To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_9.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (13.7 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:13 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 96 FP additions, 88 FP multiplications,
|
| 32 |
* (or, 24 additions, 16 multiplications, 72 fused multiply/add),
|
| 33 |
* 55 stack variables, 10 constants, and 36 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP852868531, +0.852868531952443209628250963940074071936020296); |
| 40 |
DK(KP492403876, +0.492403876506104029683371512294761506835321626); |
| 41 |
DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
| 42 |
DK(KP954188894, +0.954188894138671133499268364187245676532219158); |
| 43 |
DK(KP363970234, +0.363970234266202361351047882776834043890471784); |
| 44 |
DK(KP777861913, +0.777861913430206160028177977318626690410586096); |
| 45 |
DK(KP839099631, +0.839099631177280011763127298123181364687434283); |
| 46 |
DK(KP176326980, +0.176326980708464973471090386868618986121633062); |
| 47 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 48 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 49 |
{
|
| 50 |
INT m; |
| 51 |
for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
| 52 |
E T1, T1R, Te, T1W, T10, T1Q, T1l, T1r, Ty, T1p, Tl, T1o, T1g, T1q, T1a; |
| 53 |
E T1d, TS, T18, TF, T13, T19, T1c; |
| 54 |
T1 = ri[0];
|
| 55 |
T1R = ii[0];
|
| 56 |
{
|
| 57 |
E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8; |
| 58 |
T3 = ri[WS(rs, 3)];
|
| 59 |
T6 = ii[WS(rs, 3)];
|
| 60 |
T2 = W[4];
|
| 61 |
T4 = T2 * T3; |
| 62 |
TW = T2 * T6; |
| 63 |
T9 = ri[WS(rs, 6)];
|
| 64 |
Tc = ii[WS(rs, 6)];
|
| 65 |
T8 = W[10];
|
| 66 |
Ta = T8 * T9; |
| 67 |
TY = T8 * Tc; |
| 68 |
{
|
| 69 |
E T7, TX, Td, TZ, T5, Tb; |
| 70 |
T5 = W[5];
|
| 71 |
T7 = FMA(T5, T6, T4); |
| 72 |
TX = FNMS(T5, T3, TW); |
| 73 |
Tb = W[11];
|
| 74 |
Td = FMA(Tb, Tc, Ta); |
| 75 |
TZ = FNMS(Tb, T9, TY); |
| 76 |
Te = T7 + Td; |
| 77 |
T1W = Td - T7; |
| 78 |
T10 = TX - TZ; |
| 79 |
T1Q = TX + TZ; |
| 80 |
} |
| 81 |
} |
| 82 |
{
|
| 83 |
E Th, Tk, Ti, T1n, Tx, T1i, Tr, T1k, Tg, Tj; |
| 84 |
Th = ri[WS(rs, 1)];
|
| 85 |
Tk = ii[WS(rs, 1)];
|
| 86 |
Tg = W[0];
|
| 87 |
Ti = Tg * Th; |
| 88 |
T1n = Tg * Tk; |
| 89 |
{
|
| 90 |
E Tt, Tw, Tu, T1h, Ts, Tv; |
| 91 |
Tt = ri[WS(rs, 7)];
|
| 92 |
Tw = ii[WS(rs, 7)];
|
| 93 |
Ts = W[12];
|
| 94 |
Tu = Ts * Tt; |
| 95 |
T1h = Ts * Tw; |
| 96 |
Tv = W[13];
|
| 97 |
Tx = FMA(Tv, Tw, Tu); |
| 98 |
T1i = FNMS(Tv, Tt, T1h); |
| 99 |
} |
| 100 |
{
|
| 101 |
E Tn, Tq, To, T1j, Tm, Tp; |
| 102 |
Tn = ri[WS(rs, 4)];
|
| 103 |
Tq = ii[WS(rs, 4)];
|
| 104 |
Tm = W[6];
|
| 105 |
To = Tm * Tn; |
| 106 |
T1j = Tm * Tq; |
| 107 |
Tp = W[7];
|
| 108 |
Tr = FMA(Tp, Tq, To); |
| 109 |
T1k = FNMS(Tp, Tn, T1j); |
| 110 |
} |
| 111 |
T1l = T1i - T1k; |
| 112 |
T1r = Tr - Tx; |
| 113 |
Ty = Tr + Tx; |
| 114 |
T1p = T1k + T1i; |
| 115 |
Tj = W[1];
|
| 116 |
Tl = FMA(Tj, Tk, Ti); |
| 117 |
T1o = FNMS(Tj, Th, T1n); |
| 118 |
T1g = FNMS(KP500000000, Ty, Tl); |
| 119 |
T1q = FNMS(KP500000000, T1p, T1o); |
| 120 |
} |
| 121 |
{
|
| 122 |
E TB, TE, TC, T12, TR, T17, TL, T15, TA, TD; |
| 123 |
TB = ri[WS(rs, 2)];
|
| 124 |
TE = ii[WS(rs, 2)];
|
| 125 |
TA = W[2];
|
| 126 |
TC = TA * TB; |
| 127 |
T12 = TA * TE; |
| 128 |
{
|
| 129 |
E TN, TQ, TO, T16, TM, TP; |
| 130 |
TN = ri[WS(rs, 8)];
|
| 131 |
TQ = ii[WS(rs, 8)];
|
| 132 |
TM = W[14];
|
| 133 |
TO = TM * TN; |
| 134 |
T16 = TM * TQ; |
| 135 |
TP = W[15];
|
| 136 |
TR = FMA(TP, TQ, TO); |
| 137 |
T17 = FNMS(TP, TN, T16); |
| 138 |
} |
| 139 |
{
|
| 140 |
E TH, TK, TI, T14, TG, TJ; |
| 141 |
TH = ri[WS(rs, 5)];
|
| 142 |
TK = ii[WS(rs, 5)];
|
| 143 |
TG = W[8];
|
| 144 |
TI = TG * TH; |
| 145 |
T14 = TG * TK; |
| 146 |
TJ = W[9];
|
| 147 |
TL = FMA(TJ, TK, TI); |
| 148 |
T15 = FNMS(TJ, TH, T14); |
| 149 |
} |
| 150 |
T1a = TR - TL; |
| 151 |
T1d = T15 - T17; |
| 152 |
TS = TL + TR; |
| 153 |
T18 = T15 + T17; |
| 154 |
TD = W[3];
|
| 155 |
TF = FMA(TD, TE, TC); |
| 156 |
T13 = FNMS(TD, TB, T12); |
| 157 |
T19 = FNMS(KP500000000, T18, T13); |
| 158 |
T1c = FNMS(KP500000000, TS, TF); |
| 159 |
} |
| 160 |
{
|
| 161 |
E Tf, T1S, TU, T1U, T1O, T1P, T1L, T1T; |
| 162 |
Tf = T1 + Te; |
| 163 |
T1S = T1Q + T1R; |
| 164 |
{
|
| 165 |
E Tz, TT, T1M, T1N; |
| 166 |
Tz = Tl + Ty; |
| 167 |
TT = TF + TS; |
| 168 |
TU = Tz + TT; |
| 169 |
T1U = TT - Tz; |
| 170 |
T1M = T1o + T1p; |
| 171 |
T1N = T13 + T18; |
| 172 |
T1O = T1M - T1N; |
| 173 |
T1P = T1M + T1N; |
| 174 |
} |
| 175 |
ri[0] = Tf + TU;
|
| 176 |
ii[0] = T1P + T1S;
|
| 177 |
T1L = FNMS(KP500000000, TU, Tf); |
| 178 |
ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L);
|
| 179 |
ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L);
|
| 180 |
T1T = FNMS(KP500000000, T1P, T1S); |
| 181 |
ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T);
|
| 182 |
ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T);
|
| 183 |
} |
| 184 |
{
|
| 185 |
E T11, T1z, T1X, T21, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G; |
| 186 |
E T22, TV, T1V; |
| 187 |
TV = FNMS(KP500000000, Te, T1); |
| 188 |
T11 = FMA(KP866025403, T10, TV); |
| 189 |
T1z = FNMS(KP866025403, T10, TV); |
| 190 |
T1V = FNMS(KP500000000, T1Q, T1R); |
| 191 |
T1X = FMA(KP866025403, T1W, T1V); |
| 192 |
T21 = FNMS(KP866025403, T1W, T1V); |
| 193 |
{
|
| 194 |
E T1b, T1e, T1m, T1s; |
| 195 |
T1b = FMA(KP866025403, T1a, T19); |
| 196 |
T1e = FMA(KP866025403, T1d, T1c); |
| 197 |
T1f = FMA(KP176326980, T1e, T1b); |
| 198 |
T1w = FNMS(KP176326980, T1b, T1e); |
| 199 |
T1m = FNMS(KP866025403, T1l, T1g); |
| 200 |
T1s = FNMS(KP866025403, T1r, T1q); |
| 201 |
T1t = FMA(KP839099631, T1s, T1m); |
| 202 |
T1x = FNMS(KP839099631, T1m, T1s); |
| 203 |
} |
| 204 |
T1u = FMA(KP777861913, T1t, T1f); |
| 205 |
T1Y = FNMS(KP777861913, T1x, T1w); |
| 206 |
{
|
| 207 |
E T1A, T1B, T1D, T1E; |
| 208 |
T1A = FMA(KP866025403, T1r, T1q); |
| 209 |
T1B = FMA(KP866025403, T1l, T1g); |
| 210 |
T1C = FMA(KP176326980, T1B, T1A); |
| 211 |
T1I = FNMS(KP176326980, T1A, T1B); |
| 212 |
T1D = FNMS(KP866025403, T1d, T1c); |
| 213 |
T1E = FNMS(KP866025403, T1a, T19); |
| 214 |
T1F = FNMS(KP363970234, T1E, T1D); |
| 215 |
T1J = FMA(KP363970234, T1D, T1E); |
| 216 |
} |
| 217 |
T1G = FNMS(KP954188894, T1F, T1C); |
| 218 |
T22 = FMA(KP954188894, T1J, T1I); |
| 219 |
ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11);
|
| 220 |
ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X);
|
| 221 |
ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z);
|
| 222 |
ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21);
|
| 223 |
{
|
| 224 |
E T1v, T1y, T1Z, T20; |
| 225 |
T1v = FNMS(KP492403876, T1u, T11); |
| 226 |
T1y = FMA(KP777861913, T1x, T1w); |
| 227 |
ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v);
|
| 228 |
ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v);
|
| 229 |
T1Z = FMA(KP492403876, T1Y, T1X); |
| 230 |
T20 = FNMS(KP777861913, T1t, T1f); |
| 231 |
ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z);
|
| 232 |
ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z);
|
| 233 |
} |
| 234 |
{
|
| 235 |
E T1H, T1K, T23, T24; |
| 236 |
T1H = FNMS(KP492403876, T1G, T1z); |
| 237 |
T1K = FNMS(KP954188894, T1J, T1I); |
| 238 |
ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H);
|
| 239 |
ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H);
|
| 240 |
T23 = FMA(KP492403876, T22, T21); |
| 241 |
T24 = FMA(KP954188894, T1F, T1C); |
| 242 |
ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23);
|
| 243 |
ii[WS(rs, 8)] = FMA(KP852868531, T24, T23);
|
| 244 |
} |
| 245 |
} |
| 246 |
} |
| 247 |
} |
| 248 |
} |
| 249 |
|
| 250 |
static const tw_instr twinstr[] = { |
| 251 |
{TW_FULL, 0, 9},
|
| 252 |
{TW_NEXT, 1, 0}
|
| 253 |
}; |
| 254 |
|
| 255 |
static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {24, 16, 72, 0}, 0, 0, 0 }; |
| 256 |
|
| 257 |
void X(codelet_t1_9) (planner *p) {
|
| 258 |
X(kdft_dit_register) (p, t1_9, &desc); |
| 259 |
} |
| 260 |
#else
|
| 261 |
|
| 262 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */
|
| 263 |
|
| 264 |
/*
|
| 265 |
* This function contains 96 FP additions, 72 FP multiplications,
|
| 266 |
* (or, 60 additions, 36 multiplications, 36 fused multiply/add),
|
| 267 |
* 41 stack variables, 8 constants, and 36 memory accesses
|
| 268 |
*/
|
| 269 |
#include "dft/scalar/t.h" |
| 270 |
|
| 271 |
static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 272 |
{
|
| 273 |
DK(KP939692620, +0.939692620785908384054109277324731469936208134); |
| 274 |
DK(KP342020143, +0.342020143325668733044099614682259580763083368); |
| 275 |
DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
| 276 |
DK(KP173648177, +0.173648177666930348851716626769314796000375677); |
| 277 |
DK(KP642787609, +0.642787609686539326322643409907263432907559884); |
| 278 |
DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
| 279 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 280 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 281 |
{
|
| 282 |
INT m; |
| 283 |
for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
| 284 |
E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; |
| 285 |
E T1w, TW, T1k, T11, T1l; |
| 286 |
{
|
| 287 |
E T6, TO, Tb, TP; |
| 288 |
T1 = ri[0];
|
| 289 |
T1B = ii[0];
|
| 290 |
{
|
| 291 |
E T3, T5, T2, T4; |
| 292 |
T3 = ri[WS(rs, 3)];
|
| 293 |
T5 = ii[WS(rs, 3)];
|
| 294 |
T2 = W[4];
|
| 295 |
T4 = W[5];
|
| 296 |
T6 = FMA(T2, T3, T4 * T5); |
| 297 |
TO = FNMS(T4, T3, T2 * T5); |
| 298 |
} |
| 299 |
{
|
| 300 |
E T8, Ta, T7, T9; |
| 301 |
T8 = ri[WS(rs, 6)];
|
| 302 |
Ta = ii[WS(rs, 6)];
|
| 303 |
T7 = W[10];
|
| 304 |
T9 = W[11];
|
| 305 |
Tb = FMA(T7, T8, T9 * Ta); |
| 306 |
TP = FNMS(T9, T8, T7 * Ta); |
| 307 |
} |
| 308 |
TQ = KP866025403 * (TO - TP); |
| 309 |
T1G = KP866025403 * (Tb - T6); |
| 310 |
Tc = T6 + Tb; |
| 311 |
TN = FNMS(KP500000000, Tc, T1); |
| 312 |
T1A = TO + TP; |
| 313 |
T1H = FNMS(KP500000000, T1A, T1B); |
| 314 |
} |
| 315 |
{
|
| 316 |
E Tz, T19, TE, T14, TJ, T15, TK, T1a; |
| 317 |
{
|
| 318 |
E Tw, Ty, Tv, Tx; |
| 319 |
Tw = ri[WS(rs, 2)];
|
| 320 |
Ty = ii[WS(rs, 2)];
|
| 321 |
Tv = W[2];
|
| 322 |
Tx = W[3];
|
| 323 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 324 |
T19 = FNMS(Tx, Tw, Tv * Ty); |
| 325 |
} |
| 326 |
{
|
| 327 |
E TB, TD, TA, TC; |
| 328 |
TB = ri[WS(rs, 5)];
|
| 329 |
TD = ii[WS(rs, 5)];
|
| 330 |
TA = W[8];
|
| 331 |
TC = W[9];
|
| 332 |
TE = FMA(TA, TB, TC * TD); |
| 333 |
T14 = FNMS(TC, TB, TA * TD); |
| 334 |
} |
| 335 |
{
|
| 336 |
E TG, TI, TF, TH; |
| 337 |
TG = ri[WS(rs, 8)];
|
| 338 |
TI = ii[WS(rs, 8)];
|
| 339 |
TF = W[14];
|
| 340 |
TH = W[15];
|
| 341 |
TJ = FMA(TF, TG, TH * TI); |
| 342 |
T15 = FNMS(TH, TG, TF * TI); |
| 343 |
} |
| 344 |
TK = TE + TJ; |
| 345 |
T1a = T14 + T15; |
| 346 |
TL = Tz + TK; |
| 347 |
T1x = T19 + T1a; |
| 348 |
{
|
| 349 |
E T13, T16, T18, T1b; |
| 350 |
T13 = FNMS(KP500000000, TK, Tz); |
| 351 |
T16 = KP866025403 * (T14 - T15); |
| 352 |
T17 = T13 + T16; |
| 353 |
T1o = T13 - T16; |
| 354 |
T18 = KP866025403 * (TJ - TE); |
| 355 |
T1b = FNMS(KP500000000, T1a, T19); |
| 356 |
T1c = T18 + T1b; |
| 357 |
T1n = T1b - T18; |
| 358 |
} |
| 359 |
} |
| 360 |
{
|
| 361 |
E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; |
| 362 |
{
|
| 363 |
E Tf, Th, Te, Tg; |
| 364 |
Tf = ri[WS(rs, 1)];
|
| 365 |
Th = ii[WS(rs, 1)];
|
| 366 |
Te = W[0];
|
| 367 |
Tg = W[1];
|
| 368 |
Ti = FMA(Te, Tf, Tg * Th); |
| 369 |
TY = FNMS(Tg, Tf, Te * Th); |
| 370 |
} |
| 371 |
{
|
| 372 |
E Tk, Tm, Tj, Tl; |
| 373 |
Tk = ri[WS(rs, 4)];
|
| 374 |
Tm = ii[WS(rs, 4)];
|
| 375 |
Tj = W[6];
|
| 376 |
Tl = W[7];
|
| 377 |
Tn = FMA(Tj, Tk, Tl * Tm); |
| 378 |
TT = FNMS(Tl, Tk, Tj * Tm); |
| 379 |
} |
| 380 |
{
|
| 381 |
E Tp, Tr, To, Tq; |
| 382 |
Tp = ri[WS(rs, 7)];
|
| 383 |
Tr = ii[WS(rs, 7)];
|
| 384 |
To = W[12];
|
| 385 |
Tq = W[13];
|
| 386 |
Ts = FMA(To, Tp, Tq * Tr); |
| 387 |
TU = FNMS(Tq, Tp, To * Tr); |
| 388 |
} |
| 389 |
Tt = Tn + Ts; |
| 390 |
TZ = TT + TU; |
| 391 |
Tu = Ti + Tt; |
| 392 |
T1w = TY + TZ; |
| 393 |
{
|
| 394 |
E TS, TV, TX, T10; |
| 395 |
TS = FNMS(KP500000000, Tt, Ti); |
| 396 |
TV = KP866025403 * (TT - TU); |
| 397 |
TW = TS + TV; |
| 398 |
T1k = TS - TV; |
| 399 |
TX = KP866025403 * (Ts - Tn); |
| 400 |
T10 = FNMS(KP500000000, TZ, TY); |
| 401 |
T11 = TX + T10; |
| 402 |
T1l = T10 - TX; |
| 403 |
} |
| 404 |
} |
| 405 |
{
|
| 406 |
E T1y, Td, TM, T1v; |
| 407 |
T1y = KP866025403 * (T1w - T1x); |
| 408 |
Td = T1 + Tc; |
| 409 |
TM = Tu + TL; |
| 410 |
T1v = FNMS(KP500000000, TM, Td); |
| 411 |
ri[0] = Td + TM;
|
| 412 |
ri[WS(rs, 3)] = T1v + T1y;
|
| 413 |
ri[WS(rs, 6)] = T1v - T1y;
|
| 414 |
} |
| 415 |
{
|
| 416 |
E T1D, T1z, T1C, T1E; |
| 417 |
T1D = KP866025403 * (TL - Tu); |
| 418 |
T1z = T1w + T1x; |
| 419 |
T1C = T1A + T1B; |
| 420 |
T1E = FNMS(KP500000000, T1z, T1C); |
| 421 |
ii[0] = T1z + T1C;
|
| 422 |
ii[WS(rs, 6)] = T1E - T1D;
|
| 423 |
ii[WS(rs, 3)] = T1D + T1E;
|
| 424 |
} |
| 425 |
{
|
| 426 |
E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; |
| 427 |
TR = TN + TQ; |
| 428 |
T1I = T1G + T1H; |
| 429 |
{
|
| 430 |
E T12, T1d, T1g, T1h; |
| 431 |
T12 = FMA(KP766044443, TW, KP642787609 * T11); |
| 432 |
T1d = FMA(KP173648177, T17, KP984807753 * T1c); |
| 433 |
T1e = T12 + T1d; |
| 434 |
T1J = KP866025403 * (T1d - T12); |
| 435 |
T1g = FNMS(KP642787609, TW, KP766044443 * T11); |
| 436 |
T1h = FNMS(KP984807753, T17, KP173648177 * T1c); |
| 437 |
T1i = KP866025403 * (T1g - T1h); |
| 438 |
T1F = T1g + T1h; |
| 439 |
} |
| 440 |
ri[WS(rs, 1)] = TR + T1e;
|
| 441 |
ii[WS(rs, 1)] = T1F + T1I;
|
| 442 |
T1f = FNMS(KP500000000, T1e, TR); |
| 443 |
ri[WS(rs, 7)] = T1f - T1i;
|
| 444 |
ri[WS(rs, 4)] = T1f + T1i;
|
| 445 |
T1K = FNMS(KP500000000, T1F, T1I); |
| 446 |
ii[WS(rs, 4)] = T1J + T1K;
|
| 447 |
ii[WS(rs, 7)] = T1K - T1J;
|
| 448 |
} |
| 449 |
{
|
| 450 |
E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; |
| 451 |
T1j = TN - TQ; |
| 452 |
T1M = T1H - T1G; |
| 453 |
{
|
| 454 |
E T1m, T1p, T1s, T1t; |
| 455 |
T1m = FMA(KP173648177, T1k, KP984807753 * T1l); |
| 456 |
T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); |
| 457 |
T1q = T1m + T1p; |
| 458 |
T1N = KP866025403 * (T1p - T1m); |
| 459 |
T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); |
| 460 |
T1t = FMA(KP342020143, T1o, KP939692620 * T1n); |
| 461 |
T1u = KP866025403 * (T1s + T1t); |
| 462 |
T1L = T1s - T1t; |
| 463 |
} |
| 464 |
ri[WS(rs, 2)] = T1j + T1q;
|
| 465 |
ii[WS(rs, 2)] = T1L + T1M;
|
| 466 |
T1r = FNMS(KP500000000, T1q, T1j); |
| 467 |
ri[WS(rs, 8)] = T1r - T1u;
|
| 468 |
ri[WS(rs, 5)] = T1r + T1u;
|
| 469 |
T1O = FNMS(KP500000000, T1L, T1M); |
| 470 |
ii[WS(rs, 5)] = T1N + T1O;
|
| 471 |
ii[WS(rs, 8)] = T1O - T1N;
|
| 472 |
} |
| 473 |
} |
| 474 |
} |
| 475 |
} |
| 476 |
|
| 477 |
static const tw_instr twinstr[] = { |
| 478 |
{TW_FULL, 0, 9},
|
| 479 |
{TW_NEXT, 1, 0}
|
| 480 |
}; |
| 481 |
|
| 482 |
static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, {60, 36, 36, 0}, 0, 0, 0 }; |
| 483 |
|
| 484 |
void X(codelet_t1_9) (planner *p) {
|
| 485 |
X(kdft_dit_register) (p, t1_9, &desc); |
| 486 |
} |
| 487 |
#endif
|