
| 788 |
E TB, T10, T3a, T3f; |
| 789 |
TB = Tf + TA; |
| 790 |
T10 = TM + TZ; |
| 791 |
T11 = TB + T10; |
| 792 |
T35 = TB - T10; |
| 793 |
T3a = T2M + T2N; |
| 794 |
T3f = T3b + T3e; |
| 795 |
T3g = T3a + T3f; |
| 796 |
T3i = T3f - T3a; |
| 797 |
} |
| 798 |
{
|
| 799 |
E T1o, T1L, T36, T37; |
| 800 |
T1o = T18 + T1n; |
| 801 |
T1L = T1B + T1K; |
| 802 |
T1M = T1o + T1L; |
| 803 |
T3h = T1L - T1o; |
| 804 |
T36 = T2R + T2S; |
| 805 |
T37 = T2W + T2X; |
| 806 |
T38 = T36 - T37; |
| 807 |
T39 = T36 + T37; |
| 808 |
} |
| 809 |
ri[WS(rs, 8)] = T11 - T1M;
|
| 810 |
ii[WS(rs, 8)] = T3g - T39;
|
| 811 |
ri[0] = T11 + T1M;
|
| 812 |
ii[0] = T39 + T3g;
|
| 813 |
ri[WS(rs, 12)] = T35 - T38;
|
| 814 |
ii[WS(rs, 12)] = T3i - T3h;
|
| 815 |
ri[WS(rs, 4)] = T35 + T38;
|
| 816 |
ii[WS(rs, 4)] = T3h + T3i;
|
| 817 |
} |
| 818 |
} |
| 819 |
} |
| 820 |
} |
| 821 |
} |
| 822 |
|
| 823 |
static const tw_instr twinstr[] = { |
| 824 |
{TW_CEXP, 0, 1},
|
| 825 |
{TW_CEXP, 0, 3},
|
| 826 |
{TW_CEXP, 0, 9},
|
| 827 |
{TW_CEXP, 0, 15},
|
| 828 |
{TW_NEXT, 1, 0}
|
| 829 |
}; |
| 830 |
|
| 831 |
static const ct_desc desc = { 16, "t2_16", twinstr, &GENUS, {156, 68, 40, 0}, 0, 0, 0 }; |
| 832 |
|
| 833 |
void X(codelet_t2_16) (planner *p) {
|
| 834 |
X(kdft_dit_register) (p, t2_16, &desc); |
| 835 |
} |
| 836 |
#endif
|