To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t2_10.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (13.9 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:25 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 114 FP additions, 94 FP multiplications,
|
| 32 |
* (or, 48 additions, 28 multiplications, 66 fused multiply/add),
|
| 33 |
* 63 stack variables, 4 constants, and 40 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 42 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 43 |
{
|
| 44 |
INT m; |
| 45 |
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { |
| 46 |
E T2, T3, T8, Tc, T5, T6, Tl, T7, TB, TF, T12, TY, To, Ts, Tw; |
| 47 |
E Tb, Td, Th; |
| 48 |
{
|
| 49 |
E TA, TX, TE, T11, Ta, T4; |
| 50 |
T2 = W[0];
|
| 51 |
T3 = W[2];
|
| 52 |
T4 = T2 * T3; |
| 53 |
T8 = W[4];
|
| 54 |
TA = T2 * T8; |
| 55 |
TX = T3 * T8; |
| 56 |
Tc = W[5];
|
| 57 |
TE = T2 * Tc; |
| 58 |
T11 = T3 * Tc; |
| 59 |
T5 = W[1];
|
| 60 |
T6 = W[3];
|
| 61 |
Ta = T2 * T6; |
| 62 |
Tl = FMA(T5, T6, T4); |
| 63 |
T7 = FNMS(T5, T6, T4); |
| 64 |
TB = FMA(T5, Tc, TA); |
| 65 |
TF = FNMS(T5, T8, TE); |
| 66 |
T12 = FNMS(T6, T8, T11); |
| 67 |
TY = FMA(T6, Tc, TX); |
| 68 |
{
|
| 69 |
E Tr, Tv, T9, Tg; |
| 70 |
Tr = Tl * T8; |
| 71 |
Tv = Tl * Tc; |
| 72 |
To = FNMS(T5, T3, Ta); |
| 73 |
Ts = FMA(To, Tc, Tr); |
| 74 |
Tw = FNMS(To, T8, Tv); |
| 75 |
T9 = T7 * T8; |
| 76 |
Tg = T7 * Tc; |
| 77 |
Tb = FMA(T5, T3, Ta); |
| 78 |
Td = FMA(Tb, Tc, T9); |
| 79 |
Th = FNMS(Tb, T8, Tg); |
| 80 |
} |
| 81 |
} |
| 82 |
{
|
| 83 |
E Tk, T1c, T24, T2d, TW, T19, T1a, T1P, T1Q, T1Z, T1g, T1h, T1i, T1C, T1H; |
| 84 |
E T2f, Tz, TM, TN, T1S, T1T, T1Y, T1d, T1e, T1f, T1r, T1w, T2e; |
| 85 |
{
|
| 86 |
E T1, T23, Te, Tf, Ti, T21, Tj, T22; |
| 87 |
T1 = ri[0];
|
| 88 |
T23 = ii[0];
|
| 89 |
Te = ri[WS(rs, 5)];
|
| 90 |
Tf = Td * Te; |
| 91 |
Ti = ii[WS(rs, 5)];
|
| 92 |
T21 = Td * Ti; |
| 93 |
Tj = FMA(Th, Ti, Tf); |
| 94 |
Tk = T1 - Tj; |
| 95 |
T1c = T1 + Tj; |
| 96 |
T22 = FNMS(Th, Te, T21); |
| 97 |
T24 = T22 + T23; |
| 98 |
T2d = T23 - T22; |
| 99 |
} |
| 100 |
{
|
| 101 |
E TR, T1z, T18, T1G, TV, T1B, T14, T1E; |
| 102 |
{
|
| 103 |
E TO, TP, TQ, T1y; |
| 104 |
TO = ri[WS(rs, 4)];
|
| 105 |
TP = T7 * TO; |
| 106 |
TQ = ii[WS(rs, 4)];
|
| 107 |
T1y = T7 * TQ; |
| 108 |
TR = FMA(Tb, TQ, TP); |
| 109 |
T1z = FNMS(Tb, TO, T1y); |
| 110 |
} |
| 111 |
{
|
| 112 |
E T15, T16, T17, T1F; |
| 113 |
T15 = ri[WS(rs, 1)];
|
| 114 |
T16 = T2 * T15; |
| 115 |
T17 = ii[WS(rs, 1)];
|
| 116 |
T1F = T2 * T17; |
| 117 |
T18 = FMA(T5, T17, T16); |
| 118 |
T1G = FNMS(T5, T15, T1F); |
| 119 |
} |
| 120 |
{
|
| 121 |
E TS, TT, TU, T1A; |
| 122 |
TS = ri[WS(rs, 9)];
|
| 123 |
TT = T8 * TS; |
| 124 |
TU = ii[WS(rs, 9)];
|
| 125 |
T1A = T8 * TU; |
| 126 |
TV = FMA(Tc, TU, TT); |
| 127 |
T1B = FNMS(Tc, TS, T1A); |
| 128 |
} |
| 129 |
{
|
| 130 |
E TZ, T10, T13, T1D; |
| 131 |
TZ = ri[WS(rs, 6)];
|
| 132 |
T10 = TY * TZ; |
| 133 |
T13 = ii[WS(rs, 6)];
|
| 134 |
T1D = TY * T13; |
| 135 |
T14 = FMA(T12, T13, T10); |
| 136 |
T1E = FNMS(T12, TZ, T1D); |
| 137 |
} |
| 138 |
TW = TR - TV; |
| 139 |
T19 = T14 - T18; |
| 140 |
T1a = TW + T19; |
| 141 |
T1P = T1z + T1B; |
| 142 |
T1Q = T1E + T1G; |
| 143 |
T1Z = T1P + T1Q; |
| 144 |
T1g = TR + TV; |
| 145 |
T1h = T14 + T18; |
| 146 |
T1i = T1g + T1h; |
| 147 |
T1C = T1z - T1B; |
| 148 |
T1H = T1E - T1G; |
| 149 |
T2f = T1C + T1H; |
| 150 |
} |
| 151 |
{
|
| 152 |
E Tq, T1o, TL, T1v, Ty, T1q, TH, T1t; |
| 153 |
{
|
| 154 |
E Tm, Tn, Tp, T1n; |
| 155 |
Tm = ri[WS(rs, 2)];
|
| 156 |
Tn = Tl * Tm; |
| 157 |
Tp = ii[WS(rs, 2)];
|
| 158 |
T1n = Tl * Tp; |
| 159 |
Tq = FMA(To, Tp, Tn); |
| 160 |
T1o = FNMS(To, Tm, T1n); |
| 161 |
} |
| 162 |
{
|
| 163 |
E TI, TJ, TK, T1u; |
| 164 |
TI = ri[WS(rs, 3)];
|
| 165 |
TJ = T3 * TI; |
| 166 |
TK = ii[WS(rs, 3)];
|
| 167 |
T1u = T3 * TK; |
| 168 |
TL = FMA(T6, TK, TJ); |
| 169 |
T1v = FNMS(T6, TI, T1u); |
| 170 |
} |
| 171 |
{
|
| 172 |
E Tt, Tu, Tx, T1p; |
| 173 |
Tt = ri[WS(rs, 7)];
|
| 174 |
Tu = Ts * Tt; |
| 175 |
Tx = ii[WS(rs, 7)];
|
| 176 |
T1p = Ts * Tx; |
| 177 |
Ty = FMA(Tw, Tx, Tu); |
| 178 |
T1q = FNMS(Tw, Tt, T1p); |
| 179 |
} |
| 180 |
{
|
| 181 |
E TC, TD, TG, T1s; |
| 182 |
TC = ri[WS(rs, 8)];
|
| 183 |
TD = TB * TC; |
| 184 |
TG = ii[WS(rs, 8)];
|
| 185 |
T1s = TB * TG; |
| 186 |
TH = FMA(TF, TG, TD); |
| 187 |
T1t = FNMS(TF, TC, T1s); |
| 188 |
} |
| 189 |
Tz = Tq - Ty; |
| 190 |
TM = TH - TL; |
| 191 |
TN = Tz + TM; |
| 192 |
T1S = T1o + T1q; |
| 193 |
T1T = T1t + T1v; |
| 194 |
T1Y = T1S + T1T; |
| 195 |
T1d = Tq + Ty; |
| 196 |
T1e = TH + TL; |
| 197 |
T1f = T1d + T1e; |
| 198 |
T1r = T1o - T1q; |
| 199 |
T1w = T1t - T1v; |
| 200 |
T2e = T1r + T1w; |
| 201 |
} |
| 202 |
{
|
| 203 |
E T1l, T1b, T1k, T1J, T1L, T1x, T1I, T1K, T1m; |
| 204 |
T1l = TN - T1a; |
| 205 |
T1b = TN + T1a; |
| 206 |
T1k = FNMS(KP250000000, T1b, Tk); |
| 207 |
T1x = T1r - T1w; |
| 208 |
T1I = T1C - T1H; |
| 209 |
T1J = FMA(KP618033988, T1I, T1x); |
| 210 |
T1L = FNMS(KP618033988, T1x, T1I); |
| 211 |
ri[WS(rs, 5)] = Tk + T1b;
|
| 212 |
T1K = FNMS(KP559016994, T1l, T1k); |
| 213 |
ri[WS(rs, 7)] = FNMS(KP951056516, T1L, T1K);
|
| 214 |
ri[WS(rs, 3)] = FMA(KP951056516, T1L, T1K);
|
| 215 |
T1m = FMA(KP559016994, T1l, T1k); |
| 216 |
ri[WS(rs, 9)] = FNMS(KP951056516, T1J, T1m);
|
| 217 |
ri[WS(rs, 1)] = FMA(KP951056516, T1J, T1m);
|
| 218 |
} |
| 219 |
{
|
| 220 |
E T2i, T2g, T2h, T2m, T2o, T2k, T2l, T2n, T2j; |
| 221 |
T2i = T2e - T2f; |
| 222 |
T2g = T2e + T2f; |
| 223 |
T2h = FNMS(KP250000000, T2g, T2d); |
| 224 |
T2k = Tz - TM; |
| 225 |
T2l = TW - T19; |
| 226 |
T2m = FMA(KP618033988, T2l, T2k); |
| 227 |
T2o = FNMS(KP618033988, T2k, T2l); |
| 228 |
ii[WS(rs, 5)] = T2g + T2d;
|
| 229 |
T2n = FNMS(KP559016994, T2i, T2h); |
| 230 |
ii[WS(rs, 3)] = FNMS(KP951056516, T2o, T2n);
|
| 231 |
ii[WS(rs, 7)] = FMA(KP951056516, T2o, T2n);
|
| 232 |
T2j = FMA(KP559016994, T2i, T2h); |
| 233 |
ii[WS(rs, 1)] = FNMS(KP951056516, T2m, T2j);
|
| 234 |
ii[WS(rs, 9)] = FMA(KP951056516, T2m, T2j);
|
| 235 |
} |
| 236 |
{
|
| 237 |
E T1N, T1j, T1M, T1V, T1X, T1R, T1U, T1W, T1O; |
| 238 |
T1N = T1f - T1i; |
| 239 |
T1j = T1f + T1i; |
| 240 |
T1M = FNMS(KP250000000, T1j, T1c); |
| 241 |
T1R = T1P - T1Q; |
| 242 |
T1U = T1S - T1T; |
| 243 |
T1V = FNMS(KP618033988, T1U, T1R); |
| 244 |
T1X = FMA(KP618033988, T1R, T1U); |
| 245 |
ri[0] = T1c + T1j;
|
| 246 |
T1W = FMA(KP559016994, T1N, T1M); |
| 247 |
ri[WS(rs, 4)] = FNMS(KP951056516, T1X, T1W);
|
| 248 |
ri[WS(rs, 6)] = FMA(KP951056516, T1X, T1W);
|
| 249 |
T1O = FNMS(KP559016994, T1N, T1M); |
| 250 |
ri[WS(rs, 2)] = FNMS(KP951056516, T1V, T1O);
|
| 251 |
ri[WS(rs, 8)] = FMA(KP951056516, T1V, T1O);
|
| 252 |
} |
| 253 |
{
|
| 254 |
E T26, T20, T25, T2a, T2c, T28, T29, T2b, T27; |
| 255 |
T26 = T1Y - T1Z; |
| 256 |
T20 = T1Y + T1Z; |
| 257 |
T25 = FNMS(KP250000000, T20, T24); |
| 258 |
T28 = T1g - T1h; |
| 259 |
T29 = T1d - T1e; |
| 260 |
T2a = FNMS(KP618033988, T29, T28); |
| 261 |
T2c = FMA(KP618033988, T28, T29); |
| 262 |
ii[0] = T20 + T24;
|
| 263 |
T2b = FMA(KP559016994, T26, T25); |
| 264 |
ii[WS(rs, 4)] = FMA(KP951056516, T2c, T2b);
|
| 265 |
ii[WS(rs, 6)] = FNMS(KP951056516, T2c, T2b);
|
| 266 |
T27 = FNMS(KP559016994, T26, T25); |
| 267 |
ii[WS(rs, 2)] = FMA(KP951056516, T2a, T27);
|
| 268 |
ii[WS(rs, 8)] = FNMS(KP951056516, T2a, T27);
|
| 269 |
} |
| 270 |
} |
| 271 |
} |
| 272 |
} |
| 273 |
} |
| 274 |
|
| 275 |
static const tw_instr twinstr[] = { |
| 276 |
{TW_CEXP, 0, 1},
|
| 277 |
{TW_CEXP, 0, 3},
|
| 278 |
{TW_CEXP, 0, 9},
|
| 279 |
{TW_NEXT, 1, 0}
|
| 280 |
}; |
| 281 |
|
| 282 |
static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {48, 28, 66, 0}, 0, 0, 0 }; |
| 283 |
|
| 284 |
void X(codelet_t2_10) (planner *p) {
|
| 285 |
X(kdft_dit_register) (p, t2_10, &desc); |
| 286 |
} |
| 287 |
#else
|
| 288 |
|
| 289 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 10 -name t2_10 -include dft/scalar/t.h */
|
| 290 |
|
| 291 |
/*
|
| 292 |
* This function contains 114 FP additions, 80 FP multiplications,
|
| 293 |
* (or, 76 additions, 42 multiplications, 38 fused multiply/add),
|
| 294 |
* 63 stack variables, 4 constants, and 40 memory accesses
|
| 295 |
*/
|
| 296 |
#include "dft/scalar/t.h" |
| 297 |
|
| 298 |
static void t2_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 299 |
{
|
| 300 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 301 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 302 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 303 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 304 |
{
|
| 305 |
INT m; |
| 306 |
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 6, MAKE_VOLATILE_STRIDE(20, rs)) { |
| 307 |
E T2, T5, T3, T6, T8, Tm, Tc, Tk, T9, Td, Te, TM, TO, Tg, Tp; |
| 308 |
E Tv, Tx, Tr; |
| 309 |
{
|
| 310 |
E T4, Tb, T7, Ta; |
| 311 |
T2 = W[0];
|
| 312 |
T5 = W[1];
|
| 313 |
T3 = W[2];
|
| 314 |
T6 = W[3];
|
| 315 |
T4 = T2 * T3; |
| 316 |
Tb = T5 * T3; |
| 317 |
T7 = T5 * T6; |
| 318 |
Ta = T2 * T6; |
| 319 |
T8 = T4 - T7; |
| 320 |
Tm = Ta - Tb; |
| 321 |
Tc = Ta + Tb; |
| 322 |
Tk = T4 + T7; |
| 323 |
T9 = W[4];
|
| 324 |
Td = W[5];
|
| 325 |
Te = FMA(T8, T9, Tc * Td); |
| 326 |
TM = FMA(T3, T9, T6 * Td); |
| 327 |
TO = FNMS(T6, T9, T3 * Td); |
| 328 |
Tg = FNMS(Tc, T9, T8 * Td); |
| 329 |
Tp = FMA(Tk, T9, Tm * Td); |
| 330 |
Tv = FMA(T2, T9, T5 * Td); |
| 331 |
Tx = FNMS(T5, T9, T2 * Td); |
| 332 |
Tr = FNMS(Tm, T9, Tk * Td); |
| 333 |
} |
| 334 |
{
|
| 335 |
E Tj, T1S, TX, T1G, TL, TU, TV, T1s, T1t, T1C, T11, T12, T13, T1h, T1k; |
| 336 |
E T1Q, Tu, TD, TE, T1v, T1w, T1B, TY, TZ, T10, T1a, T1d, T1P; |
| 337 |
{
|
| 338 |
E T1, T1F, Ti, T1E, Tf, Th; |
| 339 |
T1 = ri[0];
|
| 340 |
T1F = ii[0];
|
| 341 |
Tf = ri[WS(rs, 5)];
|
| 342 |
Th = ii[WS(rs, 5)];
|
| 343 |
Ti = FMA(Te, Tf, Tg * Th); |
| 344 |
T1E = FNMS(Tg, Tf, Te * Th); |
| 345 |
Tj = T1 - Ti; |
| 346 |
T1S = T1F - T1E; |
| 347 |
TX = T1 + Ti; |
| 348 |
T1G = T1E + T1F; |
| 349 |
} |
| 350 |
{
|
| 351 |
E TH, T1f, TT, T1j, TK, T1g, TQ, T1i; |
| 352 |
{
|
| 353 |
E TF, TG, TR, TS; |
| 354 |
TF = ri[WS(rs, 4)];
|
| 355 |
TG = ii[WS(rs, 4)];
|
| 356 |
TH = FMA(T8, TF, Tc * TG); |
| 357 |
T1f = FNMS(Tc, TF, T8 * TG); |
| 358 |
TR = ri[WS(rs, 1)];
|
| 359 |
TS = ii[WS(rs, 1)];
|
| 360 |
TT = FMA(T2, TR, T5 * TS); |
| 361 |
T1j = FNMS(T5, TR, T2 * TS); |
| 362 |
} |
| 363 |
{
|
| 364 |
E TI, TJ, TN, TP; |
| 365 |
TI = ri[WS(rs, 9)];
|
| 366 |
TJ = ii[WS(rs, 9)];
|
| 367 |
TK = FMA(T9, TI, Td * TJ); |
| 368 |
T1g = FNMS(Td, TI, T9 * TJ); |
| 369 |
TN = ri[WS(rs, 6)];
|
| 370 |
TP = ii[WS(rs, 6)];
|
| 371 |
TQ = FMA(TM, TN, TO * TP); |
| 372 |
T1i = FNMS(TO, TN, TM * TP); |
| 373 |
} |
| 374 |
TL = TH - TK; |
| 375 |
TU = TQ - TT; |
| 376 |
TV = TL + TU; |
| 377 |
T1s = T1f + T1g; |
| 378 |
T1t = T1i + T1j; |
| 379 |
T1C = T1s + T1t; |
| 380 |
T11 = TH + TK; |
| 381 |
T12 = TQ + TT; |
| 382 |
T13 = T11 + T12; |
| 383 |
T1h = T1f - T1g; |
| 384 |
T1k = T1i - T1j; |
| 385 |
T1Q = T1h + T1k; |
| 386 |
} |
| 387 |
{
|
| 388 |
E To, T18, TC, T1c, Tt, T19, Tz, T1b; |
| 389 |
{
|
| 390 |
E Tl, Tn, TA, TB; |
| 391 |
Tl = ri[WS(rs, 2)];
|
| 392 |
Tn = ii[WS(rs, 2)];
|
| 393 |
To = FMA(Tk, Tl, Tm * Tn); |
| 394 |
T18 = FNMS(Tm, Tl, Tk * Tn); |
| 395 |
TA = ri[WS(rs, 3)];
|
| 396 |
TB = ii[WS(rs, 3)];
|
| 397 |
TC = FMA(T3, TA, T6 * TB); |
| 398 |
T1c = FNMS(T6, TA, T3 * TB); |
| 399 |
} |
| 400 |
{
|
| 401 |
E Tq, Ts, Tw, Ty; |
| 402 |
Tq = ri[WS(rs, 7)];
|
| 403 |
Ts = ii[WS(rs, 7)];
|
| 404 |
Tt = FMA(Tp, Tq, Tr * Ts); |
| 405 |
T19 = FNMS(Tr, Tq, Tp * Ts); |
| 406 |
Tw = ri[WS(rs, 8)];
|
| 407 |
Ty = ii[WS(rs, 8)];
|
| 408 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 409 |
T1b = FNMS(Tx, Tw, Tv * Ty); |
| 410 |
} |
| 411 |
Tu = To - Tt; |
| 412 |
TD = Tz - TC; |
| 413 |
TE = Tu + TD; |
| 414 |
T1v = T18 + T19; |
| 415 |
T1w = T1b + T1c; |
| 416 |
T1B = T1v + T1w; |
| 417 |
TY = To + Tt; |
| 418 |
TZ = Tz + TC; |
| 419 |
T10 = TY + TZ; |
| 420 |
T1a = T18 - T19; |
| 421 |
T1d = T1b - T1c; |
| 422 |
T1P = T1a + T1d; |
| 423 |
} |
| 424 |
{
|
| 425 |
E T15, TW, T16, T1m, T1o, T1e, T1l, T1n, T17; |
| 426 |
T15 = KP559016994 * (TE - TV); |
| 427 |
TW = TE + TV; |
| 428 |
T16 = FNMS(KP250000000, TW, Tj); |
| 429 |
T1e = T1a - T1d; |
| 430 |
T1l = T1h - T1k; |
| 431 |
T1m = FMA(KP951056516, T1e, KP587785252 * T1l); |
| 432 |
T1o = FNMS(KP587785252, T1e, KP951056516 * T1l); |
| 433 |
ri[WS(rs, 5)] = Tj + TW;
|
| 434 |
T1n = T16 - T15; |
| 435 |
ri[WS(rs, 7)] = T1n - T1o;
|
| 436 |
ri[WS(rs, 3)] = T1n + T1o;
|
| 437 |
T17 = T15 + T16; |
| 438 |
ri[WS(rs, 9)] = T17 - T1m;
|
| 439 |
ri[WS(rs, 1)] = T17 + T1m;
|
| 440 |
} |
| 441 |
{
|
| 442 |
E T1R, T1T, T1U, T1Y, T20, T1W, T1X, T1Z, T1V; |
| 443 |
T1R = KP559016994 * (T1P - T1Q); |
| 444 |
T1T = T1P + T1Q; |
| 445 |
T1U = FNMS(KP250000000, T1T, T1S); |
| 446 |
T1W = Tu - TD; |
| 447 |
T1X = TL - TU; |
| 448 |
T1Y = FMA(KP951056516, T1W, KP587785252 * T1X); |
| 449 |
T20 = FNMS(KP587785252, T1W, KP951056516 * T1X); |
| 450 |
ii[WS(rs, 5)] = T1T + T1S;
|
| 451 |
T1Z = T1U - T1R; |
| 452 |
ii[WS(rs, 3)] = T1Z - T20;
|
| 453 |
ii[WS(rs, 7)] = T20 + T1Z;
|
| 454 |
T1V = T1R + T1U; |
| 455 |
ii[WS(rs, 1)] = T1V - T1Y;
|
| 456 |
ii[WS(rs, 9)] = T1Y + T1V;
|
| 457 |
} |
| 458 |
{
|
| 459 |
E T1q, T14, T1p, T1y, T1A, T1u, T1x, T1z, T1r; |
| 460 |
T1q = KP559016994 * (T10 - T13); |
| 461 |
T14 = T10 + T13; |
| 462 |
T1p = FNMS(KP250000000, T14, TX); |
| 463 |
T1u = T1s - T1t; |
| 464 |
T1x = T1v - T1w; |
| 465 |
T1y = FNMS(KP587785252, T1x, KP951056516 * T1u); |
| 466 |
T1A = FMA(KP951056516, T1x, KP587785252 * T1u); |
| 467 |
ri[0] = TX + T14;
|
| 468 |
T1z = T1q + T1p; |
| 469 |
ri[WS(rs, 4)] = T1z - T1A;
|
| 470 |
ri[WS(rs, 6)] = T1z + T1A;
|
| 471 |
T1r = T1p - T1q; |
| 472 |
ri[WS(rs, 2)] = T1r - T1y;
|
| 473 |
ri[WS(rs, 8)] = T1r + T1y;
|
| 474 |
} |
| 475 |
{
|
| 476 |
E T1L, T1D, T1K, T1J, T1N, T1H, T1I, T1O, T1M; |
| 477 |
T1L = KP559016994 * (T1B - T1C); |
| 478 |
T1D = T1B + T1C; |
| 479 |
T1K = FNMS(KP250000000, T1D, T1G); |
| 480 |
T1H = T11 - T12; |
| 481 |
T1I = TY - TZ; |
| 482 |
T1J = FNMS(KP587785252, T1I, KP951056516 * T1H); |
| 483 |
T1N = FMA(KP951056516, T1I, KP587785252 * T1H); |
| 484 |
ii[0] = T1D + T1G;
|
| 485 |
T1O = T1L + T1K; |
| 486 |
ii[WS(rs, 4)] = T1N + T1O;
|
| 487 |
ii[WS(rs, 6)] = T1O - T1N;
|
| 488 |
T1M = T1K - T1L; |
| 489 |
ii[WS(rs, 2)] = T1J + T1M;
|
| 490 |
ii[WS(rs, 8)] = T1M - T1J;
|
| 491 |
} |
| 492 |
} |
| 493 |
} |
| 494 |
} |
| 495 |
} |
| 496 |
|
| 497 |
static const tw_instr twinstr[] = { |
| 498 |
{TW_CEXP, 0, 1},
|
| 499 |
{TW_CEXP, 0, 3},
|
| 500 |
{TW_CEXP, 0, 9},
|
| 501 |
{TW_NEXT, 1, 0}
|
| 502 |
}; |
| 503 |
|
| 504 |
static const ct_desc desc = { 10, "t2_10", twinstr, &GENUS, {76, 42, 38, 0}, 0, 0, 0 }; |
| 505 |
|
| 506 |
void X(codelet_t2_10) (planner *p) {
|
| 507 |
X(kdft_dit_register) (p, t2_10, &desc); |
| 508 |
} |
| 509 |
#endif
|