To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_64.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (101 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:15 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 1038 FP additions, 644 FP multiplications,
|
| 32 |
* (or, 520 additions, 126 multiplications, 518 fused multiply/add),
|
| 33 |
* 190 stack variables, 15 constants, and 256 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 40 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 41 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 42 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 43 |
DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
| 44 |
DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
| 45 |
DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
| 46 |
DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
| 47 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 48 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 49 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 50 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 51 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 52 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 53 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 54 |
{
|
| 55 |
INT m; |
| 56 |
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { |
| 57 |
E Tm, TeM, TjR, Tkl, T7e, TcA, TiV, Tjm, T1G, TeW, TeZ, Ths, T7Q, TcJ, T7X; |
| 58 |
E TcI, T29, Tf8, Tf5, Thv, T87, TcN, T8u, TcQ, T5K, Tg9, TfU, ThS, Taq, Tdm; |
| 59 |
E Tbj, Tdx, TN, Tjl, TeP, TiP, T7l, TcB, T7s, TcC, T1f, TeR, TeU, Thr, T7B; |
| 60 |
E TcG, T7I, TcF, T32, Tfj, Tfg, ThB, T8G, TcU, T93, TcX, T3X, TfI, Tft, ThH; |
| 61 |
E T9h, Td3, Taa, Tde, T2A, Tf6, Tfb, Thw, T8m, TcR, T8x, TcO, T3t, Tfh, Tfm; |
| 62 |
E ThC, T8V, TcY, T96, TcV, T4o, Tfu, TfL, ThI, T9w, Tdf, Tad, Td4, T6b, TfV; |
| 63 |
E Tgc, ThT, TaF, Tdy, Tbm, Tdn, T4Q, ThN, TfA, TfN, Ta1, Tdh, Taf, Td8, T5h; |
| 64 |
E ThO, TfF, TfO, T9M, Tdi, Tag, Tdb, T6D, ThY, Tg1, Tge, Tba, TdA, Tbo, Tdr; |
| 65 |
E T74, ThZ, Tg6, Tgf, TaV, TdB, Tbp, Tdu; |
| 66 |
{
|
| 67 |
E T1, TiT, T7, TiS, Te, T7a, Tk, T7c; |
| 68 |
T1 = ri[0];
|
| 69 |
TiT = ii[0];
|
| 70 |
{
|
| 71 |
E T3, T6, T4, TiR, T2, T5; |
| 72 |
T3 = ri[WS(rs, 32)];
|
| 73 |
T6 = ii[WS(rs, 32)];
|
| 74 |
T2 = W[62];
|
| 75 |
T4 = T2 * T3; |
| 76 |
TiR = T2 * T6; |
| 77 |
T5 = W[63];
|
| 78 |
T7 = FMA(T5, T6, T4); |
| 79 |
TiS = FNMS(T5, T3, TiR); |
| 80 |
} |
| 81 |
{
|
| 82 |
E Ta, Td, Tb, T79, T9, Tc; |
| 83 |
Ta = ri[WS(rs, 16)];
|
| 84 |
Td = ii[WS(rs, 16)];
|
| 85 |
T9 = W[30];
|
| 86 |
Tb = T9 * Ta; |
| 87 |
T79 = T9 * Td; |
| 88 |
Tc = W[31];
|
| 89 |
Te = FMA(Tc, Td, Tb); |
| 90 |
T7a = FNMS(Tc, Ta, T79); |
| 91 |
} |
| 92 |
{
|
| 93 |
E Tg, Tj, Th, T7b, Tf, Ti; |
| 94 |
Tg = ri[WS(rs, 48)];
|
| 95 |
Tj = ii[WS(rs, 48)];
|
| 96 |
Tf = W[94];
|
| 97 |
Th = Tf * Tg; |
| 98 |
T7b = Tf * Tj; |
| 99 |
Ti = W[95];
|
| 100 |
Tk = FMA(Ti, Tj, Th); |
| 101 |
T7c = FNMS(Ti, Tg, T7b); |
| 102 |
} |
| 103 |
{
|
| 104 |
E T8, Tl, TjP, TjQ; |
| 105 |
T8 = T1 + T7; |
| 106 |
Tl = Te + Tk; |
| 107 |
Tm = T8 + Tl; |
| 108 |
TeM = T8 - Tl; |
| 109 |
TjP = TiT - TiS; |
| 110 |
TjQ = Te - Tk; |
| 111 |
TjR = TjP - TjQ; |
| 112 |
Tkl = TjQ + TjP; |
| 113 |
} |
| 114 |
{
|
| 115 |
E T78, T7d, TiQ, TiU; |
| 116 |
T78 = T1 - T7; |
| 117 |
T7d = T7a - T7c; |
| 118 |
T7e = T78 - T7d; |
| 119 |
TcA = T78 + T7d; |
| 120 |
TiQ = T7a + T7c; |
| 121 |
TiU = TiS + TiT; |
| 122 |
TiV = TiQ + TiU; |
| 123 |
Tjm = TiU - TiQ; |
| 124 |
} |
| 125 |
} |
| 126 |
{
|
| 127 |
E T1l, T7L, T1E, T7V, T1r, T7N, T1y, T7T; |
| 128 |
{
|
| 129 |
E T1h, T1k, T1i, T7K, T1g, T1j; |
| 130 |
T1h = ri[WS(rs, 60)];
|
| 131 |
T1k = ii[WS(rs, 60)];
|
| 132 |
T1g = W[118];
|
| 133 |
T1i = T1g * T1h; |
| 134 |
T7K = T1g * T1k; |
| 135 |
T1j = W[119];
|
| 136 |
T1l = FMA(T1j, T1k, T1i); |
| 137 |
T7L = FNMS(T1j, T1h, T7K); |
| 138 |
} |
| 139 |
{
|
| 140 |
E T1A, T1D, T1B, T7U, T1z, T1C; |
| 141 |
T1A = ri[WS(rs, 44)];
|
| 142 |
T1D = ii[WS(rs, 44)];
|
| 143 |
T1z = W[86];
|
| 144 |
T1B = T1z * T1A; |
| 145 |
T7U = T1z * T1D; |
| 146 |
T1C = W[87];
|
| 147 |
T1E = FMA(T1C, T1D, T1B); |
| 148 |
T7V = FNMS(T1C, T1A, T7U); |
| 149 |
} |
| 150 |
{
|
| 151 |
E T1n, T1q, T1o, T7M, T1m, T1p; |
| 152 |
T1n = ri[WS(rs, 28)];
|
| 153 |
T1q = ii[WS(rs, 28)];
|
| 154 |
T1m = W[54];
|
| 155 |
T1o = T1m * T1n; |
| 156 |
T7M = T1m * T1q; |
| 157 |
T1p = W[55];
|
| 158 |
T1r = FMA(T1p, T1q, T1o); |
| 159 |
T7N = FNMS(T1p, T1n, T7M); |
| 160 |
} |
| 161 |
{
|
| 162 |
E T1u, T1x, T1v, T7S, T1t, T1w; |
| 163 |
T1u = ri[WS(rs, 12)];
|
| 164 |
T1x = ii[WS(rs, 12)];
|
| 165 |
T1t = W[22];
|
| 166 |
T1v = T1t * T1u; |
| 167 |
T7S = T1t * T1x; |
| 168 |
T1w = W[23];
|
| 169 |
T1y = FMA(T1w, T1x, T1v); |
| 170 |
T7T = FNMS(T1w, T1u, T7S); |
| 171 |
} |
| 172 |
{
|
| 173 |
E T1s, T1F, TeX, TeY; |
| 174 |
T1s = T1l + T1r; |
| 175 |
T1F = T1y + T1E; |
| 176 |
T1G = T1s + T1F; |
| 177 |
TeW = T1s - T1F; |
| 178 |
TeX = T7L + T7N; |
| 179 |
TeY = T7T + T7V; |
| 180 |
TeZ = TeX - TeY; |
| 181 |
Ths = TeX + TeY; |
| 182 |
} |
| 183 |
{
|
| 184 |
E T7O, T7P, T7R, T7W; |
| 185 |
T7O = T7L - T7N; |
| 186 |
T7P = T1y - T1E; |
| 187 |
T7Q = T7O + T7P; |
| 188 |
TcJ = T7O - T7P; |
| 189 |
T7R = T1l - T1r; |
| 190 |
T7W = T7T - T7V; |
| 191 |
T7X = T7R - T7W; |
| 192 |
TcI = T7R + T7W; |
| 193 |
} |
| 194 |
} |
| 195 |
{
|
| 196 |
E T1O, T82, T27, T8s, T1U, T84, T21, T8q; |
| 197 |
{
|
| 198 |
E T1K, T1N, T1L, T81, T1J, T1M; |
| 199 |
T1K = ri[WS(rs, 2)];
|
| 200 |
T1N = ii[WS(rs, 2)];
|
| 201 |
T1J = W[2];
|
| 202 |
T1L = T1J * T1K; |
| 203 |
T81 = T1J * T1N; |
| 204 |
T1M = W[3];
|
| 205 |
T1O = FMA(T1M, T1N, T1L); |
| 206 |
T82 = FNMS(T1M, T1K, T81); |
| 207 |
} |
| 208 |
{
|
| 209 |
E T23, T26, T24, T8r, T22, T25; |
| 210 |
T23 = ri[WS(rs, 50)];
|
| 211 |
T26 = ii[WS(rs, 50)];
|
| 212 |
T22 = W[98];
|
| 213 |
T24 = T22 * T23; |
| 214 |
T8r = T22 * T26; |
| 215 |
T25 = W[99];
|
| 216 |
T27 = FMA(T25, T26, T24); |
| 217 |
T8s = FNMS(T25, T23, T8r); |
| 218 |
} |
| 219 |
{
|
| 220 |
E T1Q, T1T, T1R, T83, T1P, T1S; |
| 221 |
T1Q = ri[WS(rs, 34)];
|
| 222 |
T1T = ii[WS(rs, 34)];
|
| 223 |
T1P = W[66];
|
| 224 |
T1R = T1P * T1Q; |
| 225 |
T83 = T1P * T1T; |
| 226 |
T1S = W[67];
|
| 227 |
T1U = FMA(T1S, T1T, T1R); |
| 228 |
T84 = FNMS(T1S, T1Q, T83); |
| 229 |
} |
| 230 |
{
|
| 231 |
E T1X, T20, T1Y, T8p, T1W, T1Z; |
| 232 |
T1X = ri[WS(rs, 18)];
|
| 233 |
T20 = ii[WS(rs, 18)];
|
| 234 |
T1W = W[34];
|
| 235 |
T1Y = T1W * T1X; |
| 236 |
T8p = T1W * T20; |
| 237 |
T1Z = W[35];
|
| 238 |
T21 = FMA(T1Z, T20, T1Y); |
| 239 |
T8q = FNMS(T1Z, T1X, T8p); |
| 240 |
} |
| 241 |
{
|
| 242 |
E T1V, T28, Tf3, Tf4; |
| 243 |
T1V = T1O + T1U; |
| 244 |
T28 = T21 + T27; |
| 245 |
T29 = T1V + T28; |
| 246 |
Tf8 = T1V - T28; |
| 247 |
Tf3 = T82 + T84; |
| 248 |
Tf4 = T8q + T8s; |
| 249 |
Tf5 = Tf3 - Tf4; |
| 250 |
Thv = Tf3 + Tf4; |
| 251 |
} |
| 252 |
{
|
| 253 |
E T85, T86, T8o, T8t; |
| 254 |
T85 = T82 - T84; |
| 255 |
T86 = T21 - T27; |
| 256 |
T87 = T85 + T86; |
| 257 |
TcN = T85 - T86; |
| 258 |
T8o = T1O - T1U; |
| 259 |
T8t = T8q - T8s; |
| 260 |
T8u = T8o - T8t; |
| 261 |
TcQ = T8o + T8t; |
| 262 |
} |
| 263 |
} |
| 264 |
{
|
| 265 |
E T5p, Tal, T5I, Tbh, T5v, Tan, T5C, Tbf; |
| 266 |
{
|
| 267 |
E T5l, T5o, T5m, Tak, T5k, T5n; |
| 268 |
T5l = ri[WS(rs, 63)];
|
| 269 |
T5o = ii[WS(rs, 63)];
|
| 270 |
T5k = W[124];
|
| 271 |
T5m = T5k * T5l; |
| 272 |
Tak = T5k * T5o; |
| 273 |
T5n = W[125];
|
| 274 |
T5p = FMA(T5n, T5o, T5m); |
| 275 |
Tal = FNMS(T5n, T5l, Tak); |
| 276 |
} |
| 277 |
{
|
| 278 |
E T5E, T5H, T5F, Tbg, T5D, T5G; |
| 279 |
T5E = ri[WS(rs, 47)];
|
| 280 |
T5H = ii[WS(rs, 47)];
|
| 281 |
T5D = W[92];
|
| 282 |
T5F = T5D * T5E; |
| 283 |
Tbg = T5D * T5H; |
| 284 |
T5G = W[93];
|
| 285 |
T5I = FMA(T5G, T5H, T5F); |
| 286 |
Tbh = FNMS(T5G, T5E, Tbg); |
| 287 |
} |
| 288 |
{
|
| 289 |
E T5r, T5u, T5s, Tam, T5q, T5t; |
| 290 |
T5r = ri[WS(rs, 31)];
|
| 291 |
T5u = ii[WS(rs, 31)];
|
| 292 |
T5q = W[60];
|
| 293 |
T5s = T5q * T5r; |
| 294 |
Tam = T5q * T5u; |
| 295 |
T5t = W[61];
|
| 296 |
T5v = FMA(T5t, T5u, T5s); |
| 297 |
Tan = FNMS(T5t, T5r, Tam); |
| 298 |
} |
| 299 |
{
|
| 300 |
E T5y, T5B, T5z, Tbe, T5x, T5A; |
| 301 |
T5y = ri[WS(rs, 15)];
|
| 302 |
T5B = ii[WS(rs, 15)];
|
| 303 |
T5x = W[28];
|
| 304 |
T5z = T5x * T5y; |
| 305 |
Tbe = T5x * T5B; |
| 306 |
T5A = W[29];
|
| 307 |
T5C = FMA(T5A, T5B, T5z); |
| 308 |
Tbf = FNMS(T5A, T5y, Tbe); |
| 309 |
} |
| 310 |
{
|
| 311 |
E T5w, T5J, TfS, TfT; |
| 312 |
T5w = T5p + T5v; |
| 313 |
T5J = T5C + T5I; |
| 314 |
T5K = T5w + T5J; |
| 315 |
Tg9 = T5w - T5J; |
| 316 |
TfS = Tal + Tan; |
| 317 |
TfT = Tbf + Tbh; |
| 318 |
TfU = TfS - TfT; |
| 319 |
ThS = TfS + TfT; |
| 320 |
} |
| 321 |
{
|
| 322 |
E Tao, Tap, Tbd, Tbi; |
| 323 |
Tao = Tal - Tan; |
| 324 |
Tap = T5C - T5I; |
| 325 |
Taq = Tao + Tap; |
| 326 |
Tdm = Tao - Tap; |
| 327 |
Tbd = T5p - T5v; |
| 328 |
Tbi = Tbf - Tbh; |
| 329 |
Tbj = Tbd - Tbi; |
| 330 |
Tdx = Tbd + Tbi; |
| 331 |
} |
| 332 |
} |
| 333 |
{
|
| 334 |
E Ts, T7g, TL, T7q, Ty, T7i, TF, T7o; |
| 335 |
{
|
| 336 |
E To, Tr, Tp, T7f, Tn, Tq; |
| 337 |
To = ri[WS(rs, 8)];
|
| 338 |
Tr = ii[WS(rs, 8)];
|
| 339 |
Tn = W[14];
|
| 340 |
Tp = Tn * To; |
| 341 |
T7f = Tn * Tr; |
| 342 |
Tq = W[15];
|
| 343 |
Ts = FMA(Tq, Tr, Tp); |
| 344 |
T7g = FNMS(Tq, To, T7f); |
| 345 |
} |
| 346 |
{
|
| 347 |
E TH, TK, TI, T7p, TG, TJ; |
| 348 |
TH = ri[WS(rs, 24)];
|
| 349 |
TK = ii[WS(rs, 24)];
|
| 350 |
TG = W[46];
|
| 351 |
TI = TG * TH; |
| 352 |
T7p = TG * TK; |
| 353 |
TJ = W[47];
|
| 354 |
TL = FMA(TJ, TK, TI); |
| 355 |
T7q = FNMS(TJ, TH, T7p); |
| 356 |
} |
| 357 |
{
|
| 358 |
E Tu, Tx, Tv, T7h, Tt, Tw; |
| 359 |
Tu = ri[WS(rs, 40)];
|
| 360 |
Tx = ii[WS(rs, 40)];
|
| 361 |
Tt = W[78];
|
| 362 |
Tv = Tt * Tu; |
| 363 |
T7h = Tt * Tx; |
| 364 |
Tw = W[79];
|
| 365 |
Ty = FMA(Tw, Tx, Tv); |
| 366 |
T7i = FNMS(Tw, Tu, T7h); |
| 367 |
} |
| 368 |
{
|
| 369 |
E TB, TE, TC, T7n, TA, TD; |
| 370 |
TB = ri[WS(rs, 56)];
|
| 371 |
TE = ii[WS(rs, 56)];
|
| 372 |
TA = W[110];
|
| 373 |
TC = TA * TB; |
| 374 |
T7n = TA * TE; |
| 375 |
TD = W[111];
|
| 376 |
TF = FMA(TD, TE, TC); |
| 377 |
T7o = FNMS(TD, TB, T7n); |
| 378 |
} |
| 379 |
{
|
| 380 |
E Tz, TM, TeN, TeO; |
| 381 |
Tz = Ts + Ty; |
| 382 |
TM = TF + TL; |
| 383 |
TN = Tz + TM; |
| 384 |
Tjl = TM - Tz; |
| 385 |
TeN = T7g + T7i; |
| 386 |
TeO = T7o + T7q; |
| 387 |
TeP = TeN - TeO; |
| 388 |
TiP = TeN + TeO; |
| 389 |
} |
| 390 |
{
|
| 391 |
E T7j, T7k, T7m, T7r; |
| 392 |
T7j = T7g - T7i; |
| 393 |
T7k = Ts - Ty; |
| 394 |
T7l = T7j - T7k; |
| 395 |
TcB = T7k + T7j; |
| 396 |
T7m = TF - TL; |
| 397 |
T7r = T7o - T7q; |
| 398 |
T7s = T7m + T7r; |
| 399 |
TcC = T7m - T7r; |
| 400 |
} |
| 401 |
} |
| 402 |
{
|
| 403 |
E TU, T7w, T1d, T7G, T10, T7y, T17, T7E; |
| 404 |
{
|
| 405 |
E TQ, TT, TR, T7v, TP, TS; |
| 406 |
TQ = ri[WS(rs, 4)];
|
| 407 |
TT = ii[WS(rs, 4)];
|
| 408 |
TP = W[6];
|
| 409 |
TR = TP * TQ; |
| 410 |
T7v = TP * TT; |
| 411 |
TS = W[7];
|
| 412 |
TU = FMA(TS, TT, TR); |
| 413 |
T7w = FNMS(TS, TQ, T7v); |
| 414 |
} |
| 415 |
{
|
| 416 |
E T19, T1c, T1a, T7F, T18, T1b; |
| 417 |
T19 = ri[WS(rs, 52)];
|
| 418 |
T1c = ii[WS(rs, 52)];
|
| 419 |
T18 = W[102];
|
| 420 |
T1a = T18 * T19; |
| 421 |
T7F = T18 * T1c; |
| 422 |
T1b = W[103];
|
| 423 |
T1d = FMA(T1b, T1c, T1a); |
| 424 |
T7G = FNMS(T1b, T19, T7F); |
| 425 |
} |
| 426 |
{
|
| 427 |
E TW, TZ, TX, T7x, TV, TY; |
| 428 |
TW = ri[WS(rs, 36)];
|
| 429 |
TZ = ii[WS(rs, 36)];
|
| 430 |
TV = W[70];
|
| 431 |
TX = TV * TW; |
| 432 |
T7x = TV * TZ; |
| 433 |
TY = W[71];
|
| 434 |
T10 = FMA(TY, TZ, TX); |
| 435 |
T7y = FNMS(TY, TW, T7x); |
| 436 |
} |
| 437 |
{
|
| 438 |
E T13, T16, T14, T7D, T12, T15; |
| 439 |
T13 = ri[WS(rs, 20)];
|
| 440 |
T16 = ii[WS(rs, 20)];
|
| 441 |
T12 = W[38];
|
| 442 |
T14 = T12 * T13; |
| 443 |
T7D = T12 * T16; |
| 444 |
T15 = W[39];
|
| 445 |
T17 = FMA(T15, T16, T14); |
| 446 |
T7E = FNMS(T15, T13, T7D); |
| 447 |
} |
| 448 |
{
|
| 449 |
E T11, T1e, TeS, TeT; |
| 450 |
T11 = TU + T10; |
| 451 |
T1e = T17 + T1d; |
| 452 |
T1f = T11 + T1e; |
| 453 |
TeR = T11 - T1e; |
| 454 |
TeS = T7w + T7y; |
| 455 |
TeT = T7E + T7G; |
| 456 |
TeU = TeS - TeT; |
| 457 |
Thr = TeS + TeT; |
| 458 |
} |
| 459 |
{
|
| 460 |
E T7z, T7A, T7C, T7H; |
| 461 |
T7z = T7w - T7y; |
| 462 |
T7A = T17 - T1d; |
| 463 |
T7B = T7z + T7A; |
| 464 |
TcG = T7z - T7A; |
| 465 |
T7C = TU - T10; |
| 466 |
T7H = T7E - T7G; |
| 467 |
T7I = T7C - T7H; |
| 468 |
TcF = T7C + T7H; |
| 469 |
} |
| 470 |
} |
| 471 |
{
|
| 472 |
E T2H, T8B, T30, T91, T2N, T8D, T2U, T8Z; |
| 473 |
{
|
| 474 |
E T2D, T2G, T2E, T8A, T2C, T2F; |
| 475 |
T2D = ri[WS(rs, 62)];
|
| 476 |
T2G = ii[WS(rs, 62)];
|
| 477 |
T2C = W[122];
|
| 478 |
T2E = T2C * T2D; |
| 479 |
T8A = T2C * T2G; |
| 480 |
T2F = W[123];
|
| 481 |
T2H = FMA(T2F, T2G, T2E); |
| 482 |
T8B = FNMS(T2F, T2D, T8A); |
| 483 |
} |
| 484 |
{
|
| 485 |
E T2W, T2Z, T2X, T90, T2V, T2Y; |
| 486 |
T2W = ri[WS(rs, 46)];
|
| 487 |
T2Z = ii[WS(rs, 46)];
|
| 488 |
T2V = W[90];
|
| 489 |
T2X = T2V * T2W; |
| 490 |
T90 = T2V * T2Z; |
| 491 |
T2Y = W[91];
|
| 492 |
T30 = FMA(T2Y, T2Z, T2X); |
| 493 |
T91 = FNMS(T2Y, T2W, T90); |
| 494 |
} |
| 495 |
{
|
| 496 |
E T2J, T2M, T2K, T8C, T2I, T2L; |
| 497 |
T2J = ri[WS(rs, 30)];
|
| 498 |
T2M = ii[WS(rs, 30)];
|
| 499 |
T2I = W[58];
|
| 500 |
T2K = T2I * T2J; |
| 501 |
T8C = T2I * T2M; |
| 502 |
T2L = W[59];
|
| 503 |
T2N = FMA(T2L, T2M, T2K); |
| 504 |
T8D = FNMS(T2L, T2J, T8C); |
| 505 |
} |
| 506 |
{
|
| 507 |
E T2Q, T2T, T2R, T8Y, T2P, T2S; |
| 508 |
T2Q = ri[WS(rs, 14)];
|
| 509 |
T2T = ii[WS(rs, 14)];
|
| 510 |
T2P = W[26];
|
| 511 |
T2R = T2P * T2Q; |
| 512 |
T8Y = T2P * T2T; |
| 513 |
T2S = W[27];
|
| 514 |
T2U = FMA(T2S, T2T, T2R); |
| 515 |
T8Z = FNMS(T2S, T2Q, T8Y); |
| 516 |
} |
| 517 |
{
|
| 518 |
E T2O, T31, Tfe, Tff; |
| 519 |
T2O = T2H + T2N; |
| 520 |
T31 = T2U + T30; |
| 521 |
T32 = T2O + T31; |
| 522 |
Tfj = T2O - T31; |
| 523 |
Tfe = T8B + T8D; |
| 524 |
Tff = T8Z + T91; |
| 525 |
Tfg = Tfe - Tff; |
| 526 |
ThB = Tfe + Tff; |
| 527 |
} |
| 528 |
{
|
| 529 |
E T8E, T8F, T8X, T92; |
| 530 |
T8E = T8B - T8D; |
| 531 |
T8F = T2U - T30; |
| 532 |
T8G = T8E + T8F; |
| 533 |
TcU = T8E - T8F; |
| 534 |
T8X = T2H - T2N; |
| 535 |
T92 = T8Z - T91; |
| 536 |
T93 = T8X - T92; |
| 537 |
TcX = T8X + T92; |
| 538 |
} |
| 539 |
} |
| 540 |
{
|
| 541 |
E T3C, T9c, T3V, Ta8, T3I, T9e, T3P, Ta6; |
| 542 |
{
|
| 543 |
E T3y, T3B, T3z, T9b, T3x, T3A; |
| 544 |
T3y = ri[WS(rs, 1)];
|
| 545 |
T3B = ii[WS(rs, 1)];
|
| 546 |
T3x = W[0];
|
| 547 |
T3z = T3x * T3y; |
| 548 |
T9b = T3x * T3B; |
| 549 |
T3A = W[1];
|
| 550 |
T3C = FMA(T3A, T3B, T3z); |
| 551 |
T9c = FNMS(T3A, T3y, T9b); |
| 552 |
} |
| 553 |
{
|
| 554 |
E T3R, T3U, T3S, Ta7, T3Q, T3T; |
| 555 |
T3R = ri[WS(rs, 49)];
|
| 556 |
T3U = ii[WS(rs, 49)];
|
| 557 |
T3Q = W[96];
|
| 558 |
T3S = T3Q * T3R; |
| 559 |
Ta7 = T3Q * T3U; |
| 560 |
T3T = W[97];
|
| 561 |
T3V = FMA(T3T, T3U, T3S); |
| 562 |
Ta8 = FNMS(T3T, T3R, Ta7); |
| 563 |
} |
| 564 |
{
|
| 565 |
E T3E, T3H, T3F, T9d, T3D, T3G; |
| 566 |
T3E = ri[WS(rs, 33)];
|
| 567 |
T3H = ii[WS(rs, 33)];
|
| 568 |
T3D = W[64];
|
| 569 |
T3F = T3D * T3E; |
| 570 |
T9d = T3D * T3H; |
| 571 |
T3G = W[65];
|
| 572 |
T3I = FMA(T3G, T3H, T3F); |
| 573 |
T9e = FNMS(T3G, T3E, T9d); |
| 574 |
} |
| 575 |
{
|
| 576 |
E T3L, T3O, T3M, Ta5, T3K, T3N; |
| 577 |
T3L = ri[WS(rs, 17)];
|
| 578 |
T3O = ii[WS(rs, 17)];
|
| 579 |
T3K = W[32];
|
| 580 |
T3M = T3K * T3L; |
| 581 |
Ta5 = T3K * T3O; |
| 582 |
T3N = W[33];
|
| 583 |
T3P = FMA(T3N, T3O, T3M); |
| 584 |
Ta6 = FNMS(T3N, T3L, Ta5); |
| 585 |
} |
| 586 |
{
|
| 587 |
E T3J, T3W, Tfr, Tfs; |
| 588 |
T3J = T3C + T3I; |
| 589 |
T3W = T3P + T3V; |
| 590 |
T3X = T3J + T3W; |
| 591 |
TfI = T3J - T3W; |
| 592 |
Tfr = T9c + T9e; |
| 593 |
Tfs = Ta6 + Ta8; |
| 594 |
Tft = Tfr - Tfs; |
| 595 |
ThH = Tfr + Tfs; |
| 596 |
} |
| 597 |
{
|
| 598 |
E T9f, T9g, Ta4, Ta9; |
| 599 |
T9f = T9c - T9e; |
| 600 |
T9g = T3P - T3V; |
| 601 |
T9h = T9f + T9g; |
| 602 |
Td3 = T9f - T9g; |
| 603 |
Ta4 = T3C - T3I; |
| 604 |
Ta9 = Ta6 - Ta8; |
| 605 |
Taa = Ta4 - Ta9; |
| 606 |
Tde = Ta4 + Ta9; |
| 607 |
} |
| 608 |
} |
| 609 |
{
|
| 610 |
E T2f, T8a, T2y, T8j, T2l, T8c, T2s, T8h; |
| 611 |
{
|
| 612 |
E T2b, T2e, T2c, T89, T2a, T2d; |
| 613 |
T2b = ri[WS(rs, 10)];
|
| 614 |
T2e = ii[WS(rs, 10)];
|
| 615 |
T2a = W[18];
|
| 616 |
T2c = T2a * T2b; |
| 617 |
T89 = T2a * T2e; |
| 618 |
T2d = W[19];
|
| 619 |
T2f = FMA(T2d, T2e, T2c); |
| 620 |
T8a = FNMS(T2d, T2b, T89); |
| 621 |
} |
| 622 |
{
|
| 623 |
E T2u, T2x, T2v, T8i, T2t, T2w; |
| 624 |
T2u = ri[WS(rs, 26)];
|
| 625 |
T2x = ii[WS(rs, 26)];
|
| 626 |
T2t = W[50];
|
| 627 |
T2v = T2t * T2u; |
| 628 |
T8i = T2t * T2x; |
| 629 |
T2w = W[51];
|
| 630 |
T2y = FMA(T2w, T2x, T2v); |
| 631 |
T8j = FNMS(T2w, T2u, T8i); |
| 632 |
} |
| 633 |
{
|
| 634 |
E T2h, T2k, T2i, T8b, T2g, T2j; |
| 635 |
T2h = ri[WS(rs, 42)];
|
| 636 |
T2k = ii[WS(rs, 42)];
|
| 637 |
T2g = W[82];
|
| 638 |
T2i = T2g * T2h; |
| 639 |
T8b = T2g * T2k; |
| 640 |
T2j = W[83];
|
| 641 |
T2l = FMA(T2j, T2k, T2i); |
| 642 |
T8c = FNMS(T2j, T2h, T8b); |
| 643 |
} |
| 644 |
{
|
| 645 |
E T2o, T2r, T2p, T8g, T2n, T2q; |
| 646 |
T2o = ri[WS(rs, 58)];
|
| 647 |
T2r = ii[WS(rs, 58)];
|
| 648 |
T2n = W[114];
|
| 649 |
T2p = T2n * T2o; |
| 650 |
T8g = T2n * T2r; |
| 651 |
T2q = W[115];
|
| 652 |
T2s = FMA(T2q, T2r, T2p); |
| 653 |
T8h = FNMS(T2q, T2o, T8g); |
| 654 |
} |
| 655 |
{
|
| 656 |
E T2m, T2z, Tf9, Tfa; |
| 657 |
T2m = T2f + T2l; |
| 658 |
T2z = T2s + T2y; |
| 659 |
T2A = T2m + T2z; |
| 660 |
Tf6 = T2z - T2m; |
| 661 |
Tf9 = T8a + T8c; |
| 662 |
Tfa = T8h + T8j; |
| 663 |
Tfb = Tf9 - Tfa; |
| 664 |
Thw = Tf9 + Tfa; |
| 665 |
{
|
| 666 |
E T8e, T8w, T8l, T8v; |
| 667 |
{
|
| 668 |
E T88, T8d, T8f, T8k; |
| 669 |
T88 = T2f - T2l; |
| 670 |
T8d = T8a - T8c; |
| 671 |
T8e = T88 + T8d; |
| 672 |
T8w = T8d - T88; |
| 673 |
T8f = T2s - T2y; |
| 674 |
T8k = T8h - T8j; |
| 675 |
T8l = T8f - T8k; |
| 676 |
T8v = T8f + T8k; |
| 677 |
} |
| 678 |
T8m = T8e - T8l; |
| 679 |
TcR = T8e + T8l; |
| 680 |
T8x = T8v - T8w; |
| 681 |
TcO = T8w + T8v; |
| 682 |
} |
| 683 |
} |
| 684 |
} |
| 685 |
{
|
| 686 |
E T38, T8J, T3r, T8S, T3e, T8L, T3l, T8Q; |
| 687 |
{
|
| 688 |
E T34, T37, T35, T8I, T33, T36; |
| 689 |
T34 = ri[WS(rs, 6)];
|
| 690 |
T37 = ii[WS(rs, 6)];
|
| 691 |
T33 = W[10];
|
| 692 |
T35 = T33 * T34; |
| 693 |
T8I = T33 * T37; |
| 694 |
T36 = W[11];
|
| 695 |
T38 = FMA(T36, T37, T35); |
| 696 |
T8J = FNMS(T36, T34, T8I); |
| 697 |
} |
| 698 |
{
|
| 699 |
E T3n, T3q, T3o, T8R, T3m, T3p; |
| 700 |
T3n = ri[WS(rs, 22)];
|
| 701 |
T3q = ii[WS(rs, 22)];
|
| 702 |
T3m = W[42];
|
| 703 |
T3o = T3m * T3n; |
| 704 |
T8R = T3m * T3q; |
| 705 |
T3p = W[43];
|
| 706 |
T3r = FMA(T3p, T3q, T3o); |
| 707 |
T8S = FNMS(T3p, T3n, T8R); |
| 708 |
} |
| 709 |
{
|
| 710 |
E T3a, T3d, T3b, T8K, T39, T3c; |
| 711 |
T3a = ri[WS(rs, 38)];
|
| 712 |
T3d = ii[WS(rs, 38)];
|
| 713 |
T39 = W[74];
|
| 714 |
T3b = T39 * T3a; |
| 715 |
T8K = T39 * T3d; |
| 716 |
T3c = W[75];
|
| 717 |
T3e = FMA(T3c, T3d, T3b); |
| 718 |
T8L = FNMS(T3c, T3a, T8K); |
| 719 |
} |
| 720 |
{
|
| 721 |
E T3h, T3k, T3i, T8P, T3g, T3j; |
| 722 |
T3h = ri[WS(rs, 54)];
|
| 723 |
T3k = ii[WS(rs, 54)];
|
| 724 |
T3g = W[106];
|
| 725 |
T3i = T3g * T3h; |
| 726 |
T8P = T3g * T3k; |
| 727 |
T3j = W[107];
|
| 728 |
T3l = FMA(T3j, T3k, T3i); |
| 729 |
T8Q = FNMS(T3j, T3h, T8P); |
| 730 |
} |
| 731 |
{
|
| 732 |
E T3f, T3s, Tfk, Tfl; |
| 733 |
T3f = T38 + T3e; |
| 734 |
T3s = T3l + T3r; |
| 735 |
T3t = T3f + T3s; |
| 736 |
Tfh = T3s - T3f; |
| 737 |
Tfk = T8J + T8L; |
| 738 |
Tfl = T8Q + T8S; |
| 739 |
Tfm = Tfk - Tfl; |
| 740 |
ThC = Tfk + Tfl; |
| 741 |
{
|
| 742 |
E T8N, T95, T8U, T94; |
| 743 |
{
|
| 744 |
E T8H, T8M, T8O, T8T; |
| 745 |
T8H = T38 - T3e; |
| 746 |
T8M = T8J - T8L; |
| 747 |
T8N = T8H + T8M; |
| 748 |
T95 = T8M - T8H; |
| 749 |
T8O = T3l - T3r; |
| 750 |
T8T = T8Q - T8S; |
| 751 |
T8U = T8O - T8T; |
| 752 |
T94 = T8O + T8T; |
| 753 |
} |
| 754 |
T8V = T8N - T8U; |
| 755 |
TcY = T8N + T8U; |
| 756 |
T96 = T94 - T95; |
| 757 |
TcV = T95 + T94; |
| 758 |
} |
| 759 |
} |
| 760 |
} |
| 761 |
{
|
| 762 |
E T43, T9k, T4m, T9t, T49, T9m, T4g, T9r; |
| 763 |
{
|
| 764 |
E T3Z, T42, T40, T9j, T3Y, T41; |
| 765 |
T3Z = ri[WS(rs, 9)];
|
| 766 |
T42 = ii[WS(rs, 9)];
|
| 767 |
T3Y = W[16];
|
| 768 |
T40 = T3Y * T3Z; |
| 769 |
T9j = T3Y * T42; |
| 770 |
T41 = W[17];
|
| 771 |
T43 = FMA(T41, T42, T40); |
| 772 |
T9k = FNMS(T41, T3Z, T9j); |
| 773 |
} |
| 774 |
{
|
| 775 |
E T4i, T4l, T4j, T9s, T4h, T4k; |
| 776 |
T4i = ri[WS(rs, 25)];
|
| 777 |
T4l = ii[WS(rs, 25)];
|
| 778 |
T4h = W[48];
|
| 779 |
T4j = T4h * T4i; |
| 780 |
T9s = T4h * T4l; |
| 781 |
T4k = W[49];
|
| 782 |
T4m = FMA(T4k, T4l, T4j); |
| 783 |
T9t = FNMS(T4k, T4i, T9s); |
| 784 |
} |
| 785 |
{
|
| 786 |
E T45, T48, T46, T9l, T44, T47; |
| 787 |
T45 = ri[WS(rs, 41)];
|
| 788 |
T48 = ii[WS(rs, 41)];
|
| 789 |
T44 = W[80];
|
| 790 |
T46 = T44 * T45; |
| 791 |
T9l = T44 * T48; |
| 792 |
T47 = W[81];
|
| 793 |
T49 = FMA(T47, T48, T46); |
| 794 |
T9m = FNMS(T47, T45, T9l); |
| 795 |
} |
| 796 |
{
|
| 797 |
E T4c, T4f, T4d, T9q, T4b, T4e; |
| 798 |
T4c = ri[WS(rs, 57)];
|
| 799 |
T4f = ii[WS(rs, 57)];
|
| 800 |
T4b = W[112];
|
| 801 |
T4d = T4b * T4c; |
| 802 |
T9q = T4b * T4f; |
| 803 |
T4e = W[113];
|
| 804 |
T4g = FMA(T4e, T4f, T4d); |
| 805 |
T9r = FNMS(T4e, T4c, T9q); |
| 806 |
} |
| 807 |
{
|
| 808 |
E T4a, T4n, TfJ, TfK; |
| 809 |
T4a = T43 + T49; |
| 810 |
T4n = T4g + T4m; |
| 811 |
T4o = T4a + T4n; |
| 812 |
Tfu = T4n - T4a; |
| 813 |
TfJ = T9k + T9m; |
| 814 |
TfK = T9r + T9t; |
| 815 |
TfL = TfJ - TfK; |
| 816 |
ThI = TfJ + TfK; |
| 817 |
{
|
| 818 |
E T9o, Tac, T9v, Tab; |
| 819 |
{
|
| 820 |
E T9i, T9n, T9p, T9u; |
| 821 |
T9i = T43 - T49; |
| 822 |
T9n = T9k - T9m; |
| 823 |
T9o = T9i + T9n; |
| 824 |
Tac = T9n - T9i; |
| 825 |
T9p = T4g - T4m; |
| 826 |
T9u = T9r - T9t; |
| 827 |
T9v = T9p - T9u; |
| 828 |
Tab = T9p + T9u; |
| 829 |
} |
| 830 |
T9w = T9o - T9v; |
| 831 |
Tdf = T9o + T9v; |
| 832 |
Tad = Tab - Tac; |
| 833 |
Td4 = Tac + Tab; |
| 834 |
} |
| 835 |
} |
| 836 |
} |
| 837 |
{
|
| 838 |
E T5Q, Tat, T69, TaC, T5W, Tav, T63, TaA; |
| 839 |
{
|
| 840 |
E T5M, T5P, T5N, Tas, T5L, T5O; |
| 841 |
T5M = ri[WS(rs, 7)];
|
| 842 |
T5P = ii[WS(rs, 7)];
|
| 843 |
T5L = W[12];
|
| 844 |
T5N = T5L * T5M; |
| 845 |
Tas = T5L * T5P; |
| 846 |
T5O = W[13];
|
| 847 |
T5Q = FMA(T5O, T5P, T5N); |
| 848 |
Tat = FNMS(T5O, T5M, Tas); |
| 849 |
} |
| 850 |
{
|
| 851 |
E T65, T68, T66, TaB, T64, T67; |
| 852 |
T65 = ri[WS(rs, 23)];
|
| 853 |
T68 = ii[WS(rs, 23)];
|
| 854 |
T64 = W[44];
|
| 855 |
T66 = T64 * T65; |
| 856 |
TaB = T64 * T68; |
| 857 |
T67 = W[45];
|
| 858 |
T69 = FMA(T67, T68, T66); |
| 859 |
TaC = FNMS(T67, T65, TaB); |
| 860 |
} |
| 861 |
{
|
| 862 |
E T5S, T5V, T5T, Tau, T5R, T5U; |
| 863 |
T5S = ri[WS(rs, 39)];
|
| 864 |
T5V = ii[WS(rs, 39)];
|
| 865 |
T5R = W[76];
|
| 866 |
T5T = T5R * T5S; |
| 867 |
Tau = T5R * T5V; |
| 868 |
T5U = W[77];
|
| 869 |
T5W = FMA(T5U, T5V, T5T); |
| 870 |
Tav = FNMS(T5U, T5S, Tau); |
| 871 |
} |
| 872 |
{
|
| 873 |
E T5Z, T62, T60, Taz, T5Y, T61; |
| 874 |
T5Z = ri[WS(rs, 55)];
|
| 875 |
T62 = ii[WS(rs, 55)];
|
| 876 |
T5Y = W[108];
|
| 877 |
T60 = T5Y * T5Z; |
| 878 |
Taz = T5Y * T62; |
| 879 |
T61 = W[109];
|
| 880 |
T63 = FMA(T61, T62, T60); |
| 881 |
TaA = FNMS(T61, T5Z, Taz); |
| 882 |
} |
| 883 |
{
|
| 884 |
E T5X, T6a, Tga, Tgb; |
| 885 |
T5X = T5Q + T5W; |
| 886 |
T6a = T63 + T69; |
| 887 |
T6b = T5X + T6a; |
| 888 |
TfV = T6a - T5X; |
| 889 |
Tga = Tat + Tav; |
| 890 |
Tgb = TaA + TaC; |
| 891 |
Tgc = Tga - Tgb; |
| 892 |
ThT = Tga + Tgb; |
| 893 |
{
|
| 894 |
E Tax, Tbl, TaE, Tbk; |
| 895 |
{
|
| 896 |
E Tar, Taw, Tay, TaD; |
| 897 |
Tar = T5Q - T5W; |
| 898 |
Taw = Tat - Tav; |
| 899 |
Tax = Tar + Taw; |
| 900 |
Tbl = Taw - Tar; |
| 901 |
Tay = T63 - T69; |
| 902 |
TaD = TaA - TaC; |
| 903 |
TaE = Tay - TaD; |
| 904 |
Tbk = Tay + TaD; |
| 905 |
} |
| 906 |
TaF = Tax - TaE; |
| 907 |
Tdy = Tax + TaE; |
| 908 |
Tbm = Tbk - Tbl; |
| 909 |
Tdn = Tbl + Tbk; |
| 910 |
} |
| 911 |
} |
| 912 |
} |
| 913 |
{
|
| 914 |
E T4v, T9V, T4O, T9R, T4B, T9X, T4I, T9P; |
| 915 |
{
|
| 916 |
E T4r, T4u, T4s, T9U, T4q, T4t; |
| 917 |
T4r = ri[WS(rs, 5)];
|
| 918 |
T4u = ii[WS(rs, 5)];
|
| 919 |
T4q = W[8];
|
| 920 |
T4s = T4q * T4r; |
| 921 |
T9U = T4q * T4u; |
| 922 |
T4t = W[9];
|
| 923 |
T4v = FMA(T4t, T4u, T4s); |
| 924 |
T9V = FNMS(T4t, T4r, T9U); |
| 925 |
} |
| 926 |
{
|
| 927 |
E T4K, T4N, T4L, T9Q, T4J, T4M; |
| 928 |
T4K = ri[WS(rs, 53)];
|
| 929 |
T4N = ii[WS(rs, 53)];
|
| 930 |
T4J = W[104];
|
| 931 |
T4L = T4J * T4K; |
| 932 |
T9Q = T4J * T4N; |
| 933 |
T4M = W[105];
|
| 934 |
T4O = FMA(T4M, T4N, T4L); |
| 935 |
T9R = FNMS(T4M, T4K, T9Q); |
| 936 |
} |
| 937 |
{
|
| 938 |
E T4x, T4A, T4y, T9W, T4w, T4z; |
| 939 |
T4x = ri[WS(rs, 37)];
|
| 940 |
T4A = ii[WS(rs, 37)];
|
| 941 |
T4w = W[72];
|
| 942 |
T4y = T4w * T4x; |
| 943 |
T9W = T4w * T4A; |
| 944 |
T4z = W[73];
|
| 945 |
T4B = FMA(T4z, T4A, T4y); |
| 946 |
T9X = FNMS(T4z, T4x, T9W); |
| 947 |
} |
| 948 |
{
|
| 949 |
E T4E, T4H, T4F, T9O, T4D, T4G; |
| 950 |
T4E = ri[WS(rs, 21)];
|
| 951 |
T4H = ii[WS(rs, 21)];
|
| 952 |
T4D = W[40];
|
| 953 |
T4F = T4D * T4E; |
| 954 |
T9O = T4D * T4H; |
| 955 |
T4G = W[41];
|
| 956 |
T4I = FMA(T4G, T4H, T4F); |
| 957 |
T9P = FNMS(T4G, T4E, T9O); |
| 958 |
} |
| 959 |
{
|
| 960 |
E T4C, T4P, Tfz, Tfw, Tfx, Tfy; |
| 961 |
T4C = T4v + T4B; |
| 962 |
T4P = T4I + T4O; |
| 963 |
Tfz = T4C - T4P; |
| 964 |
Tfw = T9V + T9X; |
| 965 |
Tfx = T9P + T9R; |
| 966 |
Tfy = Tfw - Tfx; |
| 967 |
T4Q = T4C + T4P; |
| 968 |
ThN = Tfw + Tfx; |
| 969 |
TfA = Tfy - Tfz; |
| 970 |
TfN = Tfz + Tfy; |
| 971 |
} |
| 972 |
{
|
| 973 |
E T9T, Td7, Ta0, Td6; |
| 974 |
{
|
| 975 |
E T9N, T9S, T9Y, T9Z; |
| 976 |
T9N = T4v - T4B; |
| 977 |
T9S = T9P - T9R; |
| 978 |
T9T = T9N - T9S; |
| 979 |
Td7 = T9N + T9S; |
| 980 |
T9Y = T9V - T9X; |
| 981 |
T9Z = T4I - T4O; |
| 982 |
Ta0 = T9Y + T9Z; |
| 983 |
Td6 = T9Y - T9Z; |
| 984 |
} |
| 985 |
Ta1 = FNMS(KP414213562, Ta0, T9T); |
| 986 |
Tdh = FMA(KP414213562, Td6, Td7); |
| 987 |
Taf = FMA(KP414213562, T9T, Ta0); |
| 988 |
Td8 = FNMS(KP414213562, Td7, Td6); |
| 989 |
} |
| 990 |
} |
| 991 |
{
|
| 992 |
E T4W, T9G, T5f, T9C, T52, T9I, T59, T9A; |
| 993 |
{
|
| 994 |
E T4S, T4V, T4T, T9F, T4R, T4U; |
| 995 |
T4S = ri[WS(rs, 61)];
|
| 996 |
T4V = ii[WS(rs, 61)];
|
| 997 |
T4R = W[120];
|
| 998 |
T4T = T4R * T4S; |
| 999 |
T9F = T4R * T4V; |
| 1000 |
T4U = W[121];
|
| 1001 |
T4W = FMA(T4U, T4V, T4T); |
| 1002 |
T9G = FNMS(T4U, T4S, T9F); |
| 1003 |
} |
| 1004 |
{
|
| 1005 |
E T5b, T5e, T5c, T9B, T5a, T5d; |
| 1006 |
T5b = ri[WS(rs, 45)];
|
| 1007 |
T5e = ii[WS(rs, 45)];
|
| 1008 |
T5a = W[88];
|
| 1009 |
T5c = T5a * T5b; |
| 1010 |
T9B = T5a * T5e; |
| 1011 |
T5d = W[89];
|
| 1012 |
T5f = FMA(T5d, T5e, T5c); |
| 1013 |
T9C = FNMS(T5d, T5b, T9B); |
| 1014 |
} |
| 1015 |
{
|
| 1016 |
E T4Y, T51, T4Z, T9H, T4X, T50; |
| 1017 |
T4Y = ri[WS(rs, 29)];
|
| 1018 |
T51 = ii[WS(rs, 29)];
|
| 1019 |
T4X = W[56];
|
| 1020 |
T4Z = T4X * T4Y; |
| 1021 |
T9H = T4X * T51; |
| 1022 |
T50 = W[57];
|
| 1023 |
T52 = FMA(T50, T51, T4Z); |
| 1024 |
T9I = FNMS(T50, T4Y, T9H); |
| 1025 |
} |
| 1026 |
{
|
| 1027 |
E T55, T58, T56, T9z, T54, T57; |
| 1028 |
T55 = ri[WS(rs, 13)];
|
| 1029 |
T58 = ii[WS(rs, 13)];
|
| 1030 |
T54 = W[24];
|
| 1031 |
T56 = T54 * T55; |
| 1032 |
T9z = T54 * T58; |
| 1033 |
T57 = W[25];
|
| 1034 |
T59 = FMA(T57, T58, T56); |
| 1035 |
T9A = FNMS(T57, T55, T9z); |
| 1036 |
} |
| 1037 |
{
|
| 1038 |
E T53, T5g, TfB, TfC, TfD, TfE; |
| 1039 |
T53 = T4W + T52; |
| 1040 |
T5g = T59 + T5f; |
| 1041 |
TfB = T53 - T5g; |
| 1042 |
TfC = T9G + T9I; |
| 1043 |
TfD = T9A + T9C; |
| 1044 |
TfE = TfC - TfD; |
| 1045 |
T5h = T53 + T5g; |
| 1046 |
ThO = TfC + TfD; |
| 1047 |
TfF = TfB + TfE; |
| 1048 |
TfO = TfB - TfE; |
| 1049 |
} |
| 1050 |
{
|
| 1051 |
E T9E, Tda, T9L, Td9; |
| 1052 |
{
|
| 1053 |
E T9y, T9D, T9J, T9K; |
| 1054 |
T9y = T4W - T52; |
| 1055 |
T9D = T9A - T9C; |
| 1056 |
T9E = T9y - T9D; |
| 1057 |
Tda = T9y + T9D; |
| 1058 |
T9J = T9G - T9I; |
| 1059 |
T9K = T59 - T5f; |
| 1060 |
T9L = T9J + T9K; |
| 1061 |
Td9 = T9J - T9K; |
| 1062 |
} |
| 1063 |
T9M = FMA(KP414213562, T9L, T9E); |
| 1064 |
Tdi = FNMS(KP414213562, Td9, Tda); |
| 1065 |
Tag = FNMS(KP414213562, T9E, T9L); |
| 1066 |
Tdb = FMA(KP414213562, Tda, Td9); |
| 1067 |
} |
| 1068 |
} |
| 1069 |
{
|
| 1070 |
E T6i, Tb4, T6B, Tb0, T6o, Tb6, T6v, TaY; |
| 1071 |
{
|
| 1072 |
E T6e, T6h, T6f, Tb3, T6d, T6g; |
| 1073 |
T6e = ri[WS(rs, 3)];
|
| 1074 |
T6h = ii[WS(rs, 3)];
|
| 1075 |
T6d = W[4];
|
| 1076 |
T6f = T6d * T6e; |
| 1077 |
Tb3 = T6d * T6h; |
| 1078 |
T6g = W[5];
|
| 1079 |
T6i = FMA(T6g, T6h, T6f); |
| 1080 |
Tb4 = FNMS(T6g, T6e, Tb3); |
| 1081 |
} |
| 1082 |
{
|
| 1083 |
E T6x, T6A, T6y, TaZ, T6w, T6z; |
| 1084 |
T6x = ri[WS(rs, 51)];
|
| 1085 |
T6A = ii[WS(rs, 51)];
|
| 1086 |
T6w = W[100];
|
| 1087 |
T6y = T6w * T6x; |
| 1088 |
TaZ = T6w * T6A; |
| 1089 |
T6z = W[101];
|
| 1090 |
T6B = FMA(T6z, T6A, T6y); |
| 1091 |
Tb0 = FNMS(T6z, T6x, TaZ); |
| 1092 |
} |
| 1093 |
{
|
| 1094 |
E T6k, T6n, T6l, Tb5, T6j, T6m; |
| 1095 |
T6k = ri[WS(rs, 35)];
|
| 1096 |
T6n = ii[WS(rs, 35)];
|
| 1097 |
T6j = W[68];
|
| 1098 |
T6l = T6j * T6k; |
| 1099 |
Tb5 = T6j * T6n; |
| 1100 |
T6m = W[69];
|
| 1101 |
T6o = FMA(T6m, T6n, T6l); |
| 1102 |
Tb6 = FNMS(T6m, T6k, Tb5); |
| 1103 |
} |
| 1104 |
{
|
| 1105 |
E T6r, T6u, T6s, TaX, T6q, T6t; |
| 1106 |
T6r = ri[WS(rs, 19)];
|
| 1107 |
T6u = ii[WS(rs, 19)];
|
| 1108 |
T6q = W[36];
|
| 1109 |
T6s = T6q * T6r; |
| 1110 |
TaX = T6q * T6u; |
| 1111 |
T6t = W[37];
|
| 1112 |
T6v = FMA(T6t, T6u, T6s); |
| 1113 |
TaY = FNMS(T6t, T6r, TaX); |
| 1114 |
} |
| 1115 |
{
|
| 1116 |
E T6p, T6C, Tg0, TfX, TfY, TfZ; |
| 1117 |
T6p = T6i + T6o; |
| 1118 |
T6C = T6v + T6B; |
| 1119 |
Tg0 = T6p - T6C; |
| 1120 |
TfX = Tb4 + Tb6; |
| 1121 |
TfY = TaY + Tb0; |
| 1122 |
TfZ = TfX - TfY; |
| 1123 |
T6D = T6p + T6C; |
| 1124 |
ThY = TfX + TfY; |
| 1125 |
Tg1 = TfZ - Tg0; |
| 1126 |
Tge = Tg0 + TfZ; |
| 1127 |
} |
| 1128 |
{
|
| 1129 |
E Tb2, Tdq, Tb9, Tdp; |
| 1130 |
{
|
| 1131 |
E TaW, Tb1, Tb7, Tb8; |
| 1132 |
TaW = T6i - T6o; |
| 1133 |
Tb1 = TaY - Tb0; |
| 1134 |
Tb2 = TaW - Tb1; |
| 1135 |
Tdq = TaW + Tb1; |
| 1136 |
Tb7 = Tb4 - Tb6; |
| 1137 |
Tb8 = T6v - T6B; |
| 1138 |
Tb9 = Tb7 + Tb8; |
| 1139 |
Tdp = Tb7 - Tb8; |
| 1140 |
} |
| 1141 |
Tba = FNMS(KP414213562, Tb9, Tb2); |
| 1142 |
TdA = FMA(KP414213562, Tdp, Tdq); |
| 1143 |
Tbo = FMA(KP414213562, Tb2, Tb9); |
| 1144 |
Tdr = FNMS(KP414213562, Tdq, Tdp); |
| 1145 |
} |
| 1146 |
} |
| 1147 |
{
|
| 1148 |
E T6J, TaP, T72, TaL, T6P, TaR, T6W, TaJ; |
| 1149 |
{
|
| 1150 |
E T6F, T6I, T6G, TaO, T6E, T6H; |
| 1151 |
T6F = ri[WS(rs, 59)];
|
| 1152 |
T6I = ii[WS(rs, 59)];
|
| 1153 |
T6E = W[116];
|
| 1154 |
T6G = T6E * T6F; |
| 1155 |
TaO = T6E * T6I; |
| 1156 |
T6H = W[117];
|
| 1157 |
T6J = FMA(T6H, T6I, T6G); |
| 1158 |
TaP = FNMS(T6H, T6F, TaO); |
| 1159 |
} |
| 1160 |
{
|
| 1161 |
E T6Y, T71, T6Z, TaK, T6X, T70; |
| 1162 |
T6Y = ri[WS(rs, 43)];
|
| 1163 |
T71 = ii[WS(rs, 43)];
|
| 1164 |
T6X = W[84];
|
| 1165 |
T6Z = T6X * T6Y; |
| 1166 |
TaK = T6X * T71; |
| 1167 |
T70 = W[85];
|
| 1168 |
T72 = FMA(T70, T71, T6Z); |
| 1169 |
TaL = FNMS(T70, T6Y, TaK); |
| 1170 |
} |
| 1171 |
{
|
| 1172 |
E T6L, T6O, T6M, TaQ, T6K, T6N; |
| 1173 |
T6L = ri[WS(rs, 27)];
|
| 1174 |
T6O = ii[WS(rs, 27)];
|
| 1175 |
T6K = W[52];
|
| 1176 |
T6M = T6K * T6L; |
| 1177 |
TaQ = T6K * T6O; |
| 1178 |
T6N = W[53];
|
| 1179 |
T6P = FMA(T6N, T6O, T6M); |
| 1180 |
TaR = FNMS(T6N, T6L, TaQ); |
| 1181 |
} |
| 1182 |
{
|
| 1183 |
E T6S, T6V, T6T, TaI, T6R, T6U; |
| 1184 |
T6S = ri[WS(rs, 11)];
|
| 1185 |
T6V = ii[WS(rs, 11)];
|
| 1186 |
T6R = W[20];
|
| 1187 |
T6T = T6R * T6S; |
| 1188 |
TaI = T6R * T6V; |
| 1189 |
T6U = W[21];
|
| 1190 |
T6W = FMA(T6U, T6V, T6T); |
| 1191 |
TaJ = FNMS(T6U, T6S, TaI); |
| 1192 |
} |
| 1193 |
{
|
| 1194 |
E T6Q, T73, Tg2, Tg3, Tg4, Tg5; |
| 1195 |
T6Q = T6J + T6P; |
| 1196 |
T73 = T6W + T72; |
| 1197 |
Tg2 = T6Q - T73; |
| 1198 |
Tg3 = TaP + TaR; |
| 1199 |
Tg4 = TaJ + TaL; |
| 1200 |
Tg5 = Tg3 - Tg4; |
| 1201 |
T74 = T6Q + T73; |
| 1202 |
ThZ = Tg3 + Tg4; |
| 1203 |
Tg6 = Tg2 + Tg5; |
| 1204 |
Tgf = Tg2 - Tg5; |
| 1205 |
} |
| 1206 |
{
|
| 1207 |
E TaN, Tdt, TaU, Tds; |
| 1208 |
{
|
| 1209 |
E TaH, TaM, TaS, TaT; |
| 1210 |
TaH = T6J - T6P; |
| 1211 |
TaM = TaJ - TaL; |
| 1212 |
TaN = TaH - TaM; |
| 1213 |
Tdt = TaH + TaM; |
| 1214 |
TaS = TaP - TaR; |
| 1215 |
TaT = T6W - T72; |
| 1216 |
TaU = TaS + TaT; |
| 1217 |
Tds = TaS - TaT; |
| 1218 |
} |
| 1219 |
TaV = FMA(KP414213562, TaU, TaN); |
| 1220 |
TdB = FNMS(KP414213562, Tds, Tdt); |
| 1221 |
Tbp = FNMS(KP414213562, TaN, TaU); |
| 1222 |
Tdu = FMA(KP414213562, Tdt, Tds); |
| 1223 |
} |
| 1224 |
} |
| 1225 |
{
|
| 1226 |
E T1I, Tio, T3v, Tj1, TiX, Tj2, Tir, TiN, T76, TiK, TiC, TiG, T5j, TiJ, Tix; |
| 1227 |
E TiF; |
| 1228 |
{
|
| 1229 |
E TO, T1H, Tip, Tiq; |
| 1230 |
TO = Tm + TN; |
| 1231 |
T1H = T1f + T1G; |
| 1232 |
T1I = TO + T1H; |
| 1233 |
Tio = TO - T1H; |
| 1234 |
{
|
| 1235 |
E T2B, T3u, TiO, TiW; |
| 1236 |
T2B = T29 + T2A; |
| 1237 |
T3u = T32 + T3t; |
| 1238 |
T3v = T2B + T3u; |
| 1239 |
Tj1 = T3u - T2B; |
| 1240 |
TiO = Thr + Ths; |
| 1241 |
TiW = TiP + TiV; |
| 1242 |
TiX = TiO + TiW; |
| 1243 |
Tj2 = TiW - TiO; |
| 1244 |
} |
| 1245 |
Tip = Thv + Thw; |
| 1246 |
Tiq = ThB + ThC; |
| 1247 |
Tir = Tip - Tiq; |
| 1248 |
TiN = Tip + Tiq; |
| 1249 |
{
|
| 1250 |
E T6c, T75, Tiy, Tiz, TiA, TiB; |
| 1251 |
T6c = T5K + T6b; |
| 1252 |
T75 = T6D + T74; |
| 1253 |
Tiy = T6c - T75; |
| 1254 |
Tiz = ThS + ThT; |
| 1255 |
TiA = ThY + ThZ; |
| 1256 |
TiB = Tiz - TiA; |
| 1257 |
T76 = T6c + T75; |
| 1258 |
TiK = Tiz + TiA; |
| 1259 |
TiC = Tiy - TiB; |
| 1260 |
TiG = Tiy + TiB; |
| 1261 |
} |
| 1262 |
{
|
| 1263 |
E T4p, T5i, Tit, Tiu, Tiv, Tiw; |
| 1264 |
T4p = T3X + T4o; |
| 1265 |
T5i = T4Q + T5h; |
| 1266 |
Tit = T4p - T5i; |
| 1267 |
Tiu = ThH + ThI; |
| 1268 |
Tiv = ThN + ThO; |
| 1269 |
Tiw = Tiu - Tiv; |
| 1270 |
T5j = T4p + T5i; |
| 1271 |
TiJ = Tiu + Tiv; |
| 1272 |
Tix = Tit + Tiw; |
| 1273 |
TiF = Tiw - Tit; |
| 1274 |
} |
| 1275 |
} |
| 1276 |
{
|
| 1277 |
E T3w, T77, TiM, TiY; |
| 1278 |
T3w = T1I + T3v; |
| 1279 |
T77 = T5j + T76; |
| 1280 |
ri[WS(rs, 32)] = T3w - T77;
|
| 1281 |
ri[0] = T3w + T77;
|
| 1282 |
TiM = TiJ + TiK; |
| 1283 |
TiY = TiN + TiX; |
| 1284 |
ii[0] = TiM + TiY;
|
| 1285 |
ii[WS(rs, 32)] = TiY - TiM;
|
| 1286 |
} |
| 1287 |
{
|
| 1288 |
E Tis, TiD, Tj3, Tj4; |
| 1289 |
Tis = Tio + Tir; |
| 1290 |
TiD = Tix + TiC; |
| 1291 |
ri[WS(rs, 40)] = FNMS(KP707106781, TiD, Tis);
|
| 1292 |
ri[WS(rs, 8)] = FMA(KP707106781, TiD, Tis);
|
| 1293 |
Tj3 = Tj1 + Tj2; |
| 1294 |
Tj4 = TiF + TiG; |
| 1295 |
ii[WS(rs, 8)] = FMA(KP707106781, Tj4, Tj3);
|
| 1296 |
ii[WS(rs, 40)] = FNMS(KP707106781, Tj4, Tj3);
|
| 1297 |
} |
| 1298 |
{
|
| 1299 |
E TiE, TiH, Tj5, Tj6; |
| 1300 |
TiE = Tio - Tir; |
| 1301 |
TiH = TiF - TiG; |
| 1302 |
ri[WS(rs, 56)] = FNMS(KP707106781, TiH, TiE);
|
| 1303 |
ri[WS(rs, 24)] = FMA(KP707106781, TiH, TiE);
|
| 1304 |
Tj5 = Tj2 - Tj1; |
| 1305 |
Tj6 = TiC - Tix; |
| 1306 |
ii[WS(rs, 24)] = FMA(KP707106781, Tj6, Tj5);
|
| 1307 |
ii[WS(rs, 56)] = FNMS(KP707106781, Tj6, Tj5);
|
| 1308 |
} |
| 1309 |
{
|
| 1310 |
E TiI, TiL, TiZ, Tj0; |
| 1311 |
TiI = T1I - T3v; |
| 1312 |
TiL = TiJ - TiK; |
| 1313 |
ri[WS(rs, 48)] = TiI - TiL;
|
| 1314 |
ri[WS(rs, 16)] = TiI + TiL;
|
| 1315 |
TiZ = T76 - T5j; |
| 1316 |
Tj0 = TiX - TiN; |
| 1317 |
ii[WS(rs, 16)] = TiZ + Tj0;
|
| 1318 |
ii[WS(rs, 48)] = Tj0 - TiZ;
|
| 1319 |
} |
| 1320 |
} |
| 1321 |
{
|
| 1322 |
E Thu, Ti8, Tj9, Tjf, ThF, Tjg, Tib, Tja, ThR, Til, Ti5, Tif, Ti2, Tim, Ti6; |
| 1323 |
E Tii; |
| 1324 |
{
|
| 1325 |
E Thq, Tht, Tj7, Tj8; |
| 1326 |
Thq = Tm - TN; |
| 1327 |
Tht = Thr - Ths; |
| 1328 |
Thu = Thq - Tht; |
| 1329 |
Ti8 = Thq + Tht; |
| 1330 |
Tj7 = T1G - T1f; |
| 1331 |
Tj8 = TiV - TiP; |
| 1332 |
Tj9 = Tj7 + Tj8; |
| 1333 |
Tjf = Tj8 - Tj7; |
| 1334 |
} |
| 1335 |
{
|
| 1336 |
E Thz, Ti9, ThE, Tia; |
| 1337 |
{
|
| 1338 |
E Thx, Thy, ThA, ThD; |
| 1339 |
Thx = Thv - Thw; |
| 1340 |
Thy = T29 - T2A; |
| 1341 |
Thz = Thx - Thy; |
| 1342 |
Ti9 = Thy + Thx; |
| 1343 |
ThA = T32 - T3t; |
| 1344 |
ThD = ThB - ThC; |
| 1345 |
ThE = ThA + ThD; |
| 1346 |
Tia = ThA - ThD; |
| 1347 |
} |
| 1348 |
ThF = Thz - ThE; |
| 1349 |
Tjg = Tia - Ti9; |
| 1350 |
Tib = Ti9 + Tia; |
| 1351 |
Tja = Thz + ThE; |
| 1352 |
} |
| 1353 |
{
|
| 1354 |
E ThL, Tie, ThQ, Tid; |
| 1355 |
{
|
| 1356 |
E ThJ, ThK, ThM, ThP; |
| 1357 |
ThJ = ThH - ThI; |
| 1358 |
ThK = T5h - T4Q; |
| 1359 |
ThL = ThJ - ThK; |
| 1360 |
Tie = ThJ + ThK; |
| 1361 |
ThM = T3X - T4o; |
| 1362 |
ThP = ThN - ThO; |
| 1363 |
ThQ = ThM - ThP; |
| 1364 |
Tid = ThM + ThP; |
| 1365 |
} |
| 1366 |
ThR = FMA(KP414213562, ThQ, ThL); |
| 1367 |
Til = FNMS(KP414213562, Tid, Tie); |
| 1368 |
Ti5 = FNMS(KP414213562, ThL, ThQ); |
| 1369 |
Tif = FMA(KP414213562, Tie, Tid); |
| 1370 |
} |
| 1371 |
{
|
| 1372 |
E ThW, Tih, Ti1, Tig; |
| 1373 |
{
|
| 1374 |
E ThU, ThV, ThX, Ti0; |
| 1375 |
ThU = ThS - ThT; |
| 1376 |
ThV = T74 - T6D; |
| 1377 |
ThW = ThU - ThV; |
| 1378 |
Tih = ThU + ThV; |
| 1379 |
ThX = T5K - T6b; |
| 1380 |
Ti0 = ThY - ThZ; |
| 1381 |
Ti1 = ThX - Ti0; |
| 1382 |
Tig = ThX + Ti0; |
| 1383 |
} |
| 1384 |
Ti2 = FNMS(KP414213562, Ti1, ThW); |
| 1385 |
Tim = FMA(KP414213562, Tig, Tih); |
| 1386 |
Ti6 = FMA(KP414213562, ThW, Ti1); |
| 1387 |
Tii = FNMS(KP414213562, Tih, Tig); |
| 1388 |
} |
| 1389 |
{
|
| 1390 |
E ThG, Ti3, Tjh, Tji; |
| 1391 |
ThG = FMA(KP707106781, ThF, Thu); |
| 1392 |
Ti3 = ThR - Ti2; |
| 1393 |
ri[WS(rs, 44)] = FNMS(KP923879532, Ti3, ThG);
|
| 1394 |
ri[WS(rs, 12)] = FMA(KP923879532, Ti3, ThG);
|
| 1395 |
Tjh = FMA(KP707106781, Tjg, Tjf); |
| 1396 |
Tji = Ti6 - Ti5; |
| 1397 |
ii[WS(rs, 12)] = FMA(KP923879532, Tji, Tjh);
|
| 1398 |
ii[WS(rs, 44)] = FNMS(KP923879532, Tji, Tjh);
|
| 1399 |
} |
| 1400 |
{
|
| 1401 |
E Ti4, Ti7, Tjj, Tjk; |
| 1402 |
Ti4 = FNMS(KP707106781, ThF, Thu); |
| 1403 |
Ti7 = Ti5 + Ti6; |
| 1404 |
ri[WS(rs, 28)] = FNMS(KP923879532, Ti7, Ti4);
|
| 1405 |
ri[WS(rs, 60)] = FMA(KP923879532, Ti7, Ti4);
|
| 1406 |
Tjj = FNMS(KP707106781, Tjg, Tjf); |
| 1407 |
Tjk = ThR + Ti2; |
| 1408 |
ii[WS(rs, 28)] = FNMS(KP923879532, Tjk, Tjj);
|
| 1409 |
ii[WS(rs, 60)] = FMA(KP923879532, Tjk, Tjj);
|
| 1410 |
} |
| 1411 |
{
|
| 1412 |
E Tic, Tij, Tjb, Tjc; |
| 1413 |
Tic = FMA(KP707106781, Tib, Ti8); |
| 1414 |
Tij = Tif + Tii; |
| 1415 |
ri[WS(rs, 36)] = FNMS(KP923879532, Tij, Tic);
|
| 1416 |
ri[WS(rs, 4)] = FMA(KP923879532, Tij, Tic);
|
| 1417 |
Tjb = FMA(KP707106781, Tja, Tj9); |
| 1418 |
Tjc = Til + Tim; |
| 1419 |
ii[WS(rs, 4)] = FMA(KP923879532, Tjc, Tjb);
|
| 1420 |
ii[WS(rs, 36)] = FNMS(KP923879532, Tjc, Tjb);
|
| 1421 |
} |
| 1422 |
{
|
| 1423 |
E Tik, Tin, Tjd, Tje; |
| 1424 |
Tik = FNMS(KP707106781, Tib, Ti8); |
| 1425 |
Tin = Til - Tim; |
| 1426 |
ri[WS(rs, 52)] = FNMS(KP923879532, Tin, Tik);
|
| 1427 |
ri[WS(rs, 20)] = FMA(KP923879532, Tin, Tik);
|
| 1428 |
Tjd = FNMS(KP707106781, Tja, Tj9); |
| 1429 |
Tje = Tii - Tif; |
| 1430 |
ii[WS(rs, 20)] = FMA(KP923879532, Tje, Tjd);
|
| 1431 |
ii[WS(rs, 52)] = FNMS(KP923879532, Tje, Tjd);
|
| 1432 |
} |
| 1433 |
} |
| 1434 |
{
|
| 1435 |
E Tf2, TjJ, Tgo, TjD, TgI, Tjv, Tha, Tjp, Tfp, Tjw, Tgr, Tjq, Th4, Tho, Th8; |
| 1436 |
E Thk, TfR, TgB, Tgl, Tgv, TgP, TjK, Thd, TjE, TgX, Thn, Th7, Thh, Tgi, TgC; |
| 1437 |
E Tgm, Tgy; |
| 1438 |
{
|
| 1439 |
E TeQ, TjB, Tf1, TjC, TeV, Tf0; |
| 1440 |
TeQ = TeM + TeP; |
| 1441 |
TjB = Tjm - Tjl; |
| 1442 |
TeV = TeR + TeU; |
| 1443 |
Tf0 = TeW - TeZ; |
| 1444 |
Tf1 = TeV + Tf0; |
| 1445 |
TjC = Tf0 - TeV; |
| 1446 |
Tf2 = FNMS(KP707106781, Tf1, TeQ); |
| 1447 |
TjJ = FNMS(KP707106781, TjC, TjB); |
| 1448 |
Tgo = FMA(KP707106781, Tf1, TeQ); |
| 1449 |
TjD = FMA(KP707106781, TjC, TjB); |
| 1450 |
} |
| 1451 |
{
|
| 1452 |
E TgE, Tjn, TgH, Tjo, TgF, TgG; |
| 1453 |
TgE = TeM - TeP; |
| 1454 |
Tjn = Tjl + Tjm; |
| 1455 |
TgF = TeU - TeR; |
| 1456 |
TgG = TeW + TeZ; |
| 1457 |
TgH = TgF - TgG; |
| 1458 |
Tjo = TgF + TgG; |
| 1459 |
TgI = FMA(KP707106781, TgH, TgE); |
| 1460 |
Tjv = FNMS(KP707106781, Tjo, Tjn); |
| 1461 |
Tha = FNMS(KP707106781, TgH, TgE); |
| 1462 |
Tjp = FMA(KP707106781, Tjo, Tjn); |
| 1463 |
} |
| 1464 |
{
|
| 1465 |
E Tfd, Tgp, Tfo, Tgq; |
| 1466 |
{
|
| 1467 |
E Tf7, Tfc, Tfi, Tfn; |
| 1468 |
Tf7 = Tf5 + Tf6; |
| 1469 |
Tfc = Tf8 + Tfb; |
| 1470 |
Tfd = FNMS(KP414213562, Tfc, Tf7); |
| 1471 |
Tgp = FMA(KP414213562, Tf7, Tfc); |
| 1472 |
Tfi = Tfg + Tfh; |
| 1473 |
Tfn = Tfj + Tfm; |
| 1474 |
Tfo = FMA(KP414213562, Tfn, Tfi); |
| 1475 |
Tgq = FNMS(KP414213562, Tfi, Tfn); |
| 1476 |
} |
| 1477 |
Tfp = Tfd - Tfo; |
| 1478 |
Tjw = Tgq - Tgp; |
| 1479 |
Tgr = Tgp + Tgq; |
| 1480 |
Tjq = Tfd + Tfo; |
| 1481 |
} |
| 1482 |
{
|
| 1483 |
E Th0, Thj, Th3, Thi; |
| 1484 |
{
|
| 1485 |
E TgY, TgZ, Th1, Th2; |
| 1486 |
TgY = Tg9 - Tgc; |
| 1487 |
TgZ = Tg6 - Tg1; |
| 1488 |
Th0 = FNMS(KP707106781, TgZ, TgY); |
| 1489 |
Thj = FMA(KP707106781, TgZ, TgY); |
| 1490 |
Th1 = TfU - TfV; |
| 1491 |
Th2 = Tge - Tgf; |
| 1492 |
Th3 = FNMS(KP707106781, Th2, Th1); |
| 1493 |
Thi = FMA(KP707106781, Th2, Th1); |
| 1494 |
} |
| 1495 |
Th4 = FNMS(KP668178637, Th3, Th0); |
| 1496 |
Tho = FMA(KP198912367, Thi, Thj); |
| 1497 |
Th8 = FMA(KP668178637, Th0, Th3); |
| 1498 |
Thk = FNMS(KP198912367, Thj, Thi); |
| 1499 |
} |
| 1500 |
{
|
| 1501 |
E TfH, Tgu, TfQ, Tgt; |
| 1502 |
{
|
| 1503 |
E Tfv, TfG, TfM, TfP; |
| 1504 |
Tfv = Tft + Tfu; |
| 1505 |
TfG = TfA + TfF; |
| 1506 |
TfH = FNMS(KP707106781, TfG, Tfv); |
| 1507 |
Tgu = FMA(KP707106781, TfG, Tfv); |
| 1508 |
TfM = TfI + TfL; |
| 1509 |
TfP = TfN + TfO; |
| 1510 |
TfQ = FNMS(KP707106781, TfP, TfM); |
| 1511 |
Tgt = FMA(KP707106781, TfP, TfM); |
| 1512 |
} |
| 1513 |
TfR = FMA(KP668178637, TfQ, TfH); |
| 1514 |
TgB = FNMS(KP198912367, Tgt, Tgu); |
| 1515 |
Tgl = FNMS(KP668178637, TfH, TfQ); |
| 1516 |
Tgv = FMA(KP198912367, Tgu, Tgt); |
| 1517 |
} |
| 1518 |
{
|
| 1519 |
E TgL, Thb, TgO, Thc; |
| 1520 |
{
|
| 1521 |
E TgJ, TgK, TgM, TgN; |
| 1522 |
TgJ = Tf5 - Tf6; |
| 1523 |
TgK = Tf8 - Tfb; |
| 1524 |
TgL = FMA(KP414213562, TgK, TgJ); |
| 1525 |
Thb = FNMS(KP414213562, TgJ, TgK); |
| 1526 |
TgM = Tfg - Tfh; |
| 1527 |
TgN = Tfj - Tfm; |
| 1528 |
TgO = FNMS(KP414213562, TgN, TgM); |
| 1529 |
Thc = FMA(KP414213562, TgM, TgN); |
| 1530 |
} |
| 1531 |
TgP = TgL - TgO; |
| 1532 |
TjK = TgL + TgO; |
| 1533 |
Thd = Thb + Thc; |
| 1534 |
TjE = Thc - Thb; |
| 1535 |
} |
| 1536 |
{
|
| 1537 |
E TgT, Thg, TgW, Thf; |
| 1538 |
{
|
| 1539 |
E TgR, TgS, TgU, TgV; |
| 1540 |
TgR = TfI - TfL; |
| 1541 |
TgS = TfF - TfA; |
| 1542 |
TgT = FNMS(KP707106781, TgS, TgR); |
| 1543 |
Thg = FMA(KP707106781, TgS, TgR); |
| 1544 |
TgU = Tft - Tfu; |
| 1545 |
TgV = TfN - TfO; |
| 1546 |
TgW = FNMS(KP707106781, TgV, TgU); |
| 1547 |
Thf = FMA(KP707106781, TgV, TgU); |
| 1548 |
} |
| 1549 |
TgX = FMA(KP668178637, TgW, TgT); |
| 1550 |
Thn = FNMS(KP198912367, Thf, Thg); |
| 1551 |
Th7 = FNMS(KP668178637, TgT, TgW); |
| 1552 |
Thh = FMA(KP198912367, Thg, Thf); |
| 1553 |
} |
| 1554 |
{
|
| 1555 |
E Tg8, Tgx, Tgh, Tgw; |
| 1556 |
{
|
| 1557 |
E TfW, Tg7, Tgd, Tgg; |
| 1558 |
TfW = TfU + TfV; |
| 1559 |
Tg7 = Tg1 + Tg6; |
| 1560 |
Tg8 = FNMS(KP707106781, Tg7, TfW); |
| 1561 |
Tgx = FMA(KP707106781, Tg7, TfW); |
| 1562 |
Tgd = Tg9 + Tgc; |
| 1563 |
Tgg = Tge + Tgf; |
| 1564 |
Tgh = FNMS(KP707106781, Tgg, Tgd); |
| 1565 |
Tgw = FMA(KP707106781, Tgg, Tgd); |
| 1566 |
} |
| 1567 |
Tgi = FNMS(KP668178637, Tgh, Tg8); |
| 1568 |
TgC = FMA(KP198912367, Tgw, Tgx); |
| 1569 |
Tgm = FMA(KP668178637, Tg8, Tgh); |
| 1570 |
Tgy = FNMS(KP198912367, Tgx, Tgw); |
| 1571 |
} |
| 1572 |
{
|
| 1573 |
E Tfq, Tgj, Tjx, Tjy; |
| 1574 |
Tfq = FMA(KP923879532, Tfp, Tf2); |
| 1575 |
Tgj = TfR - Tgi; |
| 1576 |
ri[WS(rs, 42)] = FNMS(KP831469612, Tgj, Tfq);
|
| 1577 |
ri[WS(rs, 10)] = FMA(KP831469612, Tgj, Tfq);
|
| 1578 |
Tjx = FMA(KP923879532, Tjw, Tjv); |
| 1579 |
Tjy = Tgm - Tgl; |
| 1580 |
ii[WS(rs, 10)] = FMA(KP831469612, Tjy, Tjx);
|
| 1581 |
ii[WS(rs, 42)] = FNMS(KP831469612, Tjy, Tjx);
|
| 1582 |
} |
| 1583 |
{
|
| 1584 |
E Tgk, Tgn, Tjz, TjA; |
| 1585 |
Tgk = FNMS(KP923879532, Tfp, Tf2); |
| 1586 |
Tgn = Tgl + Tgm; |
| 1587 |
ri[WS(rs, 26)] = FNMS(KP831469612, Tgn, Tgk);
|
| 1588 |
ri[WS(rs, 58)] = FMA(KP831469612, Tgn, Tgk);
|
| 1589 |
Tjz = FNMS(KP923879532, Tjw, Tjv); |
| 1590 |
TjA = TfR + Tgi; |
| 1591 |
ii[WS(rs, 26)] = FNMS(KP831469612, TjA, Tjz);
|
| 1592 |
ii[WS(rs, 58)] = FMA(KP831469612, TjA, Tjz);
|
| 1593 |
} |
| 1594 |
{
|
| 1595 |
E Tgs, Tgz, Tjr, Tjs; |
| 1596 |
Tgs = FMA(KP923879532, Tgr, Tgo); |
| 1597 |
Tgz = Tgv + Tgy; |
| 1598 |
ri[WS(rs, 34)] = FNMS(KP980785280, Tgz, Tgs);
|
| 1599 |
ri[WS(rs, 2)] = FMA(KP980785280, Tgz, Tgs);
|
| 1600 |
Tjr = FMA(KP923879532, Tjq, Tjp); |
| 1601 |
Tjs = TgB + TgC; |
| 1602 |
ii[WS(rs, 2)] = FMA(KP980785280, Tjs, Tjr);
|
| 1603 |
ii[WS(rs, 34)] = FNMS(KP980785280, Tjs, Tjr);
|
| 1604 |
} |
| 1605 |
{
|
| 1606 |
E TgA, TgD, Tjt, Tju; |
| 1607 |
TgA = FNMS(KP923879532, Tgr, Tgo); |
| 1608 |
TgD = TgB - TgC; |
| 1609 |
ri[WS(rs, 50)] = FNMS(KP980785280, TgD, TgA);
|
| 1610 |
ri[WS(rs, 18)] = FMA(KP980785280, TgD, TgA);
|
| 1611 |
Tjt = FNMS(KP923879532, Tjq, Tjp); |
| 1612 |
Tju = Tgy - Tgv; |
| 1613 |
ii[WS(rs, 18)] = FMA(KP980785280, Tju, Tjt);
|
| 1614 |
ii[WS(rs, 50)] = FNMS(KP980785280, Tju, Tjt);
|
| 1615 |
} |
| 1616 |
{
|
| 1617 |
E TgQ, Th5, TjF, TjG; |
| 1618 |
TgQ = FMA(KP923879532, TgP, TgI); |
| 1619 |
Th5 = TgX + Th4; |
| 1620 |
ri[WS(rs, 38)] = FNMS(KP831469612, Th5, TgQ);
|
| 1621 |
ri[WS(rs, 6)] = FMA(KP831469612, Th5, TgQ);
|
| 1622 |
TjF = FMA(KP923879532, TjE, TjD); |
| 1623 |
TjG = Th7 + Th8; |
| 1624 |
ii[WS(rs, 6)] = FMA(KP831469612, TjG, TjF);
|
| 1625 |
ii[WS(rs, 38)] = FNMS(KP831469612, TjG, TjF);
|
| 1626 |
} |
| 1627 |
{
|
| 1628 |
E Th6, Th9, TjH, TjI; |
| 1629 |
Th6 = FNMS(KP923879532, TgP, TgI); |
| 1630 |
Th9 = Th7 - Th8; |
| 1631 |
ri[WS(rs, 54)] = FNMS(KP831469612, Th9, Th6);
|
| 1632 |
ri[WS(rs, 22)] = FMA(KP831469612, Th9, Th6);
|
| 1633 |
TjH = FNMS(KP923879532, TjE, TjD); |
| 1634 |
TjI = Th4 - TgX; |
| 1635 |
ii[WS(rs, 22)] = FMA(KP831469612, TjI, TjH);
|
| 1636 |
ii[WS(rs, 54)] = FNMS(KP831469612, TjI, TjH);
|
| 1637 |
} |
| 1638 |
{
|
| 1639 |
E The, Thl, TjL, TjM; |
| 1640 |
The = FNMS(KP923879532, Thd, Tha); |
| 1641 |
Thl = Thh - Thk; |
| 1642 |
ri[WS(rs, 46)] = FNMS(KP980785280, Thl, The);
|
| 1643 |
ri[WS(rs, 14)] = FMA(KP980785280, Thl, The);
|
| 1644 |
TjL = FNMS(KP923879532, TjK, TjJ); |
| 1645 |
TjM = Tho - Thn; |
| 1646 |
ii[WS(rs, 14)] = FMA(KP980785280, TjM, TjL);
|
| 1647 |
ii[WS(rs, 46)] = FNMS(KP980785280, TjM, TjL);
|
| 1648 |
} |
| 1649 |
{
|
| 1650 |
E Thm, Thp, TjN, TjO; |
| 1651 |
Thm = FMA(KP923879532, Thd, Tha); |
| 1652 |
Thp = Thn + Tho; |
| 1653 |
ri[WS(rs, 30)] = FNMS(KP980785280, Thp, Thm);
|
| 1654 |
ri[WS(rs, 62)] = FMA(KP980785280, Thp, Thm);
|
| 1655 |
TjN = FMA(KP923879532, TjK, TjJ); |
| 1656 |
TjO = Thh + Thk; |
| 1657 |
ii[WS(rs, 30)] = FNMS(KP980785280, TjO, TjN);
|
| 1658 |
ii[WS(rs, 62)] = FMA(KP980785280, TjO, TjN);
|
| 1659 |
} |
| 1660 |
} |
| 1661 |
{
|
| 1662 |
E T99, Tkw, TbB, Tkq, Taj, TbL, Tbv, TbF, Tce, Tcy, Tci, Tcu, Tc7, Tcx, Tch; |
| 1663 |
E Tcr, TbZ, TkK, Tcn, TkE, Tbs, TbM, Tbw, TbI, T80, TkD, TkJ, Tby, TbS, Tkp; |
| 1664 |
E Tkv, Tck; |
| 1665 |
{
|
| 1666 |
E T8z, Tbz, T98, TbA; |
| 1667 |
{
|
| 1668 |
E T8n, T8y, T8W, T97; |
| 1669 |
T8n = FNMS(KP707106781, T8m, T87); |
| 1670 |
T8y = FNMS(KP707106781, T8x, T8u); |
| 1671 |
T8z = FNMS(KP668178637, T8y, T8n); |
| 1672 |
Tbz = FMA(KP668178637, T8n, T8y); |
| 1673 |
T8W = FNMS(KP707106781, T8V, T8G); |
| 1674 |
T97 = FNMS(KP707106781, T96, T93); |
| 1675 |
T98 = FMA(KP668178637, T97, T8W); |
| 1676 |
TbA = FNMS(KP668178637, T8W, T97); |
| 1677 |
} |
| 1678 |
T99 = T8z - T98; |
| 1679 |
Tkw = TbA - Tbz; |
| 1680 |
TbB = Tbz + TbA; |
| 1681 |
Tkq = T8z + T98; |
| 1682 |
} |
| 1683 |
{
|
| 1684 |
E Ta3, TbE, Tai, TbD; |
| 1685 |
{
|
| 1686 |
E T9x, Ta2, Tae, Tah; |
| 1687 |
T9x = FNMS(KP707106781, T9w, T9h); |
| 1688 |
Ta2 = T9M - Ta1; |
| 1689 |
Ta3 = FNMS(KP923879532, Ta2, T9x); |
| 1690 |
TbE = FMA(KP923879532, Ta2, T9x); |
| 1691 |
Tae = FNMS(KP707106781, Tad, Taa); |
| 1692 |
Tah = Taf - Tag; |
| 1693 |
Tai = FNMS(KP923879532, Tah, Tae); |
| 1694 |
TbD = FMA(KP923879532, Tah, Tae); |
| 1695 |
} |
| 1696 |
Taj = FMA(KP534511135, Tai, Ta3); |
| 1697 |
TbL = FNMS(KP303346683, TbD, TbE); |
| 1698 |
Tbv = FNMS(KP534511135, Ta3, Tai); |
| 1699 |
TbF = FMA(KP303346683, TbE, TbD); |
| 1700 |
} |
| 1701 |
{
|
| 1702 |
E Tca, Tct, Tcd, Tcs; |
| 1703 |
{
|
| 1704 |
E Tc8, Tc9, Tcb, Tcc; |
| 1705 |
Tc8 = FMA(KP707106781, Tbm, Tbj); |
| 1706 |
Tc9 = Tba + TaV; |
| 1707 |
Tca = FNMS(KP923879532, Tc9, Tc8); |
| 1708 |
Tct = FMA(KP923879532, Tc9, Tc8); |
| 1709 |
Tcb = FMA(KP707106781, TaF, Taq); |
| 1710 |
Tcc = Tbo + Tbp; |
| 1711 |
Tcd = FNMS(KP923879532, Tcc, Tcb); |
| 1712 |
Tcs = FMA(KP923879532, Tcc, Tcb); |
| 1713 |
} |
| 1714 |
Tce = FNMS(KP820678790, Tcd, Tca); |
| 1715 |
Tcy = FMA(KP098491403, Tcs, Tct); |
| 1716 |
Tci = FMA(KP820678790, Tca, Tcd); |
| 1717 |
Tcu = FNMS(KP098491403, Tct, Tcs); |
| 1718 |
} |
| 1719 |
{
|
| 1720 |
E Tc3, Tcq, Tc6, Tcp; |
| 1721 |
{
|
| 1722 |
E Tc1, Tc2, Tc4, Tc5; |
| 1723 |
Tc1 = FMA(KP707106781, Tad, Taa); |
| 1724 |
Tc2 = Ta1 + T9M; |
| 1725 |
Tc3 = FNMS(KP923879532, Tc2, Tc1); |
| 1726 |
Tcq = FMA(KP923879532, Tc2, Tc1); |
| 1727 |
Tc4 = FMA(KP707106781, T9w, T9h); |
| 1728 |
Tc5 = Taf + Tag; |
| 1729 |
Tc6 = FNMS(KP923879532, Tc5, Tc4); |
| 1730 |
Tcp = FMA(KP923879532, Tc5, Tc4); |
| 1731 |
} |
| 1732 |
Tc7 = FMA(KP820678790, Tc6, Tc3); |
| 1733 |
Tcx = FNMS(KP098491403, Tcp, Tcq); |
| 1734 |
Tch = FNMS(KP820678790, Tc3, Tc6); |
| 1735 |
Tcr = FMA(KP098491403, Tcq, Tcp); |
| 1736 |
} |
| 1737 |
{
|
| 1738 |
E TbV, Tcl, TbY, Tcm; |
| 1739 |
{
|
| 1740 |
E TbT, TbU, TbW, TbX; |
| 1741 |
TbT = FMA(KP707106781, T8m, T87); |
| 1742 |
TbU = FMA(KP707106781, T8x, T8u); |
| 1743 |
TbV = FMA(KP198912367, TbU, TbT); |
| 1744 |
Tcl = FNMS(KP198912367, TbT, TbU); |
| 1745 |
TbW = FMA(KP707106781, T8V, T8G); |
| 1746 |
TbX = FMA(KP707106781, T96, T93); |
| 1747 |
TbY = FNMS(KP198912367, TbX, TbW); |
| 1748 |
Tcm = FMA(KP198912367, TbW, TbX); |
| 1749 |
} |
| 1750 |
TbZ = TbV - TbY; |
| 1751 |
TkK = TbV + TbY; |
| 1752 |
Tcn = Tcl + Tcm; |
| 1753 |
TkE = Tcm - Tcl; |
| 1754 |
} |
| 1755 |
{
|
| 1756 |
E Tbc, TbH, Tbr, TbG; |
| 1757 |
{
|
| 1758 |
E TaG, Tbb, Tbn, Tbq; |
| 1759 |
TaG = FNMS(KP707106781, TaF, Taq); |
| 1760 |
Tbb = TaV - Tba; |
| 1761 |
Tbc = FNMS(KP923879532, Tbb, TaG); |
| 1762 |
TbH = FMA(KP923879532, Tbb, TaG); |
| 1763 |
Tbn = FNMS(KP707106781, Tbm, Tbj); |
| 1764 |
Tbq = Tbo - Tbp; |
| 1765 |
Tbr = FNMS(KP923879532, Tbq, Tbn); |
| 1766 |
TbG = FMA(KP923879532, Tbq, Tbn); |
| 1767 |
} |
| 1768 |
Tbs = FNMS(KP534511135, Tbr, Tbc); |
| 1769 |
TbM = FMA(KP303346683, TbG, TbH); |
| 1770 |
Tbw = FMA(KP534511135, Tbc, Tbr); |
| 1771 |
TbI = FNMS(KP303346683, TbH, TbG); |
| 1772 |
} |
| 1773 |
{
|
| 1774 |
E T7u, TbO, Tkn, TkB, T7Z, TkC, TbR, Tko, T7t, Tkm; |
| 1775 |
T7t = T7l - T7s; |
| 1776 |
T7u = FMA(KP707106781, T7t, T7e); |
| 1777 |
TbO = FNMS(KP707106781, T7t, T7e); |
| 1778 |
Tkm = TcC - TcB; |
| 1779 |
Tkn = FMA(KP707106781, Tkm, Tkl); |
| 1780 |
TkB = FNMS(KP707106781, Tkm, Tkl); |
| 1781 |
{
|
| 1782 |
E T7J, T7Y, TbP, TbQ; |
| 1783 |
T7J = FMA(KP414213562, T7I, T7B); |
| 1784 |
T7Y = FNMS(KP414213562, T7X, T7Q); |
| 1785 |
T7Z = T7J - T7Y; |
| 1786 |
TkC = T7J + T7Y; |
| 1787 |
TbP = FNMS(KP414213562, T7B, T7I); |
| 1788 |
TbQ = FMA(KP414213562, T7Q, T7X); |
| 1789 |
TbR = TbP + TbQ; |
| 1790 |
Tko = TbQ - TbP; |
| 1791 |
} |
| 1792 |
T80 = FNMS(KP923879532, T7Z, T7u); |
| 1793 |
TkD = FNMS(KP923879532, TkC, TkB); |
| 1794 |
TkJ = FMA(KP923879532, TkC, TkB); |
| 1795 |
Tby = FMA(KP923879532, T7Z, T7u); |
| 1796 |
TbS = FNMS(KP923879532, TbR, TbO); |
| 1797 |
Tkp = FMA(KP923879532, Tko, Tkn); |
| 1798 |
Tkv = FNMS(KP923879532, Tko, Tkn); |
| 1799 |
Tck = FMA(KP923879532, TbR, TbO); |
| 1800 |
} |
| 1801 |
{
|
| 1802 |
E T9a, Tbt, Tkx, Tky; |
| 1803 |
T9a = FMA(KP831469612, T99, T80); |
| 1804 |
Tbt = Taj - Tbs; |
| 1805 |
ri[WS(rs, 43)] = FNMS(KP881921264, Tbt, T9a);
|
| 1806 |
ri[WS(rs, 11)] = FMA(KP881921264, Tbt, T9a);
|
| 1807 |
Tkx = FMA(KP831469612, Tkw, Tkv); |
| 1808 |
Tky = Tbw - Tbv; |
| 1809 |
ii[WS(rs, 11)] = FMA(KP881921264, Tky, Tkx);
|
| 1810 |
ii[WS(rs, 43)] = FNMS(KP881921264, Tky, Tkx);
|
| 1811 |
} |
| 1812 |
{
|
| 1813 |
E Tbu, Tbx, Tkz, TkA; |
| 1814 |
Tbu = FNMS(KP831469612, T99, T80); |
| 1815 |
Tbx = Tbv + Tbw; |
| 1816 |
ri[WS(rs, 27)] = FNMS(KP881921264, Tbx, Tbu);
|
| 1817 |
ri[WS(rs, 59)] = FMA(KP881921264, Tbx, Tbu);
|
| 1818 |
Tkz = FNMS(KP831469612, Tkw, Tkv); |
| 1819 |
TkA = Taj + Tbs; |
| 1820 |
ii[WS(rs, 27)] = FNMS(KP881921264, TkA, Tkz);
|
| 1821 |
ii[WS(rs, 59)] = FMA(KP881921264, TkA, Tkz);
|
| 1822 |
} |
| 1823 |
{
|
| 1824 |
E TbC, TbJ, Tkr, Tks; |
| 1825 |
TbC = FMA(KP831469612, TbB, Tby); |
| 1826 |
TbJ = TbF + TbI; |
| 1827 |
ri[WS(rs, 35)] = FNMS(KP956940335, TbJ, TbC);
|
| 1828 |
ri[WS(rs, 3)] = FMA(KP956940335, TbJ, TbC);
|
| 1829 |
Tkr = FMA(KP831469612, Tkq, Tkp); |
| 1830 |
Tks = TbL + TbM; |
| 1831 |
ii[WS(rs, 3)] = FMA(KP956940335, Tks, Tkr);
|
| 1832 |
ii[WS(rs, 35)] = FNMS(KP956940335, Tks, Tkr);
|
| 1833 |
} |
| 1834 |
{
|
| 1835 |
E TbK, TbN, Tkt, Tku; |
| 1836 |
TbK = FNMS(KP831469612, TbB, Tby); |
| 1837 |
TbN = TbL - TbM; |
| 1838 |
ri[WS(rs, 51)] = FNMS(KP956940335, TbN, TbK);
|
| 1839 |
ri[WS(rs, 19)] = FMA(KP956940335, TbN, TbK);
|
| 1840 |
Tkt = FNMS(KP831469612, Tkq, Tkp); |
| 1841 |
Tku = TbI - TbF; |
| 1842 |
ii[WS(rs, 19)] = FMA(KP956940335, Tku, Tkt);
|
| 1843 |
ii[WS(rs, 51)] = FNMS(KP956940335, Tku, Tkt);
|
| 1844 |
} |
| 1845 |
{
|
| 1846 |
E Tc0, Tcf, TkF, TkG; |
| 1847 |
Tc0 = FMA(KP980785280, TbZ, TbS); |
| 1848 |
Tcf = Tc7 + Tce; |
| 1849 |
ri[WS(rs, 39)] = FNMS(KP773010453, Tcf, Tc0);
|
| 1850 |
ri[WS(rs, 7)] = FMA(KP773010453, Tcf, Tc0);
|
| 1851 |
TkF = FMA(KP980785280, TkE, TkD); |
| 1852 |
TkG = Tch + Tci; |
| 1853 |
ii[WS(rs, 7)] = FMA(KP773010453, TkG, TkF);
|
| 1854 |
ii[WS(rs, 39)] = FNMS(KP773010453, TkG, TkF);
|
| 1855 |
} |
| 1856 |
{
|
| 1857 |
E Tcg, Tcj, TkH, TkI; |
| 1858 |
Tcg = FNMS(KP980785280, TbZ, TbS); |
| 1859 |
Tcj = Tch - Tci; |
| 1860 |
ri[WS(rs, 55)] = FNMS(KP773010453, Tcj, Tcg);
|
| 1861 |
ri[WS(rs, 23)] = FMA(KP773010453, Tcj, Tcg);
|
| 1862 |
TkH = FNMS(KP980785280, TkE, TkD); |
| 1863 |
TkI = Tce - Tc7; |
| 1864 |
ii[WS(rs, 23)] = FMA(KP773010453, TkI, TkH);
|
| 1865 |
ii[WS(rs, 55)] = FNMS(KP773010453, TkI, TkH);
|
| 1866 |
} |
| 1867 |
{
|
| 1868 |
E Tco, Tcv, TkL, TkM; |
| 1869 |
Tco = FNMS(KP980785280, Tcn, Tck); |
| 1870 |
Tcv = Tcr - Tcu; |
| 1871 |
ri[WS(rs, 47)] = FNMS(KP995184726, Tcv, Tco);
|
| 1872 |
ri[WS(rs, 15)] = FMA(KP995184726, Tcv, Tco);
|
| 1873 |
TkL = FNMS(KP980785280, TkK, TkJ); |
| 1874 |
TkM = Tcy - Tcx; |
| 1875 |
ii[WS(rs, 15)] = FMA(KP995184726, TkM, TkL);
|
| 1876 |
ii[WS(rs, 47)] = FNMS(KP995184726, TkM, TkL);
|
| 1877 |
} |
| 1878 |
{
|
| 1879 |
E Tcw, Tcz, TkN, TkO; |
| 1880 |
Tcw = FMA(KP980785280, Tcn, Tck); |
| 1881 |
Tcz = Tcx + Tcy; |
| 1882 |
ri[WS(rs, 31)] = FNMS(KP995184726, Tcz, Tcw);
|
| 1883 |
ri[WS(rs, 63)] = FMA(KP995184726, Tcz, Tcw);
|
| 1884 |
TkN = FMA(KP980785280, TkK, TkJ); |
| 1885 |
TkO = Tcr + Tcu; |
| 1886 |
ii[WS(rs, 31)] = FNMS(KP995184726, TkO, TkN);
|
| 1887 |
ii[WS(rs, 63)] = FMA(KP995184726, TkO, TkN);
|
| 1888 |
} |
| 1889 |
} |
| 1890 |
{
|
| 1891 |
E Td1, Tk2, TdN, TjW, Tdl, TdX, TdH, TdR, Teq, TeK, Teu, TeG, Tej, TeJ, Tet; |
| 1892 |
E TeD, Teb, Tkg, Tez, Tka, TdE, TdY, TdI, TdU, TcM, Tk9, Tkf, TdK, Te4, TjV; |
| 1893 |
E Tk1, Tew; |
| 1894 |
{
|
| 1895 |
E TcT, TdL, Td0, TdM; |
| 1896 |
{
|
| 1897 |
E TcP, TcS, TcW, TcZ; |
| 1898 |
TcP = FMA(KP707106781, TcO, TcN); |
| 1899 |
TcS = FMA(KP707106781, TcR, TcQ); |
| 1900 |
TcT = FNMS(KP198912367, TcS, TcP); |
| 1901 |
TdL = FMA(KP198912367, TcP, TcS); |
| 1902 |
TcW = FMA(KP707106781, TcV, TcU); |
| 1903 |
TcZ = FMA(KP707106781, TcY, TcX); |
| 1904 |
Td0 = FMA(KP198912367, TcZ, TcW); |
| 1905 |
TdM = FNMS(KP198912367, TcW, TcZ); |
| 1906 |
} |
| 1907 |
Td1 = TcT - Td0; |
| 1908 |
Tk2 = TdM - TdL; |
| 1909 |
TdN = TdL + TdM; |
| 1910 |
TjW = TcT + Td0; |
| 1911 |
} |
| 1912 |
{
|
| 1913 |
E Tdd, TdQ, Tdk, TdP; |
| 1914 |
{
|
| 1915 |
E Td5, Tdc, Tdg, Tdj; |
| 1916 |
Td5 = FMA(KP707106781, Td4, Td3); |
| 1917 |
Tdc = Td8 + Tdb; |
| 1918 |
Tdd = FNMS(KP923879532, Tdc, Td5); |
| 1919 |
TdQ = FMA(KP923879532, Tdc, Td5); |
| 1920 |
Tdg = FMA(KP707106781, Tdf, Tde); |
| 1921 |
Tdj = Tdh + Tdi; |
| 1922 |
Tdk = FNMS(KP923879532, Tdj, Tdg); |
| 1923 |
TdP = FMA(KP923879532, Tdj, Tdg); |
| 1924 |
} |
| 1925 |
Tdl = FMA(KP820678790, Tdk, Tdd); |
| 1926 |
TdX = FNMS(KP098491403, TdP, TdQ); |
| 1927 |
TdH = FNMS(KP820678790, Tdd, Tdk); |
| 1928 |
TdR = FMA(KP098491403, TdQ, TdP); |
| 1929 |
} |
| 1930 |
{
|
| 1931 |
E Tem, TeF, Tep, TeE; |
| 1932 |
{
|
| 1933 |
E Tek, Tel, Ten, Teo; |
| 1934 |
Tek = FNMS(KP707106781, Tdy, Tdx); |
| 1935 |
Tel = Tdu - Tdr; |
| 1936 |
Tem = FNMS(KP923879532, Tel, Tek); |
| 1937 |
TeF = FMA(KP923879532, Tel, Tek); |
| 1938 |
Ten = FNMS(KP707106781, Tdn, Tdm); |
| 1939 |
Teo = TdA - TdB; |
| 1940 |
Tep = FNMS(KP923879532, Teo, Ten); |
| 1941 |
TeE = FMA(KP923879532, Teo, Ten); |
| 1942 |
} |
| 1943 |
Teq = FNMS(KP534511135, Tep, Tem); |
| 1944 |
TeK = FMA(KP303346683, TeE, TeF); |
| 1945 |
Teu = FMA(KP534511135, Tem, Tep); |
| 1946 |
TeG = FNMS(KP303346683, TeF, TeE); |
| 1947 |
} |
| 1948 |
{
|
| 1949 |
E Tef, TeC, Tei, TeB; |
| 1950 |
{
|
| 1951 |
E Ted, Tee, Teg, Teh; |
| 1952 |
Ted = FNMS(KP707106781, Tdf, Tde); |
| 1953 |
Tee = Tdb - Td8; |
| 1954 |
Tef = FNMS(KP923879532, Tee, Ted); |
| 1955 |
TeC = FMA(KP923879532, Tee, Ted); |
| 1956 |
Teg = FNMS(KP707106781, Td4, Td3); |
| 1957 |
Teh = Tdh - Tdi; |
| 1958 |
Tei = FNMS(KP923879532, Teh, Teg); |
| 1959 |
TeB = FMA(KP923879532, Teh, Teg); |
| 1960 |
} |
| 1961 |
Tej = FMA(KP534511135, Tei, Tef); |
| 1962 |
TeJ = FNMS(KP303346683, TeB, TeC); |
| 1963 |
Tet = FNMS(KP534511135, Tef, Tei); |
| 1964 |
TeD = FMA(KP303346683, TeC, TeB); |
| 1965 |
} |
| 1966 |
{
|
| 1967 |
E Te7, Tex, Tea, Tey; |
| 1968 |
{
|
| 1969 |
E Te5, Te6, Te8, Te9; |
| 1970 |
Te5 = FNMS(KP707106781, TcO, TcN); |
| 1971 |
Te6 = FNMS(KP707106781, TcR, TcQ); |
| 1972 |
Te7 = FMA(KP668178637, Te6, Te5); |
| 1973 |
Tex = FNMS(KP668178637, Te5, Te6); |
| 1974 |
Te8 = FNMS(KP707106781, TcV, TcU); |
| 1975 |
Te9 = FNMS(KP707106781, TcY, TcX); |
| 1976 |
Tea = FNMS(KP668178637, Te9, Te8); |
| 1977 |
Tey = FMA(KP668178637, Te8, Te9); |
| 1978 |
} |
| 1979 |
Teb = Te7 - Tea; |
| 1980 |
Tkg = Te7 + Tea; |
| 1981 |
Tez = Tex + Tey; |
| 1982 |
Tka = Tey - Tex; |
| 1983 |
} |
| 1984 |
{
|
| 1985 |
E Tdw, TdT, TdD, TdS; |
| 1986 |
{
|
| 1987 |
E Tdo, Tdv, Tdz, TdC; |
| 1988 |
Tdo = FMA(KP707106781, Tdn, Tdm); |
| 1989 |
Tdv = Tdr + Tdu; |
| 1990 |
Tdw = FNMS(KP923879532, Tdv, Tdo); |
| 1991 |
TdT = FMA(KP923879532, Tdv, Tdo); |
| 1992 |
Tdz = FMA(KP707106781, Tdy, Tdx); |
| 1993 |
TdC = TdA + TdB; |
| 1994 |
TdD = FNMS(KP923879532, TdC, Tdz); |
| 1995 |
TdS = FMA(KP923879532, TdC, Tdz); |
| 1996 |
} |
| 1997 |
TdE = FNMS(KP820678790, TdD, Tdw); |
| 1998 |
TdY = FMA(KP098491403, TdS, TdT); |
| 1999 |
TdI = FMA(KP820678790, Tdw, TdD); |
| 2000 |
TdU = FNMS(KP098491403, TdT, TdS); |
| 2001 |
} |
| 2002 |
{
|
| 2003 |
E TcE, Te0, TjT, Tk7, TcL, Tk8, Te3, TjU, TcD, TjS; |
| 2004 |
TcD = TcB + TcC; |
| 2005 |
TcE = FMA(KP707106781, TcD, TcA); |
| 2006 |
Te0 = FNMS(KP707106781, TcD, TcA); |
| 2007 |
TjS = T7l + T7s; |
| 2008 |
TjT = FMA(KP707106781, TjS, TjR); |
| 2009 |
Tk7 = FNMS(KP707106781, TjS, TjR); |
| 2010 |
{
|
| 2011 |
E TcH, TcK, Te1, Te2; |
| 2012 |
TcH = FMA(KP414213562, TcG, TcF); |
| 2013 |
TcK = FNMS(KP414213562, TcJ, TcI); |
| 2014 |
TcL = TcH + TcK; |
| 2015 |
Tk8 = TcK - TcH; |
| 2016 |
Te1 = FNMS(KP414213562, TcF, TcG); |
| 2017 |
Te2 = FMA(KP414213562, TcI, TcJ); |
| 2018 |
Te3 = Te1 - Te2; |
| 2019 |
TjU = Te1 + Te2; |
| 2020 |
} |
| 2021 |
TcM = FNMS(KP923879532, TcL, TcE); |
| 2022 |
Tk9 = FMA(KP923879532, Tk8, Tk7); |
| 2023 |
Tkf = FNMS(KP923879532, Tk8, Tk7); |
| 2024 |
TdK = FMA(KP923879532, TcL, TcE); |
| 2025 |
Te4 = FMA(KP923879532, Te3, Te0); |
| 2026 |
TjV = FMA(KP923879532, TjU, TjT); |
| 2027 |
Tk1 = FNMS(KP923879532, TjU, TjT); |
| 2028 |
Tew = FNMS(KP923879532, Te3, Te0); |
| 2029 |
} |
| 2030 |
{
|
| 2031 |
E Td2, TdF, Tk3, Tk4; |
| 2032 |
Td2 = FMA(KP980785280, Td1, TcM); |
| 2033 |
TdF = Tdl - TdE; |
| 2034 |
ri[WS(rs, 41)] = FNMS(KP773010453, TdF, Td2);
|
| 2035 |
ri[WS(rs, 9)] = FMA(KP773010453, TdF, Td2);
|
| 2036 |
Tk3 = FMA(KP980785280, Tk2, Tk1); |
| 2037 |
Tk4 = TdI - TdH; |
| 2038 |
ii[WS(rs, 9)] = FMA(KP773010453, Tk4, Tk3);
|
| 2039 |
ii[WS(rs, 41)] = FNMS(KP773010453, Tk4, Tk3);
|
| 2040 |
} |
| 2041 |
{
|
| 2042 |
E TdG, TdJ, Tk5, Tk6; |
| 2043 |
TdG = FNMS(KP980785280, Td1, TcM); |
| 2044 |
TdJ = TdH + TdI; |
| 2045 |
ri[WS(rs, 25)] = FNMS(KP773010453, TdJ, TdG);
|
| 2046 |
ri[WS(rs, 57)] = FMA(KP773010453, TdJ, TdG);
|
| 2047 |
Tk5 = FNMS(KP980785280, Tk2, Tk1); |
| 2048 |
Tk6 = Tdl + TdE; |
| 2049 |
ii[WS(rs, 25)] = FNMS(KP773010453, Tk6, Tk5);
|
| 2050 |
ii[WS(rs, 57)] = FMA(KP773010453, Tk6, Tk5);
|
| 2051 |
} |
| 2052 |
{
|
| 2053 |
E TdO, TdV, TjX, TjY; |
| 2054 |
TdO = FMA(KP980785280, TdN, TdK); |
| 2055 |
TdV = TdR + TdU; |
| 2056 |
ri[WS(rs, 33)] = FNMS(KP995184726, TdV, TdO);
|
| 2057 |
ri[WS(rs, 1)] = FMA(KP995184726, TdV, TdO);
|
| 2058 |
TjX = FMA(KP980785280, TjW, TjV); |
| 2059 |
TjY = TdX + TdY; |
| 2060 |
ii[WS(rs, 1)] = FMA(KP995184726, TjY, TjX);
|
| 2061 |
ii[WS(rs, 33)] = FNMS(KP995184726, TjY, TjX);
|
| 2062 |
} |
| 2063 |
{
|
| 2064 |
E TdW, TdZ, TjZ, Tk0; |
| 2065 |
TdW = FNMS(KP980785280, TdN, TdK); |
| 2066 |
TdZ = TdX - TdY; |
| 2067 |
ri[WS(rs, 49)] = FNMS(KP995184726, TdZ, TdW);
|
| 2068 |
ri[WS(rs, 17)] = FMA(KP995184726, TdZ, TdW);
|
| 2069 |
TjZ = FNMS(KP980785280, TjW, TjV); |
| 2070 |
Tk0 = TdU - TdR; |
| 2071 |
ii[WS(rs, 17)] = FMA(KP995184726, Tk0, TjZ);
|
| 2072 |
ii[WS(rs, 49)] = FNMS(KP995184726, Tk0, TjZ);
|
| 2073 |
} |
| 2074 |
{
|
| 2075 |
E Tec, Ter, Tkb, Tkc; |
| 2076 |
Tec = FMA(KP831469612, Teb, Te4); |
| 2077 |
Ter = Tej + Teq; |
| 2078 |
ri[WS(rs, 37)] = FNMS(KP881921264, Ter, Tec);
|
| 2079 |
ri[WS(rs, 5)] = FMA(KP881921264, Ter, Tec);
|
| 2080 |
Tkb = FMA(KP831469612, Tka, Tk9); |
| 2081 |
Tkc = Tet + Teu; |
| 2082 |
ii[WS(rs, 5)] = FMA(KP881921264, Tkc, Tkb);
|
| 2083 |
ii[WS(rs, 37)] = FNMS(KP881921264, Tkc, Tkb);
|
| 2084 |
} |
| 2085 |
{
|
| 2086 |
E Tes, Tev, Tkd, Tke; |
| 2087 |
Tes = FNMS(KP831469612, Teb, Te4); |
| 2088 |
Tev = Tet - Teu; |
| 2089 |
ri[WS(rs, 53)] = FNMS(KP881921264, Tev, Tes);
|
| 2090 |
ri[WS(rs, 21)] = FMA(KP881921264, Tev, Tes);
|
| 2091 |
Tkd = FNMS(KP831469612, Tka, Tk9); |
| 2092 |
Tke = Teq - Tej; |
| 2093 |
ii[WS(rs, 21)] = FMA(KP881921264, Tke, Tkd);
|
| 2094 |
ii[WS(rs, 53)] = FNMS(KP881921264, Tke, Tkd);
|
| 2095 |
} |
| 2096 |
{
|
| 2097 |
E TeA, TeH, Tkh, Tki; |
| 2098 |
TeA = FNMS(KP831469612, Tez, Tew); |
| 2099 |
TeH = TeD - TeG; |
| 2100 |
ri[WS(rs, 45)] = FNMS(KP956940335, TeH, TeA);
|
| 2101 |
ri[WS(rs, 13)] = FMA(KP956940335, TeH, TeA);
|
| 2102 |
Tkh = FNMS(KP831469612, Tkg, Tkf); |
| 2103 |
Tki = TeK - TeJ; |
| 2104 |
ii[WS(rs, 13)] = FMA(KP956940335, Tki, Tkh);
|
| 2105 |
ii[WS(rs, 45)] = FNMS(KP956940335, Tki, Tkh);
|
| 2106 |
} |
| 2107 |
{
|
| 2108 |
E TeI, TeL, Tkj, Tkk; |
| 2109 |
TeI = FMA(KP831469612, Tez, Tew); |
| 2110 |
TeL = TeJ + TeK; |
| 2111 |
ri[WS(rs, 29)] = FNMS(KP956940335, TeL, TeI);
|
| 2112 |
ri[WS(rs, 61)] = FMA(KP956940335, TeL, TeI);
|
| 2113 |
Tkj = FMA(KP831469612, Tkg, Tkf); |
| 2114 |
Tkk = TeD + TeG; |
| 2115 |
ii[WS(rs, 29)] = FNMS(KP956940335, Tkk, Tkj);
|
| 2116 |
ii[WS(rs, 61)] = FMA(KP956940335, Tkk, Tkj);
|
| 2117 |
} |
| 2118 |
} |
| 2119 |
} |
| 2120 |
} |
| 2121 |
} |
| 2122 |
|
| 2123 |
static const tw_instr twinstr[] = { |
| 2124 |
{TW_FULL, 0, 64},
|
| 2125 |
{TW_NEXT, 1, 0}
|
| 2126 |
}; |
| 2127 |
|
| 2128 |
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {520, 126, 518, 0}, 0, 0, 0 }; |
| 2129 |
|
| 2130 |
void X(codelet_t1_64) (planner *p) {
|
| 2131 |
X(kdft_dit_register) (p, t1_64, &desc); |
| 2132 |
} |
| 2133 |
#else
|
| 2134 |
|
| 2135 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 64 -name t1_64 -include dft/scalar/t.h */
|
| 2136 |
|
| 2137 |
/*
|
| 2138 |
* This function contains 1038 FP additions, 500 FP multiplications,
|
| 2139 |
* (or, 808 additions, 270 multiplications, 230 fused multiply/add),
|
| 2140 |
* 176 stack variables, 15 constants, and 256 memory accesses
|
| 2141 |
*/
|
| 2142 |
#include "dft/scalar/t.h" |
| 2143 |
|
| 2144 |
static void t1_64(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 2145 |
{
|
| 2146 |
DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
| 2147 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 2148 |
DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
| 2149 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 2150 |
DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
| 2151 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 2152 |
DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
| 2153 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 2154 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 2155 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 2156 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 2157 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 2158 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 2159 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 2160 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 2161 |
{
|
| 2162 |
INT m; |
| 2163 |
for (m = mb, W = W + (mb * 126); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 126, MAKE_VOLATILE_STRIDE(128, rs)) { |
| 2164 |
E Tj, TcL, ThT, Tin, T6b, Taz, TgT, Thn, TG, Thm, TcO, TgO, T6m, ThQ, TaC; |
| 2165 |
E Tim, T14, Tfq, T6y, T9O, TaG, Tc0, TcU, TeE, T1r, Tfr, T6J, T9P, TaJ, Tc1; |
| 2166 |
E TcZ, TeF, T1Q, T2d, Tfx, Tfu, Tfv, Tfw, T6Q, TaM, Tdb, TeJ, T71, TaQ, T7a; |
| 2167 |
E TaN, Td6, TeI, T77, TaP, T2B, T2Y, Tfz, TfA, TfB, TfC, T7h, TaW, Tdm, TeM; |
| 2168 |
E T7s, TaU, T7B, TaX, Tdh, TeL, T7y, TaT, T5j, TfR, Tec, Tf0, TfY, Tgy, T8D; |
| 2169 |
E Tbl, T8O, Tbx, T9l, Tbm, TdV, TeX, T9i, Tbw, T3M, TfL, TdL, TeQ, TfI, Tgt; |
| 2170 |
E T7K, Tb2, T7V, Tbe, T8s, Tb3, Tdu, TeT, T8p, Tbd, T4x, TfJ, TdE, TdM, TfO; |
| 2171 |
E Tgu, T87, T8v, T8i, T8u, Tba, Tbg, Tdz, TdN, Tb7, Tbh, T64, TfZ, Te5, Ted; |
| 2172 |
E TfU, Tgz, T90, T9o, T9b, T9n, Tbt, Tbz, Te0, Tee, Tbq, TbA; |
| 2173 |
{
|
| 2174 |
E T1, TgR, T6, TgQ, Tc, T68, Th, T69; |
| 2175 |
T1 = ri[0];
|
| 2176 |
TgR = ii[0];
|
| 2177 |
{
|
| 2178 |
E T3, T5, T2, T4; |
| 2179 |
T3 = ri[WS(rs, 32)];
|
| 2180 |
T5 = ii[WS(rs, 32)];
|
| 2181 |
T2 = W[62];
|
| 2182 |
T4 = W[63];
|
| 2183 |
T6 = FMA(T2, T3, T4 * T5); |
| 2184 |
TgQ = FNMS(T4, T3, T2 * T5); |
| 2185 |
} |
| 2186 |
{
|
| 2187 |
E T9, Tb, T8, Ta; |
| 2188 |
T9 = ri[WS(rs, 16)];
|
| 2189 |
Tb = ii[WS(rs, 16)];
|
| 2190 |
T8 = W[30];
|
| 2191 |
Ta = W[31];
|
| 2192 |
Tc = FMA(T8, T9, Ta * Tb); |
| 2193 |
T68 = FNMS(Ta, T9, T8 * Tb); |
| 2194 |
} |
| 2195 |
{
|
| 2196 |
E Te, Tg, Td, Tf; |
| 2197 |
Te = ri[WS(rs, 48)];
|
| 2198 |
Tg = ii[WS(rs, 48)];
|
| 2199 |
Td = W[94];
|
| 2200 |
Tf = W[95];
|
| 2201 |
Th = FMA(Td, Te, Tf * Tg); |
| 2202 |
T69 = FNMS(Tf, Te, Td * Tg); |
| 2203 |
} |
| 2204 |
{
|
| 2205 |
E T7, Ti, ThR, ThS; |
| 2206 |
T7 = T1 + T6; |
| 2207 |
Ti = Tc + Th; |
| 2208 |
Tj = T7 + Ti; |
| 2209 |
TcL = T7 - Ti; |
| 2210 |
ThR = TgR - TgQ; |
| 2211 |
ThS = Tc - Th; |
| 2212 |
ThT = ThR - ThS; |
| 2213 |
Tin = ThS + ThR; |
| 2214 |
} |
| 2215 |
{
|
| 2216 |
E T67, T6a, TgP, TgS; |
| 2217 |
T67 = T1 - T6; |
| 2218 |
T6a = T68 - T69; |
| 2219 |
T6b = T67 - T6a; |
| 2220 |
Taz = T67 + T6a; |
| 2221 |
TgP = T68 + T69; |
| 2222 |
TgS = TgQ + TgR; |
| 2223 |
TgT = TgP + TgS; |
| 2224 |
Thn = TgS - TgP; |
| 2225 |
} |
| 2226 |
} |
| 2227 |
{
|
| 2228 |
E To, T6c, Tt, T6d, T6e, T6f, Tz, T6i, TE, T6j, T6h, T6k; |
| 2229 |
{
|
| 2230 |
E Tl, Tn, Tk, Tm; |
| 2231 |
Tl = ri[WS(rs, 8)];
|
| 2232 |
Tn = ii[WS(rs, 8)];
|
| 2233 |
Tk = W[14];
|
| 2234 |
Tm = W[15];
|
| 2235 |
To = FMA(Tk, Tl, Tm * Tn); |
| 2236 |
T6c = FNMS(Tm, Tl, Tk * Tn); |
| 2237 |
} |
| 2238 |
{
|
| 2239 |
E Tq, Ts, Tp, Tr; |
| 2240 |
Tq = ri[WS(rs, 40)];
|
| 2241 |
Ts = ii[WS(rs, 40)];
|
| 2242 |
Tp = W[78];
|
| 2243 |
Tr = W[79];
|
| 2244 |
Tt = FMA(Tp, Tq, Tr * Ts); |
| 2245 |
T6d = FNMS(Tr, Tq, Tp * Ts); |
| 2246 |
} |
| 2247 |
T6e = T6c - T6d; |
| 2248 |
T6f = To - Tt; |
| 2249 |
{
|
| 2250 |
E Tw, Ty, Tv, Tx; |
| 2251 |
Tw = ri[WS(rs, 56)];
|
| 2252 |
Ty = ii[WS(rs, 56)];
|
| 2253 |
Tv = W[110];
|
| 2254 |
Tx = W[111];
|
| 2255 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 2256 |
T6i = FNMS(Tx, Tw, Tv * Ty); |
| 2257 |
} |
| 2258 |
{
|
| 2259 |
E TB, TD, TA, TC; |
| 2260 |
TB = ri[WS(rs, 24)];
|
| 2261 |
TD = ii[WS(rs, 24)];
|
| 2262 |
TA = W[46];
|
| 2263 |
TC = W[47];
|
| 2264 |
TE = FMA(TA, TB, TC * TD); |
| 2265 |
T6j = FNMS(TC, TB, TA * TD); |
| 2266 |
} |
| 2267 |
T6h = Tz - TE; |
| 2268 |
T6k = T6i - T6j; |
| 2269 |
{
|
| 2270 |
E Tu, TF, TcM, TcN; |
| 2271 |
Tu = To + Tt; |
| 2272 |
TF = Tz + TE; |
| 2273 |
TG = Tu + TF; |
| 2274 |
Thm = TF - Tu; |
| 2275 |
TcM = T6c + T6d; |
| 2276 |
TcN = T6i + T6j; |
| 2277 |
TcO = TcM - TcN; |
| 2278 |
TgO = TcM + TcN; |
| 2279 |
} |
| 2280 |
{
|
| 2281 |
E T6g, T6l, TaA, TaB; |
| 2282 |
T6g = T6e - T6f; |
| 2283 |
T6l = T6h + T6k; |
| 2284 |
T6m = KP707106781 * (T6g - T6l); |
| 2285 |
ThQ = KP707106781 * (T6g + T6l); |
| 2286 |
TaA = T6f + T6e; |
| 2287 |
TaB = T6h - T6k; |
| 2288 |
TaC = KP707106781 * (TaA + TaB); |
| 2289 |
Tim = KP707106781 * (TaB - TaA); |
| 2290 |
} |
| 2291 |
} |
| 2292 |
{
|
| 2293 |
E TS, TcQ, T6q, T6t, T13, TcR, T6r, T6w, T6s, T6x; |
| 2294 |
{
|
| 2295 |
E TM, T6o, TR, T6p; |
| 2296 |
{
|
| 2297 |
E TJ, TL, TI, TK; |
| 2298 |
TJ = ri[WS(rs, 4)];
|
| 2299 |
TL = ii[WS(rs, 4)];
|
| 2300 |
TI = W[6];
|
| 2301 |
TK = W[7];
|
| 2302 |
TM = FMA(TI, TJ, TK * TL); |
| 2303 |
T6o = FNMS(TK, TJ, TI * TL); |
| 2304 |
} |
| 2305 |
{
|
| 2306 |
E TO, TQ, TN, TP; |
| 2307 |
TO = ri[WS(rs, 36)];
|
| 2308 |
TQ = ii[WS(rs, 36)];
|
| 2309 |
TN = W[70];
|
| 2310 |
TP = W[71];
|
| 2311 |
TR = FMA(TN, TO, TP * TQ); |
| 2312 |
T6p = FNMS(TP, TO, TN * TQ); |
| 2313 |
} |
| 2314 |
TS = TM + TR; |
| 2315 |
TcQ = T6o + T6p; |
| 2316 |
T6q = T6o - T6p; |
| 2317 |
T6t = TM - TR; |
| 2318 |
} |
| 2319 |
{
|
| 2320 |
E TX, T6u, T12, T6v; |
| 2321 |
{
|
| 2322 |
E TU, TW, TT, TV; |
| 2323 |
TU = ri[WS(rs, 20)];
|
| 2324 |
TW = ii[WS(rs, 20)];
|
| 2325 |
TT = W[38];
|
| 2326 |
TV = W[39];
|
| 2327 |
TX = FMA(TT, TU, TV * TW); |
| 2328 |
T6u = FNMS(TV, TU, TT * TW); |
| 2329 |
} |
| 2330 |
{
|
| 2331 |
E TZ, T11, TY, T10; |
| 2332 |
TZ = ri[WS(rs, 52)];
|
| 2333 |
T11 = ii[WS(rs, 52)];
|
| 2334 |
TY = W[102];
|
| 2335 |
T10 = W[103];
|
| 2336 |
T12 = FMA(TY, TZ, T10 * T11); |
| 2337 |
T6v = FNMS(T10, TZ, TY * T11); |
| 2338 |
} |
| 2339 |
T13 = TX + T12; |
| 2340 |
TcR = T6u + T6v; |
| 2341 |
T6r = TX - T12; |
| 2342 |
T6w = T6u - T6v; |
| 2343 |
} |
| 2344 |
T14 = TS + T13; |
| 2345 |
Tfq = TcQ + TcR; |
| 2346 |
T6s = T6q + T6r; |
| 2347 |
T6x = T6t - T6w; |
| 2348 |
T6y = FNMS(KP923879532, T6x, KP382683432 * T6s); |
| 2349 |
T9O = FMA(KP923879532, T6s, KP382683432 * T6x); |
| 2350 |
{
|
| 2351 |
E TaE, TaF, TcS, TcT; |
| 2352 |
TaE = T6q - T6r; |
| 2353 |
TaF = T6t + T6w; |
| 2354 |
TaG = FNMS(KP382683432, TaF, KP923879532 * TaE); |
| 2355 |
Tc0 = FMA(KP382683432, TaE, KP923879532 * TaF); |
| 2356 |
TcS = TcQ - TcR; |
| 2357 |
TcT = TS - T13; |
| 2358 |
TcU = TcS - TcT; |
| 2359 |
TeE = TcT + TcS; |
| 2360 |
} |
| 2361 |
} |
| 2362 |
{
|
| 2363 |
E T1f, TcW, T6B, T6E, T1q, TcX, T6C, T6H, T6D, T6I; |
| 2364 |
{
|
| 2365 |
E T19, T6z, T1e, T6A; |
| 2366 |
{
|
| 2367 |
E T16, T18, T15, T17; |
| 2368 |
T16 = ri[WS(rs, 60)];
|
| 2369 |
T18 = ii[WS(rs, 60)];
|
| 2370 |
T15 = W[118];
|
| 2371 |
T17 = W[119];
|
| 2372 |
T19 = FMA(T15, T16, T17 * T18); |
| 2373 |
T6z = FNMS(T17, T16, T15 * T18); |
| 2374 |
} |
| 2375 |
{
|
| 2376 |
E T1b, T1d, T1a, T1c; |
| 2377 |
T1b = ri[WS(rs, 28)];
|
| 2378 |
T1d = ii[WS(rs, 28)];
|
| 2379 |
T1a = W[54];
|
| 2380 |
T1c = W[55];
|
| 2381 |
T1e = FMA(T1a, T1b, T1c * T1d); |
| 2382 |
T6A = FNMS(T1c, T1b, T1a * T1d); |
| 2383 |
} |
| 2384 |
T1f = T19 + T1e; |
| 2385 |
TcW = T6z + T6A; |
| 2386 |
T6B = T6z - T6A; |
| 2387 |
T6E = T19 - T1e; |
| 2388 |
} |
| 2389 |
{
|
| 2390 |
E T1k, T6F, T1p, T6G; |
| 2391 |
{
|
| 2392 |
E T1h, T1j, T1g, T1i; |
| 2393 |
T1h = ri[WS(rs, 12)];
|
| 2394 |
T1j = ii[WS(rs, 12)];
|
| 2395 |
T1g = W[22];
|
| 2396 |
T1i = W[23];
|
| 2397 |
T1k = FMA(T1g, T1h, T1i * T1j); |
| 2398 |
T6F = FNMS(T1i, T1h, T1g * T1j); |
| 2399 |
} |
| 2400 |
{
|
| 2401 |
E T1m, T1o, T1l, T1n; |
| 2402 |
T1m = ri[WS(rs, 44)];
|
| 2403 |
T1o = ii[WS(rs, 44)];
|
| 2404 |
T1l = W[86];
|
| 2405 |
T1n = W[87];
|
| 2406 |
T1p = FMA(T1l, T1m, T1n * T1o); |
| 2407 |
T6G = FNMS(T1n, T1m, T1l * T1o); |
| 2408 |
} |
| 2409 |
T1q = T1k + T1p; |
| 2410 |
TcX = T6F + T6G; |
| 2411 |
T6C = T1k - T1p; |
| 2412 |
T6H = T6F - T6G; |
| 2413 |
} |
| 2414 |
T1r = T1f + T1q; |
| 2415 |
Tfr = TcW + TcX; |
| 2416 |
T6D = T6B + T6C; |
| 2417 |
T6I = T6E - T6H; |
| 2418 |
T6J = FMA(KP382683432, T6D, KP923879532 * T6I); |
| 2419 |
T9P = FNMS(KP923879532, T6D, KP382683432 * T6I); |
| 2420 |
{
|
| 2421 |
E TaH, TaI, TcV, TcY; |
| 2422 |
TaH = T6B - T6C; |
| 2423 |
TaI = T6E + T6H; |
| 2424 |
TaJ = FMA(KP923879532, TaH, KP382683432 * TaI); |
| 2425 |
Tc1 = FNMS(KP382683432, TaH, KP923879532 * TaI); |
| 2426 |
TcV = T1f - T1q; |
| 2427 |
TcY = TcW - TcX; |
| 2428 |
TcZ = TcV + TcY; |
| 2429 |
TeF = TcV - TcY; |
| 2430 |
} |
| 2431 |
} |
| 2432 |
{
|
| 2433 |
E T1y, T6M, T1D, T6N, T1E, Td2, T1J, T74, T1O, T75, T1P, Td3, T21, Td8, T6W; |
| 2434 |
E T6Z, T2c, Td9, T6R, T6U; |
| 2435 |
{
|
| 2436 |
E T1v, T1x, T1u, T1w; |
| 2437 |
T1v = ri[WS(rs, 2)];
|
| 2438 |
T1x = ii[WS(rs, 2)];
|
| 2439 |
T1u = W[2];
|
| 2440 |
T1w = W[3];
|
| 2441 |
T1y = FMA(T1u, T1v, T1w * T1x); |
| 2442 |
T6M = FNMS(T1w, T1v, T1u * T1x); |
| 2443 |
} |
| 2444 |
{
|
| 2445 |
E T1A, T1C, T1z, T1B; |
| 2446 |
T1A = ri[WS(rs, 34)];
|
| 2447 |
T1C = ii[WS(rs, 34)];
|
| 2448 |
T1z = W[66];
|
| 2449 |
T1B = W[67];
|
| 2450 |
T1D = FMA(T1z, T1A, T1B * T1C); |
| 2451 |
T6N = FNMS(T1B, T1A, T1z * T1C); |
| 2452 |
} |
| 2453 |
T1E = T1y + T1D; |
| 2454 |
Td2 = T6M + T6N; |
| 2455 |
{
|
| 2456 |
E T1G, T1I, T1F, T1H; |
| 2457 |
T1G = ri[WS(rs, 18)];
|
| 2458 |
T1I = ii[WS(rs, 18)];
|
| 2459 |
T1F = W[34];
|
| 2460 |
T1H = W[35];
|
| 2461 |
T1J = FMA(T1F, T1G, T1H * T1I); |
| 2462 |
T74 = FNMS(T1H, T1G, T1F * T1I); |
| 2463 |
} |
| 2464 |
{
|
| 2465 |
E T1L, T1N, T1K, T1M; |
| 2466 |
T1L = ri[WS(rs, 50)];
|
| 2467 |
T1N = ii[WS(rs, 50)];
|
| 2468 |
T1K = W[98];
|
| 2469 |
T1M = W[99];
|
| 2470 |
T1O = FMA(T1K, T1L, T1M * T1N); |
| 2471 |
T75 = FNMS(T1M, T1L, T1K * T1N); |
| 2472 |
} |
| 2473 |
T1P = T1J + T1O; |
| 2474 |
Td3 = T74 + T75; |
| 2475 |
{
|
| 2476 |
E T1V, T6X, T20, T6Y; |
| 2477 |
{
|
| 2478 |
E T1S, T1U, T1R, T1T; |
| 2479 |
T1S = ri[WS(rs, 10)];
|
| 2480 |
T1U = ii[WS(rs, 10)];
|
| 2481 |
T1R = W[18];
|
| 2482 |
T1T = W[19];
|
| 2483 |
T1V = FMA(T1R, T1S, T1T * T1U); |
| 2484 |
T6X = FNMS(T1T, T1S, T1R * T1U); |
| 2485 |
} |
| 2486 |
{
|
| 2487 |
E T1X, T1Z, T1W, T1Y; |
| 2488 |
T1X = ri[WS(rs, 42)];
|
| 2489 |
T1Z = ii[WS(rs, 42)];
|
| 2490 |
T1W = W[82];
|
| 2491 |
T1Y = W[83];
|
| 2492 |
T20 = FMA(T1W, T1X, T1Y * T1Z); |
| 2493 |
T6Y = FNMS(T1Y, T1X, T1W * T1Z); |
| 2494 |
} |
| 2495 |
T21 = T1V + T20; |
| 2496 |
Td8 = T6X + T6Y; |
| 2497 |
T6W = T1V - T20; |
| 2498 |
T6Z = T6X - T6Y; |
| 2499 |
} |
| 2500 |
{
|
| 2501 |
E T26, T6S, T2b, T6T; |
| 2502 |
{
|
| 2503 |
E T23, T25, T22, T24; |
| 2504 |
T23 = ri[WS(rs, 58)];
|
| 2505 |
T25 = ii[WS(rs, 58)];
|
| 2506 |
T22 = W[114];
|
| 2507 |
T24 = W[115];
|
| 2508 |
T26 = FMA(T22, T23, T24 * T25); |
| 2509 |
T6S = FNMS(T24, T23, T22 * T25); |
| 2510 |
} |
| 2511 |
{
|
| 2512 |
E T28, T2a, T27, T29; |
| 2513 |
T28 = ri[WS(rs, 26)];
|
| 2514 |
T2a = ii[WS(rs, 26)];
|
| 2515 |
T27 = W[50];
|
| 2516 |
T29 = W[51];
|
| 2517 |
T2b = FMA(T27, T28, T29 * T2a); |
| 2518 |
T6T = FNMS(T29, T28, T27 * T2a); |
| 2519 |
} |
| 2520 |
T2c = T26 + T2b; |
| 2521 |
Td9 = T6S + T6T; |
| 2522 |
T6R = T26 - T2b; |
| 2523 |
T6U = T6S - T6T; |
| 2524 |
} |
| 2525 |
T1Q = T1E + T1P; |
| 2526 |
T2d = T21 + T2c; |
| 2527 |
Tfx = T1Q - T2d; |
| 2528 |
Tfu = Td2 + Td3; |
| 2529 |
Tfv = Td8 + Td9; |
| 2530 |
Tfw = Tfu - Tfv; |
| 2531 |
{
|
| 2532 |
E T6O, T6P, Td7, Tda; |
| 2533 |
T6O = T6M - T6N; |
| 2534 |
T6P = T1J - T1O; |
| 2535 |
T6Q = T6O + T6P; |
| 2536 |
TaM = T6O - T6P; |
| 2537 |
Td7 = T1E - T1P; |
| 2538 |
Tda = Td8 - Td9; |
| 2539 |
Tdb = Td7 - Tda; |
| 2540 |
TeJ = Td7 + Tda; |
| 2541 |
} |
| 2542 |
{
|
| 2543 |
E T6V, T70, T78, T79; |
| 2544 |
T6V = T6R - T6U; |
| 2545 |
T70 = T6W + T6Z; |
| 2546 |
T71 = KP707106781 * (T6V - T70); |
| 2547 |
TaQ = KP707106781 * (T70 + T6V); |
| 2548 |
T78 = T6Z - T6W; |
| 2549 |
T79 = T6R + T6U; |
| 2550 |
T7a = KP707106781 * (T78 - T79); |
| 2551 |
TaN = KP707106781 * (T78 + T79); |
| 2552 |
} |
| 2553 |
{
|
| 2554 |
E Td4, Td5, T73, T76; |
| 2555 |
Td4 = Td2 - Td3; |
| 2556 |
Td5 = T2c - T21; |
| 2557 |
Td6 = Td4 - Td5; |
| 2558 |
TeI = Td4 + Td5; |
| 2559 |
T73 = T1y - T1D; |
| 2560 |
T76 = T74 - T75; |
| 2561 |
T77 = T73 - T76; |
| 2562 |
TaP = T73 + T76; |
| 2563 |
} |
| 2564 |
} |
| 2565 |
{
|
| 2566 |
E T2j, T7d, T2o, T7e, T2p, Tdd, T2u, T7v, T2z, T7w, T2A, Tde, T2M, Tdj, T7n; |
| 2567 |
E T7q, T2X, Tdk, T7i, T7l; |
| 2568 |
{
|
| 2569 |
E T2g, T2i, T2f, T2h; |
| 2570 |
T2g = ri[WS(rs, 62)];
|
| 2571 |
T2i = ii[WS(rs, 62)];
|
| 2572 |
T2f = W[122];
|
| 2573 |
T2h = W[123];
|
| 2574 |
T2j = FMA(T2f, T2g, T2h * T2i); |
| 2575 |
T7d = FNMS(T2h, T2g, T2f * T2i); |
| 2576 |
} |
| 2577 |
{
|
| 2578 |
E T2l, T2n, T2k, T2m; |
| 2579 |
T2l = ri[WS(rs, 30)];
|
| 2580 |
T2n = ii[WS(rs, 30)];
|
| 2581 |
T2k = W[58];
|
| 2582 |
T2m = W[59];
|
| 2583 |
T2o = FMA(T2k, T2l, T2m * T2n); |
| 2584 |
T7e = FNMS(T2m, T2l, T2k * T2n); |
| 2585 |
} |
| 2586 |
T2p = T2j + T2o; |
| 2587 |
Tdd = T7d + T7e; |
| 2588 |
{
|
| 2589 |
E T2r, T2t, T2q, T2s; |
| 2590 |
T2r = ri[WS(rs, 14)];
|
| 2591 |
T2t = ii[WS(rs, 14)];
|
| 2592 |
T2q = W[26];
|
| 2593 |
T2s = W[27];
|
| 2594 |
T2u = FMA(T2q, T2r, T2s * T2t); |
| 2595 |
T7v = FNMS(T2s, T2r, T2q * T2t); |
| 2596 |
} |
| 2597 |
{
|
| 2598 |
E T2w, T2y, T2v, T2x; |
| 2599 |
T2w = ri[WS(rs, 46)];
|
| 2600 |
T2y = ii[WS(rs, 46)];
|
| 2601 |
T2v = W[90];
|
| 2602 |
T2x = W[91];
|
| 2603 |
T2z = FMA(T2v, T2w, T2x * T2y); |
| 2604 |
T7w = FNMS(T2x, T2w, T2v * T2y); |
| 2605 |
} |
| 2606 |
T2A = T2u + T2z; |
| 2607 |
Tde = T7v + T7w; |
| 2608 |
{
|
| 2609 |
E T2G, T7o, T2L, T7p; |
| 2610 |
{
|
| 2611 |
E T2D, T2F, T2C, T2E; |
| 2612 |
T2D = ri[WS(rs, 6)];
|
| 2613 |
T2F = ii[WS(rs, 6)];
|
| 2614 |
T2C = W[10];
|
| 2615 |
T2E = W[11];
|
| 2616 |
T2G = FMA(T2C, T2D, T2E * T2F); |
| 2617 |
T7o = FNMS(T2E, T2D, T2C * T2F); |
| 2618 |
} |
| 2619 |
{
|
| 2620 |
E T2I, T2K, T2H, T2J; |
| 2621 |
T2I = ri[WS(rs, 38)];
|
| 2622 |
T2K = ii[WS(rs, 38)];
|
| 2623 |
T2H = W[74];
|
| 2624 |
T2J = W[75];
|
| 2625 |
T2L = FMA(T2H, T2I, T2J * T2K); |
| 2626 |
T7p = FNMS(T2J, T2I, T2H * T2K); |
| 2627 |
} |
| 2628 |
T2M = T2G + T2L; |
| 2629 |
Tdj = T7o + T7p; |
| 2630 |
T7n = T2G - T2L; |
| 2631 |
T7q = T7o - T7p; |
| 2632 |
} |
| 2633 |
{
|
| 2634 |
E T2R, T7j, T2W, T7k; |
| 2635 |
{
|
| 2636 |
E T2O, T2Q, T2N, T2P; |
| 2637 |
T2O = ri[WS(rs, 54)];
|
| 2638 |
T2Q = ii[WS(rs, 54)];
|
| 2639 |
T2N = W[106];
|
| 2640 |
T2P = W[107];
|
| 2641 |
T2R = FMA(T2N, T2O, T2P * T2Q); |
| 2642 |
T7j = FNMS(T2P, T2O, T2N * T2Q); |
| 2643 |
} |
| 2644 |
{
|
| 2645 |
E T2T, T2V, T2S, T2U; |
| 2646 |
T2T = ri[WS(rs, 22)];
|
| 2647 |
T2V = ii[WS(rs, 22)];
|
| 2648 |
T2S = W[42];
|
| 2649 |
T2U = W[43];
|
| 2650 |
T2W = FMA(T2S, T2T, T2U * T2V); |
| 2651 |
T7k = FNMS(T2U, T2T, T2S * T2V); |
| 2652 |
} |
| 2653 |
T2X = T2R + T2W; |
| 2654 |
Tdk = T7j + T7k; |
| 2655 |
T7i = T2R - T2W; |
| 2656 |
T7l = T7j - T7k; |
| 2657 |
} |
| 2658 |
T2B = T2p + T2A; |
| 2659 |
T2Y = T2M + T2X; |
| 2660 |
Tfz = T2B - T2Y; |
| 2661 |
TfA = Tdd + Tde; |
| 2662 |
TfB = Tdj + Tdk; |
| 2663 |
TfC = TfA - TfB; |
| 2664 |
{
|
| 2665 |
E T7f, T7g, Tdi, Tdl; |
| 2666 |
T7f = T7d - T7e; |
| 2667 |
T7g = T2u - T2z; |
| 2668 |
T7h = T7f + T7g; |
| 2669 |
TaW = T7f - T7g; |
| 2670 |
Tdi = T2p - T2A; |
| 2671 |
Tdl = Tdj - Tdk; |
| 2672 |
Tdm = Tdi - Tdl; |
| 2673 |
TeM = Tdi + Tdl; |
| 2674 |
} |
| 2675 |
{
|
| 2676 |
E T7m, T7r, T7z, T7A; |
| 2677 |
T7m = T7i - T7l; |
| 2678 |
T7r = T7n + T7q; |
| 2679 |
T7s = KP707106781 * (T7m - T7r); |
| 2680 |
TaU = KP707106781 * (T7r + T7m); |
| 2681 |
T7z = T7q - T7n; |
| 2682 |
T7A = T7i + T7l; |
| 2683 |
T7B = KP707106781 * (T7z - T7A); |
| 2684 |
TaX = KP707106781 * (T7z + T7A); |
| 2685 |
} |
| 2686 |
{
|
| 2687 |
E Tdf, Tdg, T7u, T7x; |
| 2688 |
Tdf = Tdd - Tde; |
| 2689 |
Tdg = T2X - T2M; |
| 2690 |
Tdh = Tdf - Tdg; |
| 2691 |
TeL = Tdf + Tdg; |
| 2692 |
T7u = T2j - T2o; |
| 2693 |
T7x = T7v - T7w; |
| 2694 |
T7y = T7u - T7x; |
| 2695 |
TaT = T7u + T7x; |
| 2696 |
} |
| 2697 |
} |
| 2698 |
{
|
| 2699 |
E T4D, T9e, T4I, T9f, T4J, Te8, T4O, T8A, T4T, T8B, T4U, Te9, T56, TdS, T8G; |
| 2700 |
E T8H, T5h, TdT, T8J, T8M; |
| 2701 |
{
|
| 2702 |
E T4A, T4C, T4z, T4B; |
| 2703 |
T4A = ri[WS(rs, 63)];
|
| 2704 |
T4C = ii[WS(rs, 63)];
|
| 2705 |
T4z = W[124];
|
| 2706 |
T4B = W[125];
|
| 2707 |
T4D = FMA(T4z, T4A, T4B * T4C); |
| 2708 |
T9e = FNMS(T4B, T4A, T4z * T4C); |
| 2709 |
} |
| 2710 |
{
|
| 2711 |
E T4F, T4H, T4E, T4G; |
| 2712 |
T4F = ri[WS(rs, 31)];
|
| 2713 |
T4H = ii[WS(rs, 31)];
|
| 2714 |
T4E = W[60];
|
| 2715 |
T4G = W[61];
|
| 2716 |
T4I = FMA(T4E, T4F, T4G * T4H); |
| 2717 |
T9f = FNMS(T4G, T4F, T4E * T4H); |
| 2718 |
} |
| 2719 |
T4J = T4D + T4I; |
| 2720 |
Te8 = T9e + T9f; |
| 2721 |
{
|
| 2722 |
E T4L, T4N, T4K, T4M; |
| 2723 |
T4L = ri[WS(rs, 15)];
|
| 2724 |
T4N = ii[WS(rs, 15)];
|
| 2725 |
T4K = W[28];
|
| 2726 |
T4M = W[29];
|
| 2727 |
T4O = FMA(T4K, T4L, T4M * T4N); |
| 2728 |
T8A = FNMS(T4M, T4L, T4K * T4N); |
| 2729 |
} |
| 2730 |
{
|
| 2731 |
E T4Q, T4S, T4P, T4R; |
| 2732 |
T4Q = ri[WS(rs, 47)];
|
| 2733 |
T4S = ii[WS(rs, 47)];
|
| 2734 |
T4P = W[92];
|
| 2735 |
T4R = W[93];
|
| 2736 |
T4T = FMA(T4P, T4Q, T4R * T4S); |
| 2737 |
T8B = FNMS(T4R, T4Q, T4P * T4S); |
| 2738 |
} |
| 2739 |
T4U = T4O + T4T; |
| 2740 |
Te9 = T8A + T8B; |
| 2741 |
{
|
| 2742 |
E T50, T8E, T55, T8F; |
| 2743 |
{
|
| 2744 |
E T4X, T4Z, T4W, T4Y; |
| 2745 |
T4X = ri[WS(rs, 7)];
|
| 2746 |
T4Z = ii[WS(rs, 7)];
|
| 2747 |
T4W = W[12];
|
| 2748 |
T4Y = W[13];
|
| 2749 |
T50 = FMA(T4W, T4X, T4Y * T4Z); |
| 2750 |
T8E = FNMS(T4Y, T4X, T4W * T4Z); |
| 2751 |
} |
| 2752 |
{
|
| 2753 |
E T52, T54, T51, T53; |
| 2754 |
T52 = ri[WS(rs, 39)];
|
| 2755 |
T54 = ii[WS(rs, 39)];
|
| 2756 |
T51 = W[76];
|
| 2757 |
T53 = W[77];
|
| 2758 |
T55 = FMA(T51, T52, T53 * T54); |
| 2759 |
T8F = FNMS(T53, T52, T51 * T54); |
| 2760 |
} |
| 2761 |
T56 = T50 + T55; |
| 2762 |
TdS = T8E + T8F; |
| 2763 |
T8G = T8E - T8F; |
| 2764 |
T8H = T50 - T55; |
| 2765 |
} |
| 2766 |
{
|
| 2767 |
E T5b, T8K, T5g, T8L; |
| 2768 |
{
|
| 2769 |
E T58, T5a, T57, T59; |
| 2770 |
T58 = ri[WS(rs, 55)];
|
| 2771 |
T5a = ii[WS(rs, 55)];
|
| 2772 |
T57 = W[108];
|
| 2773 |
T59 = W[109];
|
| 2774 |
T5b = FMA(T57, T58, T59 * T5a); |
| 2775 |
T8K = FNMS(T59, T58, T57 * T5a); |
| 2776 |
} |
| 2777 |
{
|
| 2778 |
E T5d, T5f, T5c, T5e; |
| 2779 |
T5d = ri[WS(rs, 23)];
|
| 2780 |
T5f = ii[WS(rs, 23)];
|
| 2781 |
T5c = W[44];
|
| 2782 |
T5e = W[45];
|
| 2783 |
T5g = FMA(T5c, T5d, T5e * T5f); |
| 2784 |
T8L = FNMS(T5e, T5d, T5c * T5f); |
| 2785 |
} |
| 2786 |
T5h = T5b + T5g; |
| 2787 |
TdT = T8K + T8L; |
| 2788 |
T8J = T5b - T5g; |
| 2789 |
T8M = T8K - T8L; |
| 2790 |
} |
| 2791 |
{
|
| 2792 |
E T4V, T5i, Tea, Teb; |
| 2793 |
T4V = T4J + T4U; |
| 2794 |
T5i = T56 + T5h; |
| 2795 |
T5j = T4V + T5i; |
| 2796 |
TfR = T4V - T5i; |
| 2797 |
Tea = Te8 - Te9; |
| 2798 |
Teb = T5h - T56; |
| 2799 |
Tec = Tea - Teb; |
| 2800 |
Tf0 = Tea + Teb; |
| 2801 |
} |
| 2802 |
{
|
| 2803 |
E TfW, TfX, T8z, T8C; |
| 2804 |
TfW = Te8 + Te9; |
| 2805 |
TfX = TdS + TdT; |
| 2806 |
TfY = TfW - TfX; |
| 2807 |
Tgy = TfW + TfX; |
| 2808 |
T8z = T4D - T4I; |
| 2809 |
T8C = T8A - T8B; |
| 2810 |
T8D = T8z - T8C; |
| 2811 |
Tbl = T8z + T8C; |
| 2812 |
} |
| 2813 |
{
|
| 2814 |
E T8I, T8N, T9j, T9k; |
| 2815 |
T8I = T8G - T8H; |
| 2816 |
T8N = T8J + T8M; |
| 2817 |
T8O = KP707106781 * (T8I - T8N); |
| 2818 |
Tbx = KP707106781 * (T8I + T8N); |
| 2819 |
T9j = T8J - T8M; |
| 2820 |
T9k = T8H + T8G; |
| 2821 |
T9l = KP707106781 * (T9j - T9k); |
| 2822 |
Tbm = KP707106781 * (T9k + T9j); |
| 2823 |
} |
| 2824 |
{
|
| 2825 |
E TdR, TdU, T9g, T9h; |
| 2826 |
TdR = T4J - T4U; |
| 2827 |
TdU = TdS - TdT; |
| 2828 |
TdV = TdR - TdU; |
| 2829 |
TeX = TdR + TdU; |
| 2830 |
T9g = T9e - T9f; |
| 2831 |
T9h = T4O - T4T; |
| 2832 |
T9i = T9g + T9h; |
| 2833 |
Tbw = T9g - T9h; |
| 2834 |
} |
| 2835 |
} |
| 2836 |
{
|
| 2837 |
E T36, T7G, T3b, T7H, T3c, Tdq, T3h, T8m, T3m, T8n, T3n, Tdr, T3z, TdI, T7Q; |
| 2838 |
E T7T, T3K, TdJ, T7L, T7O; |
| 2839 |
{
|
| 2840 |
E T33, T35, T32, T34; |
| 2841 |
T33 = ri[WS(rs, 1)];
|
| 2842 |
T35 = ii[WS(rs, 1)];
|
| 2843 |
T32 = W[0];
|
| 2844 |
T34 = W[1];
|
| 2845 |
T36 = FMA(T32, T33, T34 * T35); |
| 2846 |
T7G = FNMS(T34, T33, T32 * T35); |
| 2847 |
} |
| 2848 |
{
|
| 2849 |
E T38, T3a, T37, T39; |
| 2850 |
T38 = ri[WS(rs, 33)];
|
| 2851 |
T3a = ii[WS(rs, 33)];
|
| 2852 |
T37 = W[64];
|
| 2853 |
T39 = W[65];
|
| 2854 |
T3b = FMA(T37, T38, T39 * T3a); |
| 2855 |
T7H = FNMS(T39, T38, T37 * T3a); |
| 2856 |
} |
| 2857 |
T3c = T36 + T3b; |
| 2858 |
Tdq = T7G + T7H; |
| 2859 |
{
|
| 2860 |
E T3e, T3g, T3d, T3f; |
| 2861 |
T3e = ri[WS(rs, 17)];
|
| 2862 |
T3g = ii[WS(rs, 17)];
|
| 2863 |
T3d = W[32];
|
| 2864 |
T3f = W[33];
|
| 2865 |
T3h = FMA(T3d, T3e, T3f * T3g); |
| 2866 |
T8m = FNMS(T3f, T3e, T3d * T3g); |
| 2867 |
} |
| 2868 |
{
|
| 2869 |
E T3j, T3l, T3i, T3k; |
| 2870 |
T3j = ri[WS(rs, 49)];
|
| 2871 |
T3l = ii[WS(rs, 49)];
|
| 2872 |
T3i = W[96];
|
| 2873 |
T3k = W[97];
|
| 2874 |
T3m = FMA(T3i, T3j, T3k * T3l); |
| 2875 |
T8n = FNMS(T3k, T3j, T3i * T3l); |
| 2876 |
} |
| 2877 |
T3n = T3h + T3m; |
| 2878 |
Tdr = T8m + T8n; |
| 2879 |
{
|
| 2880 |
E T3t, T7R, T3y, T7S; |
| 2881 |
{
|
| 2882 |
E T3q, T3s, T3p, T3r; |
| 2883 |
T3q = ri[WS(rs, 9)];
|
| 2884 |
T3s = ii[WS(rs, 9)];
|
| 2885 |
T3p = W[16];
|
| 2886 |
T3r = W[17];
|
| 2887 |
T3t = FMA(T3p, T3q, T3r * T3s); |
| 2888 |
T7R = FNMS(T3r, T3q, T3p * T3s); |
| 2889 |
} |
| 2890 |
{
|
| 2891 |
E T3v, T3x, T3u, T3w; |
| 2892 |
T3v = ri[WS(rs, 41)];
|
| 2893 |
T3x = ii[WS(rs, 41)];
|
| 2894 |
T3u = W[80];
|
| 2895 |
T3w = W[81];
|
| 2896 |
T3y = FMA(T3u, T3v, T3w * T3x); |
| 2897 |
T7S = FNMS(T3w, T3v, T3u * T3x); |
| 2898 |
} |
| 2899 |
T3z = T3t + T3y; |
| 2900 |
TdI = T7R + T7S; |
| 2901 |
T7Q = T3t - T3y; |
| 2902 |
T7T = T7R - T7S; |
| 2903 |
} |
| 2904 |
{
|
| 2905 |
E T3E, T7M, T3J, T7N; |
| 2906 |
{
|
| 2907 |
E T3B, T3D, T3A, T3C; |
| 2908 |
T3B = ri[WS(rs, 57)];
|
| 2909 |
T3D = ii[WS(rs, 57)];
|
| 2910 |
T3A = W[112];
|
| 2911 |
T3C = W[113];
|
| 2912 |
T3E = FMA(T3A, T3B, T3C * T3D); |
| 2913 |
T7M = FNMS(T3C, T3B, T3A * T3D); |
| 2914 |
} |
| 2915 |
{
|
| 2916 |
E T3G, T3I, T3F, T3H; |
| 2917 |
T3G = ri[WS(rs, 25)];
|
| 2918 |
T3I = ii[WS(rs, 25)];
|
| 2919 |
T3F = W[48];
|
| 2920 |
T3H = W[49];
|
| 2921 |
T3J = FMA(T3F, T3G, T3H * T3I); |
| 2922 |
T7N = FNMS(T3H, T3G, T3F * T3I); |
| 2923 |
} |
| 2924 |
T3K = T3E + T3J; |
| 2925 |
TdJ = T7M + T7N; |
| 2926 |
T7L = T3E - T3J; |
| 2927 |
T7O = T7M - T7N; |
| 2928 |
} |
| 2929 |
{
|
| 2930 |
E T3o, T3L, TdH, TdK; |
| 2931 |
T3o = T3c + T3n; |
| 2932 |
T3L = T3z + T3K; |
| 2933 |
T3M = T3o + T3L; |
| 2934 |
TfL = T3o - T3L; |
| 2935 |
TdH = T3c - T3n; |
| 2936 |
TdK = TdI - TdJ; |
| 2937 |
TdL = TdH - TdK; |
| 2938 |
TeQ = TdH + TdK; |
| 2939 |
} |
| 2940 |
{
|
| 2941 |
E TfG, TfH, T7I, T7J; |
| 2942 |
TfG = Tdq + Tdr; |
| 2943 |
TfH = TdI + TdJ; |
| 2944 |
TfI = TfG - TfH; |
| 2945 |
Tgt = TfG + TfH; |
| 2946 |
T7I = T7G - T7H; |
| 2947 |
T7J = T3h - T3m; |
| 2948 |
T7K = T7I + T7J; |
| 2949 |
Tb2 = T7I - T7J; |
| 2950 |
} |
| 2951 |
{
|
| 2952 |
E T7P, T7U, T8q, T8r; |
| 2953 |
T7P = T7L - T7O; |
| 2954 |
T7U = T7Q + T7T; |
| 2955 |
T7V = KP707106781 * (T7P - T7U); |
| 2956 |
Tbe = KP707106781 * (T7U + T7P); |
| 2957 |
T8q = T7T - T7Q; |
| 2958 |
T8r = T7L + T7O; |
| 2959 |
T8s = KP707106781 * (T8q - T8r); |
| 2960 |
Tb3 = KP707106781 * (T8q + T8r); |
| 2961 |
} |
| 2962 |
{
|
| 2963 |
E Tds, Tdt, T8l, T8o; |
| 2964 |
Tds = Tdq - Tdr; |
| 2965 |
Tdt = T3K - T3z; |
| 2966 |
Tdu = Tds - Tdt; |
| 2967 |
TeT = Tds + Tdt; |
| 2968 |
T8l = T36 - T3b; |
| 2969 |
T8o = T8m - T8n; |
| 2970 |
T8p = T8l - T8o; |
| 2971 |
Tbd = T8l + T8o; |
| 2972 |
} |
| 2973 |
} |
| 2974 |
{
|
| 2975 |
E T3X, TdB, T8a, T8d, T4v, Tdx, T80, T85, T48, TdC, T8b, T8g, T4k, Tdw, T7X; |
| 2976 |
E T84; |
| 2977 |
{
|
| 2978 |
E T3R, T88, T3W, T89; |
| 2979 |
{
|
| 2980 |
E T3O, T3Q, T3N, T3P; |
| 2981 |
T3O = ri[WS(rs, 5)];
|
| 2982 |
T3Q = ii[WS(rs, 5)];
|
| 2983 |
T3N = W[8];
|
| 2984 |
T3P = W[9];
|
| 2985 |
T3R = FMA(T3N, T3O, T3P * T3Q); |
| 2986 |
T88 = FNMS(T3P, T3O, T3N * T3Q); |
| 2987 |
} |
| 2988 |
{
|
| 2989 |
E T3T, T3V, T3S, T3U; |
| 2990 |
T3T = ri[WS(rs, 37)];
|
| 2991 |
T3V = ii[WS(rs, 37)];
|
| 2992 |
T3S = W[72];
|
| 2993 |
T3U = W[73];
|
| 2994 |
T3W = FMA(T3S, T3T, T3U * T3V); |
| 2995 |
T89 = FNMS(T3U, T3T, T3S * T3V); |
| 2996 |
} |
| 2997 |
T3X = T3R + T3W; |
| 2998 |
TdB = T88 + T89; |
| 2999 |
T8a = T88 - T89; |
| 3000 |
T8d = T3R - T3W; |
| 3001 |
} |
| 3002 |
{
|
| 3003 |
E T4p, T7Y, T4u, T7Z; |
| 3004 |
{
|
| 3005 |
E T4m, T4o, T4l, T4n; |
| 3006 |
T4m = ri[WS(rs, 13)];
|
| 3007 |
T4o = ii[WS(rs, 13)];
|
| 3008 |
T4l = W[24];
|
| 3009 |
T4n = W[25];
|
| 3010 |
T4p = FMA(T4l, T4m, T4n * T4o); |
| 3011 |
T7Y = FNMS(T4n, T4m, T4l * T4o); |
| 3012 |
} |
| 3013 |
{
|
| 3014 |
E T4r, T4t, T4q, T4s; |
| 3015 |
T4r = ri[WS(rs, 45)];
|
| 3016 |
T4t = ii[WS(rs, 45)];
|
| 3017 |
T4q = W[88];
|
| 3018 |
T4s = W[89];
|
| 3019 |
T4u = FMA(T4q, T4r, T4s * T4t); |
| 3020 |
T7Z = FNMS(T4s, T4r, T4q * T4t); |
| 3021 |
} |
| 3022 |
T4v = T4p + T4u; |
| 3023 |
Tdx = T7Y + T7Z; |
| 3024 |
T80 = T7Y - T7Z; |
| 3025 |
T85 = T4p - T4u; |
| 3026 |
} |
| 3027 |
{
|
| 3028 |
E T42, T8e, T47, T8f; |
| 3029 |
{
|
| 3030 |
E T3Z, T41, T3Y, T40; |
| 3031 |
T3Z = ri[WS(rs, 21)];
|
| 3032 |
T41 = ii[WS(rs, 21)];
|
| 3033 |
T3Y = W[40];
|
| 3034 |
T40 = W[41];
|
| 3035 |
T42 = FMA(T3Y, T3Z, T40 * T41); |
| 3036 |
T8e = FNMS(T40, T3Z, T3Y * T41); |
| 3037 |
} |
| 3038 |
{
|
| 3039 |
E T44, T46, T43, T45; |
| 3040 |
T44 = ri[WS(rs, 53)];
|
| 3041 |
T46 = ii[WS(rs, 53)];
|
| 3042 |
T43 = W[104];
|
| 3043 |
T45 = W[105];
|
| 3044 |
T47 = FMA(T43, T44, T45 * T46); |
| 3045 |
T8f = FNMS(T45, T44, T43 * T46); |
| 3046 |
} |
| 3047 |
T48 = T42 + T47; |
| 3048 |
TdC = T8e + T8f; |
| 3049 |
T8b = T42 - T47; |
| 3050 |
T8g = T8e - T8f; |
| 3051 |
} |
| 3052 |
{
|
| 3053 |
E T4e, T82, T4j, T83; |
| 3054 |
{
|
| 3055 |
E T4b, T4d, T4a, T4c; |
| 3056 |
T4b = ri[WS(rs, 61)];
|
| 3057 |
T4d = ii[WS(rs, 61)];
|
| 3058 |
T4a = W[120];
|
| 3059 |
T4c = W[121];
|
| 3060 |
T4e = FMA(T4a, T4b, T4c * T4d); |
| 3061 |
T82 = FNMS(T4c, T4b, T4a * T4d); |
| 3062 |
} |
| 3063 |
{
|
| 3064 |
E T4g, T4i, T4f, T4h; |
| 3065 |
T4g = ri[WS(rs, 29)];
|
| 3066 |
T4i = ii[WS(rs, 29)];
|
| 3067 |
T4f = W[56];
|
| 3068 |
T4h = W[57];
|
| 3069 |
T4j = FMA(T4f, T4g, T4h * T4i); |
| 3070 |
T83 = FNMS(T4h, T4g, T4f * T4i); |
| 3071 |
} |
| 3072 |
T4k = T4e + T4j; |
| 3073 |
Tdw = T82 + T83; |
| 3074 |
T7X = T4e - T4j; |
| 3075 |
T84 = T82 - T83; |
| 3076 |
} |
| 3077 |
{
|
| 3078 |
E T49, T4w, TdA, TdD; |
| 3079 |
T49 = T3X + T48; |
| 3080 |
T4w = T4k + T4v; |
| 3081 |
T4x = T49 + T4w; |
| 3082 |
TfJ = T4w - T49; |
| 3083 |
TdA = T3X - T48; |
| 3084 |
TdD = TdB - TdC; |
| 3085 |
TdE = TdA + TdD; |
| 3086 |
TdM = TdD - TdA; |
| 3087 |
} |
| 3088 |
{
|
| 3089 |
E TfM, TfN, T81, T86; |
| 3090 |
TfM = TdB + TdC; |
| 3091 |
TfN = Tdw + Tdx; |
| 3092 |
TfO = TfM - TfN; |
| 3093 |
Tgu = TfM + TfN; |
| 3094 |
T81 = T7X - T80; |
| 3095 |
T86 = T84 + T85; |
| 3096 |
T87 = FNMS(KP923879532, T86, KP382683432 * T81); |
| 3097 |
T8v = FMA(KP382683432, T86, KP923879532 * T81); |
| 3098 |
} |
| 3099 |
{
|
| 3100 |
E T8c, T8h, Tb8, Tb9; |
| 3101 |
T8c = T8a + T8b; |
| 3102 |
T8h = T8d - T8g; |
| 3103 |
T8i = FMA(KP923879532, T8c, KP382683432 * T8h); |
| 3104 |
T8u = FNMS(KP923879532, T8h, KP382683432 * T8c); |
| 3105 |
Tb8 = T8a - T8b; |
| 3106 |
Tb9 = T8d + T8g; |
| 3107 |
Tba = FMA(KP382683432, Tb8, KP923879532 * Tb9); |
| 3108 |
Tbg = FNMS(KP382683432, Tb9, KP923879532 * Tb8); |
| 3109 |
} |
| 3110 |
{
|
| 3111 |
E Tdv, Tdy, Tb5, Tb6; |
| 3112 |
Tdv = T4k - T4v; |
| 3113 |
Tdy = Tdw - Tdx; |
| 3114 |
Tdz = Tdv - Tdy; |
| 3115 |
TdN = Tdv + Tdy; |
| 3116 |
Tb5 = T7X + T80; |
| 3117 |
Tb6 = T84 - T85; |
| 3118 |
Tb7 = FNMS(KP382683432, Tb6, KP923879532 * Tb5); |
| 3119 |
Tbh = FMA(KP923879532, Tb6, KP382683432 * Tb5); |
| 3120 |
} |
| 3121 |
} |
| 3122 |
{
|
| 3123 |
E T5u, TdW, T8S, T8V, T62, Te3, T94, T99, T5F, TdX, T8T, T8Y, T5R, Te2, T93; |
| 3124 |
E T96; |
| 3125 |
{
|
| 3126 |
E T5o, T8Q, T5t, T8R; |
| 3127 |
{
|
| 3128 |
E T5l, T5n, T5k, T5m; |
| 3129 |
T5l = ri[WS(rs, 3)];
|
| 3130 |
T5n = ii[WS(rs, 3)];
|
| 3131 |
T5k = W[4];
|
| 3132 |
T5m = W[5];
|
| 3133 |
T5o = FMA(T5k, T5l, T5m * T5n); |
| 3134 |
T8Q = FNMS(T5m, T5l, T5k * T5n); |
| 3135 |
} |
| 3136 |
{
|
| 3137 |
E T5q, T5s, T5p, T5r; |
| 3138 |
T5q = ri[WS(rs, 35)];
|
| 3139 |
T5s = ii[WS(rs, 35)];
|
| 3140 |
T5p = W[68];
|
| 3141 |
T5r = W[69];
|
| 3142 |
T5t = FMA(T5p, T5q, T5r * T5s); |
| 3143 |
T8R = FNMS(T5r, T5q, T5p * T5s); |
| 3144 |
} |
| 3145 |
T5u = T5o + T5t; |
| 3146 |
TdW = T8Q + T8R; |
| 3147 |
T8S = T8Q - T8R; |
| 3148 |
T8V = T5o - T5t; |
| 3149 |
} |
| 3150 |
{
|
| 3151 |
E T5W, T97, T61, T98; |
| 3152 |
{
|
| 3153 |
E T5T, T5V, T5S, T5U; |
| 3154 |
T5T = ri[WS(rs, 11)];
|
| 3155 |
T5V = ii[WS(rs, 11)];
|
| 3156 |
T5S = W[20];
|
| 3157 |
T5U = W[21];
|
| 3158 |
T5W = FMA(T5S, T5T, T5U * T5V); |
| 3159 |
T97 = FNMS(T5U, T5T, T5S * T5V); |
| 3160 |
} |
| 3161 |
{
|
| 3162 |
E T5Y, T60, T5X, T5Z; |
| 3163 |
T5Y = ri[WS(rs, 43)];
|
| 3164 |
T60 = ii[WS(rs, 43)];
|
| 3165 |
T5X = W[84];
|
| 3166 |
T5Z = W[85];
|
| 3167 |
T61 = FMA(T5X, T5Y, T5Z * T60); |
| 3168 |
T98 = FNMS(T5Z, T5Y, T5X * T60); |
| 3169 |
} |
| 3170 |
T62 = T5W + T61; |
| 3171 |
Te3 = T97 + T98; |
| 3172 |
T94 = T5W - T61; |
| 3173 |
T99 = T97 - T98; |
| 3174 |
} |
| 3175 |
{
|
| 3176 |
E T5z, T8W, T5E, T8X; |
| 3177 |
{
|
| 3178 |
E T5w, T5y, T5v, T5x; |
| 3179 |
T5w = ri[WS(rs, 19)];
|
| 3180 |
T5y = ii[WS(rs, 19)];
|
| 3181 |
T5v = W[36];
|
| 3182 |
T5x = W[37];
|
| 3183 |
T5z = FMA(T5v, T5w, T5x * T5y); |
| 3184 |
T8W = FNMS(T5x, T5w, T5v * T5y); |
| 3185 |
} |
| 3186 |
{
|
| 3187 |
E T5B, T5D, T5A, T5C; |
| 3188 |
T5B = ri[WS(rs, 51)];
|
| 3189 |
T5D = ii[WS(rs, 51)];
|
| 3190 |
T5A = W[100];
|
| 3191 |
T5C = W[101];
|
| 3192 |
T5E = FMA(T5A, T5B, T5C * T5D); |
| 3193 |
T8X = FNMS(T5C, T5B, T5A * T5D); |
| 3194 |
} |
| 3195 |
T5F = T5z + T5E; |
| 3196 |
TdX = T8W + T8X; |
| 3197 |
T8T = T5z - T5E; |
| 3198 |
T8Y = T8W - T8X; |
| 3199 |
} |
| 3200 |
{
|
| 3201 |
E T5L, T91, T5Q, T92; |
| 3202 |
{
|
| 3203 |
E T5I, T5K, T5H, T5J; |
| 3204 |
T5I = ri[WS(rs, 59)];
|
| 3205 |
T5K = ii[WS(rs, 59)];
|
| 3206 |
T5H = W[116];
|
| 3207 |
T5J = W[117];
|
| 3208 |
T5L = FMA(T5H, T5I, T5J * T5K); |
| 3209 |
T91 = FNMS(T5J, T5I, T5H * T5K); |
| 3210 |
} |
| 3211 |
{
|
| 3212 |
E T5N, T5P, T5M, T5O; |
| 3213 |
T5N = ri[WS(rs, 27)];
|
| 3214 |
T5P = ii[WS(rs, 27)];
|
| 3215 |
T5M = W[52];
|
| 3216 |
T5O = W[53];
|
| 3217 |
T5Q = FMA(T5M, T5N, T5O * T5P); |
| 3218 |
T92 = FNMS(T5O, T5N, T5M * T5P); |
| 3219 |
} |
| 3220 |
T5R = T5L + T5Q; |
| 3221 |
Te2 = T91 + T92; |
| 3222 |
T93 = T91 - T92; |
| 3223 |
T96 = T5L - T5Q; |
| 3224 |
} |
| 3225 |
{
|
| 3226 |
E T5G, T63, Te1, Te4; |
| 3227 |
T5G = T5u + T5F; |
| 3228 |
T63 = T5R + T62; |
| 3229 |
T64 = T5G + T63; |
| 3230 |
TfZ = T63 - T5G; |
| 3231 |
Te1 = T5R - T62; |
| 3232 |
Te4 = Te2 - Te3; |
| 3233 |
Te5 = Te1 + Te4; |
| 3234 |
Ted = Te1 - Te4; |
| 3235 |
} |
| 3236 |
{
|
| 3237 |
E TfS, TfT, T8U, T8Z; |
| 3238 |
TfS = TdW + TdX; |
| 3239 |
TfT = Te2 + Te3; |
| 3240 |
TfU = TfS - TfT; |
| 3241 |
Tgz = TfS + TfT; |
| 3242 |
T8U = T8S + T8T; |
| 3243 |
T8Z = T8V - T8Y; |
| 3244 |
T90 = FNMS(KP923879532, T8Z, KP382683432 * T8U); |
| 3245 |
T9o = FMA(KP923879532, T8U, KP382683432 * T8Z); |
| 3246 |
} |
| 3247 |
{
|
| 3248 |
E T95, T9a, Tbr, Tbs; |
| 3249 |
T95 = T93 + T94; |
| 3250 |
T9a = T96 - T99; |
| 3251 |
T9b = FMA(KP382683432, T95, KP923879532 * T9a); |
| 3252 |
T9n = FNMS(KP923879532, T95, KP382683432 * T9a); |
| 3253 |
Tbr = T93 - T94; |
| 3254 |
Tbs = T96 + T99; |
| 3255 |
Tbt = FMA(KP923879532, Tbr, KP382683432 * Tbs); |
| 3256 |
Tbz = FNMS(KP382683432, Tbr, KP923879532 * Tbs); |
| 3257 |
} |
| 3258 |
{
|
| 3259 |
E TdY, TdZ, Tbo, Tbp; |
| 3260 |
TdY = TdW - TdX; |
| 3261 |
TdZ = T5u - T5F; |
| 3262 |
Te0 = TdY - TdZ; |
| 3263 |
Tee = TdZ + TdY; |
| 3264 |
Tbo = T8S - T8T; |
| 3265 |
Tbp = T8V + T8Y; |
| 3266 |
Tbq = FNMS(KP382683432, Tbp, KP923879532 * Tbo); |
| 3267 |
TbA = FMA(KP382683432, Tbo, KP923879532 * Tbp); |
| 3268 |
} |
| 3269 |
} |
| 3270 |
{
|
| 3271 |
E T1t, Tgn, TgK, TgL, TgV, Th1, T30, Th0, T66, TgX, Tgw, TgE, TgB, TgF, Tgq; |
| 3272 |
E TgM; |
| 3273 |
{
|
| 3274 |
E TH, T1s, TgI, TgJ; |
| 3275 |
TH = Tj + TG; |
| 3276 |
T1s = T14 + T1r; |
| 3277 |
T1t = TH + T1s; |
| 3278 |
Tgn = TH - T1s; |
| 3279 |
TgI = Tgt + Tgu; |
| 3280 |
TgJ = Tgy + Tgz; |
| 3281 |
TgK = TgI - TgJ; |
| 3282 |
TgL = TgI + TgJ; |
| 3283 |
} |
| 3284 |
{
|
| 3285 |
E TgN, TgU, T2e, T2Z; |
| 3286 |
TgN = Tfq + Tfr; |
| 3287 |
TgU = TgO + TgT; |
| 3288 |
TgV = TgN + TgU; |
| 3289 |
Th1 = TgU - TgN; |
| 3290 |
T2e = T1Q + T2d; |
| 3291 |
T2Z = T2B + T2Y; |
| 3292 |
T30 = T2e + T2Z; |
| 3293 |
Th0 = T2Z - T2e; |
| 3294 |
} |
| 3295 |
{
|
| 3296 |
E T4y, T65, Tgs, Tgv; |
| 3297 |
T4y = T3M + T4x; |
| 3298 |
T65 = T5j + T64; |
| 3299 |
T66 = T4y + T65; |
| 3300 |
TgX = T65 - T4y; |
| 3301 |
Tgs = T3M - T4x; |
| 3302 |
Tgv = Tgt - Tgu; |
| 3303 |
Tgw = Tgs + Tgv; |
| 3304 |
TgE = Tgv - Tgs; |
| 3305 |
} |
| 3306 |
{
|
| 3307 |
E Tgx, TgA, Tgo, Tgp; |
| 3308 |
Tgx = T5j - T64; |
| 3309 |
TgA = Tgy - Tgz; |
| 3310 |
TgB = Tgx - TgA; |
| 3311 |
TgF = Tgx + TgA; |
| 3312 |
Tgo = Tfu + Tfv; |
| 3313 |
Tgp = TfA + TfB; |
| 3314 |
Tgq = Tgo - Tgp; |
| 3315 |
TgM = Tgo + Tgp; |
| 3316 |
} |
| 3317 |
{
|
| 3318 |
E T31, TgW, TgH, TgY; |
| 3319 |
T31 = T1t + T30; |
| 3320 |
ri[WS(rs, 32)] = T31 - T66;
|
| 3321 |
ri[0] = T31 + T66;
|
| 3322 |
TgW = TgM + TgV; |
| 3323 |
ii[0] = TgL + TgW;
|
| 3324 |
ii[WS(rs, 32)] = TgW - TgL;
|
| 3325 |
TgH = T1t - T30; |
| 3326 |
ri[WS(rs, 48)] = TgH - TgK;
|
| 3327 |
ri[WS(rs, 16)] = TgH + TgK;
|
| 3328 |
TgY = TgV - TgM; |
| 3329 |
ii[WS(rs, 16)] = TgX + TgY;
|
| 3330 |
ii[WS(rs, 48)] = TgY - TgX;
|
| 3331 |
} |
| 3332 |
{
|
| 3333 |
E Tgr, TgC, TgZ, Th2; |
| 3334 |
Tgr = Tgn + Tgq; |
| 3335 |
TgC = KP707106781 * (Tgw + TgB); |
| 3336 |
ri[WS(rs, 40)] = Tgr - TgC;
|
| 3337 |
ri[WS(rs, 8)] = Tgr + TgC;
|
| 3338 |
TgZ = KP707106781 * (TgE + TgF); |
| 3339 |
Th2 = Th0 + Th1; |
| 3340 |
ii[WS(rs, 8)] = TgZ + Th2;
|
| 3341 |
ii[WS(rs, 40)] = Th2 - TgZ;
|
| 3342 |
} |
| 3343 |
{
|
| 3344 |
E TgD, TgG, Th3, Th4; |
| 3345 |
TgD = Tgn - Tgq; |
| 3346 |
TgG = KP707106781 * (TgE - TgF); |
| 3347 |
ri[WS(rs, 56)] = TgD - TgG;
|
| 3348 |
ri[WS(rs, 24)] = TgD + TgG;
|
| 3349 |
Th3 = KP707106781 * (TgB - Tgw); |
| 3350 |
Th4 = Th1 - Th0; |
| 3351 |
ii[WS(rs, 24)] = Th3 + Th4;
|
| 3352 |
ii[WS(rs, 56)] = Th4 - Th3;
|
| 3353 |
} |
| 3354 |
} |
| 3355 |
{
|
| 3356 |
E Tft, Tg7, Tgh, Tgl, Th9, Thf, TfE, Th6, TfQ, Tg4, Tga, The, Tge, Tgk, Tg1; |
| 3357 |
E Tg5; |
| 3358 |
{
|
| 3359 |
E Tfp, Tfs, Tgf, Tgg; |
| 3360 |
Tfp = Tj - TG; |
| 3361 |
Tfs = Tfq - Tfr; |
| 3362 |
Tft = Tfp - Tfs; |
| 3363 |
Tg7 = Tfp + Tfs; |
| 3364 |
Tgf = TfR + TfU; |
| 3365 |
Tgg = TfY + TfZ; |
| 3366 |
Tgh = FNMS(KP382683432, Tgg, KP923879532 * Tgf); |
| 3367 |
Tgl = FMA(KP923879532, Tgg, KP382683432 * Tgf); |
| 3368 |
} |
| 3369 |
{
|
| 3370 |
E Th7, Th8, Tfy, TfD; |
| 3371 |
Th7 = T1r - T14; |
| 3372 |
Th8 = TgT - TgO; |
| 3373 |
Th9 = Th7 + Th8; |
| 3374 |
Thf = Th8 - Th7; |
| 3375 |
Tfy = Tfw - Tfx; |
| 3376 |
TfD = Tfz + TfC; |
| 3377 |
TfE = KP707106781 * (Tfy - TfD); |
| 3378 |
Th6 = KP707106781 * (Tfy + TfD); |
| 3379 |
} |
| 3380 |
{
|
| 3381 |
E TfK, TfP, Tg8, Tg9; |
| 3382 |
TfK = TfI - TfJ; |
| 3383 |
TfP = TfL - TfO; |
| 3384 |
TfQ = FMA(KP923879532, TfK, KP382683432 * TfP); |
| 3385 |
Tg4 = FNMS(KP923879532, TfP, KP382683432 * TfK); |
| 3386 |
Tg8 = Tfx + Tfw; |
| 3387 |
Tg9 = Tfz - TfC; |
| 3388 |
Tga = KP707106781 * (Tg8 + Tg9); |
| 3389 |
The = KP707106781 * (Tg9 - Tg8); |
| 3390 |
} |
| 3391 |
{
|
| 3392 |
E Tgc, Tgd, TfV, Tg0; |
| 3393 |
Tgc = TfI + TfJ; |
| 3394 |
Tgd = TfL + TfO; |
| 3395 |
Tge = FMA(KP382683432, Tgc, KP923879532 * Tgd); |
| 3396 |
Tgk = FNMS(KP382683432, Tgd, KP923879532 * Tgc); |
| 3397 |
TfV = TfR - TfU; |
| 3398 |
Tg0 = TfY - TfZ; |
| 3399 |
Tg1 = FNMS(KP923879532, Tg0, KP382683432 * TfV); |
| 3400 |
Tg5 = FMA(KP382683432, Tg0, KP923879532 * TfV); |
| 3401 |
} |
| 3402 |
{
|
| 3403 |
E TfF, Tg2, Thd, Thg; |
| 3404 |
TfF = Tft + TfE; |
| 3405 |
Tg2 = TfQ + Tg1; |
| 3406 |
ri[WS(rs, 44)] = TfF - Tg2;
|
| 3407 |
ri[WS(rs, 12)] = TfF + Tg2;
|
| 3408 |
Thd = Tg4 + Tg5; |
| 3409 |
Thg = The + Thf; |
| 3410 |
ii[WS(rs, 12)] = Thd + Thg;
|
| 3411 |
ii[WS(rs, 44)] = Thg - Thd;
|
| 3412 |
} |
| 3413 |
{
|
| 3414 |
E Tg3, Tg6, Thh, Thi; |
| 3415 |
Tg3 = Tft - TfE; |
| 3416 |
Tg6 = Tg4 - Tg5; |
| 3417 |
ri[WS(rs, 60)] = Tg3 - Tg6;
|
| 3418 |
ri[WS(rs, 28)] = Tg3 + Tg6;
|
| 3419 |
Thh = Tg1 - TfQ; |
| 3420 |
Thi = Thf - The; |
| 3421 |
ii[WS(rs, 28)] = Thh + Thi;
|
| 3422 |
ii[WS(rs, 60)] = Thi - Thh;
|
| 3423 |
} |
| 3424 |
{
|
| 3425 |
E Tgb, Tgi, Th5, Tha; |
| 3426 |
Tgb = Tg7 + Tga; |
| 3427 |
Tgi = Tge + Tgh; |
| 3428 |
ri[WS(rs, 36)] = Tgb - Tgi;
|
| 3429 |
ri[WS(rs, 4)] = Tgb + Tgi;
|
| 3430 |
Th5 = Tgk + Tgl; |
| 3431 |
Tha = Th6 + Th9; |
| 3432 |
ii[WS(rs, 4)] = Th5 + Tha;
|
| 3433 |
ii[WS(rs, 36)] = Tha - Th5;
|
| 3434 |
} |
| 3435 |
{
|
| 3436 |
E Tgj, Tgm, Thb, Thc; |
| 3437 |
Tgj = Tg7 - Tga; |
| 3438 |
Tgm = Tgk - Tgl; |
| 3439 |
ri[WS(rs, 52)] = Tgj - Tgm;
|
| 3440 |
ri[WS(rs, 20)] = Tgj + Tgm;
|
| 3441 |
Thb = Tgh - Tge; |
| 3442 |
Thc = Th9 - Th6; |
| 3443 |
ii[WS(rs, 20)] = Thb + Thc;
|
| 3444 |
ii[WS(rs, 52)] = Thc - Thb;
|
| 3445 |
} |
| 3446 |
} |
| 3447 |
{
|
| 3448 |
E Td1, Ten, Tdo, ThA, ThD, ThJ, Teq, ThI, Teh, TeB, Tel, Tex, TdQ, TeA, Tek; |
| 3449 |
E Teu; |
| 3450 |
{
|
| 3451 |
E TcP, Td0, Teo, Tep; |
| 3452 |
TcP = TcL - TcO; |
| 3453 |
Td0 = KP707106781 * (TcU - TcZ); |
| 3454 |
Td1 = TcP - Td0; |
| 3455 |
Ten = TcP + Td0; |
| 3456 |
{
|
| 3457 |
E Tdc, Tdn, ThB, ThC; |
| 3458 |
Tdc = FNMS(KP923879532, Tdb, KP382683432 * Td6); |
| 3459 |
Tdn = FMA(KP382683432, Tdh, KP923879532 * Tdm); |
| 3460 |
Tdo = Tdc - Tdn; |
| 3461 |
ThA = Tdc + Tdn; |
| 3462 |
ThB = KP707106781 * (TeF - TeE); |
| 3463 |
ThC = Thn - Thm; |
| 3464 |
ThD = ThB + ThC; |
| 3465 |
ThJ = ThC - ThB; |
| 3466 |
} |
| 3467 |
Teo = FMA(KP923879532, Td6, KP382683432 * Tdb); |
| 3468 |
Tep = FNMS(KP923879532, Tdh, KP382683432 * Tdm); |
| 3469 |
Teq = Teo + Tep; |
| 3470 |
ThI = Tep - Teo; |
| 3471 |
{
|
| 3472 |
E Te7, Tev, Teg, Tew, Te6, Tef; |
| 3473 |
Te6 = KP707106781 * (Te0 - Te5); |
| 3474 |
Te7 = TdV - Te6; |
| 3475 |
Tev = TdV + Te6; |
| 3476 |
Tef = KP707106781 * (Ted - Tee); |
| 3477 |
Teg = Tec - Tef; |
| 3478 |
Tew = Tec + Tef; |
| 3479 |
Teh = FNMS(KP980785280, Teg, KP195090322 * Te7); |
| 3480 |
TeB = FMA(KP831469612, Tew, KP555570233 * Tev); |
| 3481 |
Tel = FMA(KP195090322, Teg, KP980785280 * Te7); |
| 3482 |
Tex = FNMS(KP555570233, Tew, KP831469612 * Tev); |
| 3483 |
} |
| 3484 |
{
|
| 3485 |
E TdG, Tes, TdP, Tet, TdF, TdO; |
| 3486 |
TdF = KP707106781 * (Tdz - TdE); |
| 3487 |
TdG = Tdu - TdF; |
| 3488 |
Tes = Tdu + TdF; |
| 3489 |
TdO = KP707106781 * (TdM - TdN); |
| 3490 |
TdP = TdL - TdO; |
| 3491 |
Tet = TdL + TdO; |
| 3492 |
TdQ = FMA(KP980785280, TdG, KP195090322 * TdP); |
| 3493 |
TeA = FNMS(KP555570233, Tet, KP831469612 * Tes); |
| 3494 |
Tek = FNMS(KP980785280, TdP, KP195090322 * TdG); |
| 3495 |
Teu = FMA(KP555570233, Tes, KP831469612 * Tet); |
| 3496 |
} |
| 3497 |
} |
| 3498 |
{
|
| 3499 |
E Tdp, Tei, ThH, ThK; |
| 3500 |
Tdp = Td1 + Tdo; |
| 3501 |
Tei = TdQ + Teh; |
| 3502 |
ri[WS(rs, 46)] = Tdp - Tei;
|
| 3503 |
ri[WS(rs, 14)] = Tdp + Tei;
|
| 3504 |
ThH = Tek + Tel; |
| 3505 |
ThK = ThI + ThJ; |
| 3506 |
ii[WS(rs, 14)] = ThH + ThK;
|
| 3507 |
ii[WS(rs, 46)] = ThK - ThH;
|
| 3508 |
} |
| 3509 |
{
|
| 3510 |
E Tej, Tem, ThL, ThM; |
| 3511 |
Tej = Td1 - Tdo; |
| 3512 |
Tem = Tek - Tel; |
| 3513 |
ri[WS(rs, 62)] = Tej - Tem;
|
| 3514 |
ri[WS(rs, 30)] = Tej + Tem;
|
| 3515 |
ThL = Teh - TdQ; |
| 3516 |
ThM = ThJ - ThI; |
| 3517 |
ii[WS(rs, 30)] = ThL + ThM;
|
| 3518 |
ii[WS(rs, 62)] = ThM - ThL;
|
| 3519 |
} |
| 3520 |
{
|
| 3521 |
E Ter, Tey, Thz, ThE; |
| 3522 |
Ter = Ten + Teq; |
| 3523 |
Tey = Teu + Tex; |
| 3524 |
ri[WS(rs, 38)] = Ter - Tey;
|
| 3525 |
ri[WS(rs, 6)] = Ter + Tey;
|
| 3526 |
Thz = TeA + TeB; |
| 3527 |
ThE = ThA + ThD; |
| 3528 |
ii[WS(rs, 6)] = Thz + ThE;
|
| 3529 |
ii[WS(rs, 38)] = ThE - Thz;
|
| 3530 |
} |
| 3531 |
{
|
| 3532 |
E Tez, TeC, ThF, ThG; |
| 3533 |
Tez = Ten - Teq; |
| 3534 |
TeC = TeA - TeB; |
| 3535 |
ri[WS(rs, 54)] = Tez - TeC;
|
| 3536 |
ri[WS(rs, 22)] = Tez + TeC;
|
| 3537 |
ThF = Tex - Teu; |
| 3538 |
ThG = ThD - ThA; |
| 3539 |
ii[WS(rs, 22)] = ThF + ThG;
|
| 3540 |
ii[WS(rs, 54)] = ThG - ThF;
|
| 3541 |
} |
| 3542 |
} |
| 3543 |
{
|
| 3544 |
E TeH, Tf9, TeO, Thk, Thp, Thv, Tfc, Thu, Tf3, Tfn, Tf7, Tfj, TeW, Tfm, Tf6; |
| 3545 |
E Tfg; |
| 3546 |
{
|
| 3547 |
E TeD, TeG, Tfa, Tfb; |
| 3548 |
TeD = TcL + TcO; |
| 3549 |
TeG = KP707106781 * (TeE + TeF); |
| 3550 |
TeH = TeD - TeG; |
| 3551 |
Tf9 = TeD + TeG; |
| 3552 |
{
|
| 3553 |
E TeK, TeN, Thl, Tho; |
| 3554 |
TeK = FNMS(KP382683432, TeJ, KP923879532 * TeI); |
| 3555 |
TeN = FMA(KP923879532, TeL, KP382683432 * TeM); |
| 3556 |
TeO = TeK - TeN; |
| 3557 |
Thk = TeK + TeN; |
| 3558 |
Thl = KP707106781 * (TcU + TcZ); |
| 3559 |
Tho = Thm + Thn; |
| 3560 |
Thp = Thl + Tho; |
| 3561 |
Thv = Tho - Thl; |
| 3562 |
} |
| 3563 |
Tfa = FMA(KP382683432, TeI, KP923879532 * TeJ); |
| 3564 |
Tfb = FNMS(KP382683432, TeL, KP923879532 * TeM); |
| 3565 |
Tfc = Tfa + Tfb; |
| 3566 |
Thu = Tfb - Tfa; |
| 3567 |
{
|
| 3568 |
E TeZ, Tfh, Tf2, Tfi, TeY, Tf1; |
| 3569 |
TeY = KP707106781 * (Tee + Ted); |
| 3570 |
TeZ = TeX - TeY; |
| 3571 |
Tfh = TeX + TeY; |
| 3572 |
Tf1 = KP707106781 * (Te0 + Te5); |
| 3573 |
Tf2 = Tf0 - Tf1; |
| 3574 |
Tfi = Tf0 + Tf1; |
| 3575 |
Tf3 = FNMS(KP831469612, Tf2, KP555570233 * TeZ); |
| 3576 |
Tfn = FMA(KP195090322, Tfh, KP980785280 * Tfi); |
| 3577 |
Tf7 = FMA(KP831469612, TeZ, KP555570233 * Tf2); |
| 3578 |
Tfj = FNMS(KP195090322, Tfi, KP980785280 * Tfh); |
| 3579 |
} |
| 3580 |
{
|
| 3581 |
E TeS, Tfe, TeV, Tff, TeR, TeU; |
| 3582 |
TeR = KP707106781 * (TdE + Tdz); |
| 3583 |
TeS = TeQ - TeR; |
| 3584 |
Tfe = TeQ + TeR; |
| 3585 |
TeU = KP707106781 * (TdM + TdN); |
| 3586 |
TeV = TeT - TeU; |
| 3587 |
Tff = TeT + TeU; |
| 3588 |
TeW = FMA(KP555570233, TeS, KP831469612 * TeV); |
| 3589 |
Tfm = FNMS(KP195090322, Tfe, KP980785280 * Tff); |
| 3590 |
Tf6 = FNMS(KP831469612, TeS, KP555570233 * TeV); |
| 3591 |
Tfg = FMA(KP980785280, Tfe, KP195090322 * Tff); |
| 3592 |
} |
| 3593 |
} |
| 3594 |
{
|
| 3595 |
E TeP, Tf4, Tht, Thw; |
| 3596 |
TeP = TeH + TeO; |
| 3597 |
Tf4 = TeW + Tf3; |
| 3598 |
ri[WS(rs, 42)] = TeP - Tf4;
|
| 3599 |
ri[WS(rs, 10)] = TeP + Tf4;
|
| 3600 |
Tht = Tf6 + Tf7; |
| 3601 |
Thw = Thu + Thv; |
| 3602 |
ii[WS(rs, 10)] = Tht + Thw;
|
| 3603 |
ii[WS(rs, 42)] = Thw - Tht;
|
| 3604 |
} |
| 3605 |
{
|
| 3606 |
E Tf5, Tf8, Thx, Thy; |
| 3607 |
Tf5 = TeH - TeO; |
| 3608 |
Tf8 = Tf6 - Tf7; |
| 3609 |
ri[WS(rs, 58)] = Tf5 - Tf8;
|
| 3610 |
ri[WS(rs, 26)] = Tf5 + Tf8;
|
| 3611 |
Thx = Tf3 - TeW; |
| 3612 |
Thy = Thv - Thu; |
| 3613 |
ii[WS(rs, 26)] = Thx + Thy;
|
| 3614 |
ii[WS(rs, 58)] = Thy - Thx;
|
| 3615 |
} |
| 3616 |
{
|
| 3617 |
E Tfd, Tfk, Thj, Thq; |
| 3618 |
Tfd = Tf9 + Tfc; |
| 3619 |
Tfk = Tfg + Tfj; |
| 3620 |
ri[WS(rs, 34)] = Tfd - Tfk;
|
| 3621 |
ri[WS(rs, 2)] = Tfd + Tfk;
|
| 3622 |
Thj = Tfm + Tfn; |
| 3623 |
Thq = Thk + Thp; |
| 3624 |
ii[WS(rs, 2)] = Thj + Thq;
|
| 3625 |
ii[WS(rs, 34)] = Thq - Thj;
|
| 3626 |
} |
| 3627 |
{
|
| 3628 |
E Tfl, Tfo, Thr, Ths; |
| 3629 |
Tfl = Tf9 - Tfc; |
| 3630 |
Tfo = Tfm - Tfn; |
| 3631 |
ri[WS(rs, 50)] = Tfl - Tfo;
|
| 3632 |
ri[WS(rs, 18)] = Tfl + Tfo;
|
| 3633 |
Thr = Tfj - Tfg; |
| 3634 |
Ths = Thp - Thk; |
| 3635 |
ii[WS(rs, 18)] = Thr + Ths;
|
| 3636 |
ii[WS(rs, 50)] = Ths - Thr;
|
| 3637 |
} |
| 3638 |
} |
| 3639 |
{
|
| 3640 |
E T6L, T9x, TiD, TiJ, T7E, TiI, T9A, TiA, T8y, T9K, T9u, T9E, T9r, T9L, T9v; |
| 3641 |
E T9H; |
| 3642 |
{
|
| 3643 |
E T6n, T6K, TiB, TiC; |
| 3644 |
T6n = T6b - T6m; |
| 3645 |
T6K = T6y - T6J; |
| 3646 |
T6L = T6n - T6K; |
| 3647 |
T9x = T6n + T6K; |
| 3648 |
TiB = T9P - T9O; |
| 3649 |
TiC = Tin - Tim; |
| 3650 |
TiD = TiB + TiC; |
| 3651 |
TiJ = TiC - TiB; |
| 3652 |
} |
| 3653 |
{
|
| 3654 |
E T7c, T9y, T7D, T9z; |
| 3655 |
{
|
| 3656 |
E T72, T7b, T7t, T7C; |
| 3657 |
T72 = T6Q - T71; |
| 3658 |
T7b = T77 - T7a; |
| 3659 |
T7c = FNMS(KP980785280, T7b, KP195090322 * T72); |
| 3660 |
T9y = FMA(KP980785280, T72, KP195090322 * T7b); |
| 3661 |
T7t = T7h - T7s; |
| 3662 |
T7C = T7y - T7B; |
| 3663 |
T7D = FMA(KP195090322, T7t, KP980785280 * T7C); |
| 3664 |
T9z = FNMS(KP980785280, T7t, KP195090322 * T7C); |
| 3665 |
} |
| 3666 |
T7E = T7c - T7D; |
| 3667 |
TiI = T9z - T9y; |
| 3668 |
T9A = T9y + T9z; |
| 3669 |
TiA = T7c + T7D; |
| 3670 |
} |
| 3671 |
{
|
| 3672 |
E T8k, T9C, T8x, T9D; |
| 3673 |
{
|
| 3674 |
E T7W, T8j, T8t, T8w; |
| 3675 |
T7W = T7K - T7V; |
| 3676 |
T8j = T87 - T8i; |
| 3677 |
T8k = T7W - T8j; |
| 3678 |
T9C = T7W + T8j; |
| 3679 |
T8t = T8p - T8s; |
| 3680 |
T8w = T8u - T8v; |
| 3681 |
T8x = T8t - T8w; |
| 3682 |
T9D = T8t + T8w; |
| 3683 |
} |
| 3684 |
T8y = FMA(KP995184726, T8k, KP098017140 * T8x); |
| 3685 |
T9K = FNMS(KP634393284, T9D, KP773010453 * T9C); |
| 3686 |
T9u = FNMS(KP995184726, T8x, KP098017140 * T8k); |
| 3687 |
T9E = FMA(KP634393284, T9C, KP773010453 * T9D); |
| 3688 |
} |
| 3689 |
{
|
| 3690 |
E T9d, T9F, T9q, T9G; |
| 3691 |
{
|
| 3692 |
E T8P, T9c, T9m, T9p; |
| 3693 |
T8P = T8D - T8O; |
| 3694 |
T9c = T90 - T9b; |
| 3695 |
T9d = T8P - T9c; |
| 3696 |
T9F = T8P + T9c; |
| 3697 |
T9m = T9i - T9l; |
| 3698 |
T9p = T9n - T9o; |
| 3699 |
T9q = T9m - T9p; |
| 3700 |
T9G = T9m + T9p; |
| 3701 |
} |
| 3702 |
T9r = FNMS(KP995184726, T9q, KP098017140 * T9d); |
| 3703 |
T9L = FMA(KP773010453, T9G, KP634393284 * T9F); |
| 3704 |
T9v = FMA(KP098017140, T9q, KP995184726 * T9d); |
| 3705 |
T9H = FNMS(KP634393284, T9G, KP773010453 * T9F); |
| 3706 |
} |
| 3707 |
{
|
| 3708 |
E T7F, T9s, TiH, TiK; |
| 3709 |
T7F = T6L + T7E; |
| 3710 |
T9s = T8y + T9r; |
| 3711 |
ri[WS(rs, 47)] = T7F - T9s;
|
| 3712 |
ri[WS(rs, 15)] = T7F + T9s;
|
| 3713 |
TiH = T9u + T9v; |
| 3714 |
TiK = TiI + TiJ; |
| 3715 |
ii[WS(rs, 15)] = TiH + TiK;
|
| 3716 |
ii[WS(rs, 47)] = TiK - TiH;
|
| 3717 |
} |
| 3718 |
{
|
| 3719 |
E T9t, T9w, TiL, TiM; |
| 3720 |
T9t = T6L - T7E; |
| 3721 |
T9w = T9u - T9v; |
| 3722 |
ri[WS(rs, 63)] = T9t - T9w;
|
| 3723 |
ri[WS(rs, 31)] = T9t + T9w;
|
| 3724 |
TiL = T9r - T8y; |
| 3725 |
TiM = TiJ - TiI; |
| 3726 |
ii[WS(rs, 31)] = TiL + TiM;
|
| 3727 |
ii[WS(rs, 63)] = TiM - TiL;
|
| 3728 |
} |
| 3729 |
{
|
| 3730 |
E T9B, T9I, Tiz, TiE; |
| 3731 |
T9B = T9x + T9A; |
| 3732 |
T9I = T9E + T9H; |
| 3733 |
ri[WS(rs, 39)] = T9B - T9I;
|
| 3734 |
ri[WS(rs, 7)] = T9B + T9I;
|
| 3735 |
Tiz = T9K + T9L; |
| 3736 |
TiE = TiA + TiD; |
| 3737 |
ii[WS(rs, 7)] = Tiz + TiE;
|
| 3738 |
ii[WS(rs, 39)] = TiE - Tiz;
|
| 3739 |
} |
| 3740 |
{
|
| 3741 |
E T9J, T9M, TiF, TiG; |
| 3742 |
T9J = T9x - T9A; |
| 3743 |
T9M = T9K - T9L; |
| 3744 |
ri[WS(rs, 55)] = T9J - T9M;
|
| 3745 |
ri[WS(rs, 23)] = T9J + T9M;
|
| 3746 |
TiF = T9H - T9E; |
| 3747 |
TiG = TiD - TiA; |
| 3748 |
ii[WS(rs, 23)] = TiF + TiG;
|
| 3749 |
ii[WS(rs, 55)] = TiG - TiF;
|
| 3750 |
} |
| 3751 |
} |
| 3752 |
{
|
| 3753 |
E TaL, TbJ, Ti9, Tif, Tb0, Tie, TbM, Ti6, Tbk, TbW, TbG, TbQ, TbD, TbX, TbH; |
| 3754 |
E TbT; |
| 3755 |
{
|
| 3756 |
E TaD, TaK, Ti7, Ti8; |
| 3757 |
TaD = Taz - TaC; |
| 3758 |
TaK = TaG - TaJ; |
| 3759 |
TaL = TaD - TaK; |
| 3760 |
TbJ = TaD + TaK; |
| 3761 |
Ti7 = Tc1 - Tc0; |
| 3762 |
Ti8 = ThT - ThQ; |
| 3763 |
Ti9 = Ti7 + Ti8; |
| 3764 |
Tif = Ti8 - Ti7; |
| 3765 |
} |
| 3766 |
{
|
| 3767 |
E TaS, TbK, TaZ, TbL; |
| 3768 |
{
|
| 3769 |
E TaO, TaR, TaV, TaY; |
| 3770 |
TaO = TaM - TaN; |
| 3771 |
TaR = TaP - TaQ; |
| 3772 |
TaS = FNMS(KP831469612, TaR, KP555570233 * TaO); |
| 3773 |
TbK = FMA(KP555570233, TaR, KP831469612 * TaO); |
| 3774 |
TaV = TaT - TaU; |
| 3775 |
TaY = TaW - TaX; |
| 3776 |
TaZ = FMA(KP831469612, TaV, KP555570233 * TaY); |
| 3777 |
TbL = FNMS(KP831469612, TaY, KP555570233 * TaV); |
| 3778 |
} |
| 3779 |
Tb0 = TaS - TaZ; |
| 3780 |
Tie = TbL - TbK; |
| 3781 |
TbM = TbK + TbL; |
| 3782 |
Ti6 = TaS + TaZ; |
| 3783 |
} |
| 3784 |
{
|
| 3785 |
E Tbc, TbO, Tbj, TbP; |
| 3786 |
{
|
| 3787 |
E Tb4, Tbb, Tbf, Tbi; |
| 3788 |
Tb4 = Tb2 - Tb3; |
| 3789 |
Tbb = Tb7 - Tba; |
| 3790 |
Tbc = Tb4 - Tbb; |
| 3791 |
TbO = Tb4 + Tbb; |
| 3792 |
Tbf = Tbd - Tbe; |
| 3793 |
Tbi = Tbg - Tbh; |
| 3794 |
Tbj = Tbf - Tbi; |
| 3795 |
TbP = Tbf + Tbi; |
| 3796 |
} |
| 3797 |
Tbk = FMA(KP956940335, Tbc, KP290284677 * Tbj); |
| 3798 |
TbW = FNMS(KP471396736, TbP, KP881921264 * TbO); |
| 3799 |
TbG = FNMS(KP956940335, Tbj, KP290284677 * Tbc); |
| 3800 |
TbQ = FMA(KP471396736, TbO, KP881921264 * TbP); |
| 3801 |
} |
| 3802 |
{
|
| 3803 |
E Tbv, TbR, TbC, TbS; |
| 3804 |
{
|
| 3805 |
E Tbn, Tbu, Tby, TbB; |
| 3806 |
Tbn = Tbl - Tbm; |
| 3807 |
Tbu = Tbq - Tbt; |
| 3808 |
Tbv = Tbn - Tbu; |
| 3809 |
TbR = Tbn + Tbu; |
| 3810 |
Tby = Tbw - Tbx; |
| 3811 |
TbB = Tbz - TbA; |
| 3812 |
TbC = Tby - TbB; |
| 3813 |
TbS = Tby + TbB; |
| 3814 |
} |
| 3815 |
TbD = FNMS(KP956940335, TbC, KP290284677 * Tbv); |
| 3816 |
TbX = FMA(KP881921264, TbS, KP471396736 * TbR); |
| 3817 |
TbH = FMA(KP290284677, TbC, KP956940335 * Tbv); |
| 3818 |
TbT = FNMS(KP471396736, TbS, KP881921264 * TbR); |
| 3819 |
} |
| 3820 |
{
|
| 3821 |
E Tb1, TbE, Tid, Tig; |
| 3822 |
Tb1 = TaL + Tb0; |
| 3823 |
TbE = Tbk + TbD; |
| 3824 |
ri[WS(rs, 45)] = Tb1 - TbE;
|
| 3825 |
ri[WS(rs, 13)] = Tb1 + TbE;
|
| 3826 |
Tid = TbG + TbH; |
| 3827 |
Tig = Tie + Tif; |
| 3828 |
ii[WS(rs, 13)] = Tid + Tig;
|
| 3829 |
ii[WS(rs, 45)] = Tig - Tid;
|
| 3830 |
} |
| 3831 |
{
|
| 3832 |
E TbF, TbI, Tih, Tii; |
| 3833 |
TbF = TaL - Tb0; |
| 3834 |
TbI = TbG - TbH; |
| 3835 |
ri[WS(rs, 61)] = TbF - TbI;
|
| 3836 |
ri[WS(rs, 29)] = TbF + TbI;
|
| 3837 |
Tih = TbD - Tbk; |
| 3838 |
Tii = Tif - Tie; |
| 3839 |
ii[WS(rs, 29)] = Tih + Tii;
|
| 3840 |
ii[WS(rs, 61)] = Tii - Tih;
|
| 3841 |
} |
| 3842 |
{
|
| 3843 |
E TbN, TbU, Ti5, Tia; |
| 3844 |
TbN = TbJ + TbM; |
| 3845 |
TbU = TbQ + TbT; |
| 3846 |
ri[WS(rs, 37)] = TbN - TbU;
|
| 3847 |
ri[WS(rs, 5)] = TbN + TbU;
|
| 3848 |
Ti5 = TbW + TbX; |
| 3849 |
Tia = Ti6 + Ti9; |
| 3850 |
ii[WS(rs, 5)] = Ti5 + Tia;
|
| 3851 |
ii[WS(rs, 37)] = Tia - Ti5;
|
| 3852 |
} |
| 3853 |
{
|
| 3854 |
E TbV, TbY, Tib, Tic; |
| 3855 |
TbV = TbJ - TbM; |
| 3856 |
TbY = TbW - TbX; |
| 3857 |
ri[WS(rs, 53)] = TbV - TbY;
|
| 3858 |
ri[WS(rs, 21)] = TbV + TbY;
|
| 3859 |
Tib = TbT - TbQ; |
| 3860 |
Tic = Ti9 - Ti6; |
| 3861 |
ii[WS(rs, 21)] = Tib + Tic;
|
| 3862 |
ii[WS(rs, 53)] = Tic - Tib;
|
| 3863 |
} |
| 3864 |
} |
| 3865 |
{
|
| 3866 |
E Tc3, Tcv, ThV, Ti1, Tca, Ti0, Tcy, ThO, Tci, TcI, Tcs, TcC, Tcp, TcJ, Tct; |
| 3867 |
E TcF; |
| 3868 |
{
|
| 3869 |
E TbZ, Tc2, ThP, ThU; |
| 3870 |
TbZ = Taz + TaC; |
| 3871 |
Tc2 = Tc0 + Tc1; |
| 3872 |
Tc3 = TbZ - Tc2; |
| 3873 |
Tcv = TbZ + Tc2; |
| 3874 |
ThP = TaG + TaJ; |
| 3875 |
ThU = ThQ + ThT; |
| 3876 |
ThV = ThP + ThU; |
| 3877 |
Ti1 = ThU - ThP; |
| 3878 |
} |
| 3879 |
{
|
| 3880 |
E Tc6, Tcw, Tc9, Tcx; |
| 3881 |
{
|
| 3882 |
E Tc4, Tc5, Tc7, Tc8; |
| 3883 |
Tc4 = TaM + TaN; |
| 3884 |
Tc5 = TaP + TaQ; |
| 3885 |
Tc6 = FNMS(KP195090322, Tc5, KP980785280 * Tc4); |
| 3886 |
Tcw = FMA(KP980785280, Tc5, KP195090322 * Tc4); |
| 3887 |
Tc7 = TaT + TaU; |
| 3888 |
Tc8 = TaW + TaX; |
| 3889 |
Tc9 = FMA(KP195090322, Tc7, KP980785280 * Tc8); |
| 3890 |
Tcx = FNMS(KP195090322, Tc8, KP980785280 * Tc7); |
| 3891 |
} |
| 3892 |
Tca = Tc6 - Tc9; |
| 3893 |
Ti0 = Tcx - Tcw; |
| 3894 |
Tcy = Tcw + Tcx; |
| 3895 |
ThO = Tc6 + Tc9; |
| 3896 |
} |
| 3897 |
{
|
| 3898 |
E Tce, TcA, Tch, TcB; |
| 3899 |
{
|
| 3900 |
E Tcc, Tcd, Tcf, Tcg; |
| 3901 |
Tcc = Tbd + Tbe; |
| 3902 |
Tcd = Tba + Tb7; |
| 3903 |
Tce = Tcc - Tcd; |
| 3904 |
TcA = Tcc + Tcd; |
| 3905 |
Tcf = Tb2 + Tb3; |
| 3906 |
Tcg = Tbg + Tbh; |
| 3907 |
Tch = Tcf - Tcg; |
| 3908 |
TcB = Tcf + Tcg; |
| 3909 |
} |
| 3910 |
Tci = FMA(KP634393284, Tce, KP773010453 * Tch); |
| 3911 |
TcI = FNMS(KP098017140, TcA, KP995184726 * TcB); |
| 3912 |
Tcs = FNMS(KP773010453, Tce, KP634393284 * Tch); |
| 3913 |
TcC = FMA(KP995184726, TcA, KP098017140 * TcB); |
| 3914 |
} |
| 3915 |
{
|
| 3916 |
E Tcl, TcD, Tco, TcE; |
| 3917 |
{
|
| 3918 |
E Tcj, Tck, Tcm, Tcn; |
| 3919 |
Tcj = Tbl + Tbm; |
| 3920 |
Tck = TbA + Tbz; |
| 3921 |
Tcl = Tcj - Tck; |
| 3922 |
TcD = Tcj + Tck; |
| 3923 |
Tcm = Tbw + Tbx; |
| 3924 |
Tcn = Tbq + Tbt; |
| 3925 |
Tco = Tcm - Tcn; |
| 3926 |
TcE = Tcm + Tcn; |
| 3927 |
} |
| 3928 |
Tcp = FNMS(KP773010453, Tco, KP634393284 * Tcl); |
| 3929 |
TcJ = FMA(KP098017140, TcD, KP995184726 * TcE); |
| 3930 |
Tct = FMA(KP773010453, Tcl, KP634393284 * Tco); |
| 3931 |
TcF = FNMS(KP098017140, TcE, KP995184726 * TcD); |
| 3932 |
} |
| 3933 |
{
|
| 3934 |
E Tcb, Tcq, ThZ, Ti2; |
| 3935 |
Tcb = Tc3 + Tca; |
| 3936 |
Tcq = Tci + Tcp; |
| 3937 |
ri[WS(rs, 41)] = Tcb - Tcq;
|
| 3938 |
ri[WS(rs, 9)] = Tcb + Tcq;
|
| 3939 |
ThZ = Tcs + Tct; |
| 3940 |
Ti2 = Ti0 + Ti1; |
| 3941 |
ii[WS(rs, 9)] = ThZ + Ti2;
|
| 3942 |
ii[WS(rs, 41)] = Ti2 - ThZ;
|
| 3943 |
} |
| 3944 |
{
|
| 3945 |
E Tcr, Tcu, Ti3, Ti4; |
| 3946 |
Tcr = Tc3 - Tca; |
| 3947 |
Tcu = Tcs - Tct; |
| 3948 |
ri[WS(rs, 57)] = Tcr - Tcu;
|
| 3949 |
ri[WS(rs, 25)] = Tcr + Tcu;
|
| 3950 |
Ti3 = Tcp - Tci; |
| 3951 |
Ti4 = Ti1 - Ti0; |
| 3952 |
ii[WS(rs, 25)] = Ti3 + Ti4;
|
| 3953 |
ii[WS(rs, 57)] = Ti4 - Ti3;
|
| 3954 |
} |
| 3955 |
{
|
| 3956 |
E Tcz, TcG, ThN, ThW; |
| 3957 |
Tcz = Tcv + Tcy; |
| 3958 |
TcG = TcC + TcF; |
| 3959 |
ri[WS(rs, 33)] = Tcz - TcG;
|
| 3960 |
ri[WS(rs, 1)] = Tcz + TcG;
|
| 3961 |
ThN = TcI + TcJ; |
| 3962 |
ThW = ThO + ThV; |
| 3963 |
ii[WS(rs, 1)] = ThN + ThW;
|
| 3964 |
ii[WS(rs, 33)] = ThW - ThN;
|
| 3965 |
} |
| 3966 |
{
|
| 3967 |
E TcH, TcK, ThX, ThY; |
| 3968 |
TcH = Tcv - Tcy; |
| 3969 |
TcK = TcI - TcJ; |
| 3970 |
ri[WS(rs, 49)] = TcH - TcK;
|
| 3971 |
ri[WS(rs, 17)] = TcH + TcK;
|
| 3972 |
ThX = TcF - TcC; |
| 3973 |
ThY = ThV - ThO; |
| 3974 |
ii[WS(rs, 17)] = ThX + ThY;
|
| 3975 |
ii[WS(rs, 49)] = ThY - ThX;
|
| 3976 |
} |
| 3977 |
} |
| 3978 |
{
|
| 3979 |
E T9R, Taj, Tip, Tiv, T9Y, Tiu, Tam, Tik, Ta6, Taw, Tag, Taq, Tad, Tax, Tah; |
| 3980 |
E Tat; |
| 3981 |
{
|
| 3982 |
E T9N, T9Q, Til, Tio; |
| 3983 |
T9N = T6b + T6m; |
| 3984 |
T9Q = T9O + T9P; |
| 3985 |
T9R = T9N - T9Q; |
| 3986 |
Taj = T9N + T9Q; |
| 3987 |
Til = T6y + T6J; |
| 3988 |
Tio = Tim + Tin; |
| 3989 |
Tip = Til + Tio; |
| 3990 |
Tiv = Tio - Til; |
| 3991 |
} |
| 3992 |
{
|
| 3993 |
E T9U, Tak, T9X, Tal; |
| 3994 |
{
|
| 3995 |
E T9S, T9T, T9V, T9W; |
| 3996 |
T9S = T6Q + T71; |
| 3997 |
T9T = T77 + T7a; |
| 3998 |
T9U = FNMS(KP555570233, T9T, KP831469612 * T9S); |
| 3999 |
Tak = FMA(KP555570233, T9S, KP831469612 * T9T); |
| 4000 |
T9V = T7h + T7s; |
| 4001 |
T9W = T7y + T7B; |
| 4002 |
T9X = FMA(KP831469612, T9V, KP555570233 * T9W); |
| 4003 |
Tal = FNMS(KP555570233, T9V, KP831469612 * T9W); |
| 4004 |
} |
| 4005 |
T9Y = T9U - T9X; |
| 4006 |
Tiu = Tal - Tak; |
| 4007 |
Tam = Tak + Tal; |
| 4008 |
Tik = T9U + T9X; |
| 4009 |
} |
| 4010 |
{
|
| 4011 |
E Ta2, Tao, Ta5, Tap; |
| 4012 |
{
|
| 4013 |
E Ta0, Ta1, Ta3, Ta4; |
| 4014 |
Ta0 = T8p + T8s; |
| 4015 |
Ta1 = T8i + T87; |
| 4016 |
Ta2 = Ta0 - Ta1; |
| 4017 |
Tao = Ta0 + Ta1; |
| 4018 |
Ta3 = T7K + T7V; |
| 4019 |
Ta4 = T8u + T8v; |
| 4020 |
Ta5 = Ta3 - Ta4; |
| 4021 |
Tap = Ta3 + Ta4; |
| 4022 |
} |
| 4023 |
Ta6 = FMA(KP471396736, Ta2, KP881921264 * Ta5); |
| 4024 |
Taw = FNMS(KP290284677, Tao, KP956940335 * Tap); |
| 4025 |
Tag = FNMS(KP881921264, Ta2, KP471396736 * Ta5); |
| 4026 |
Taq = FMA(KP956940335, Tao, KP290284677 * Tap); |
| 4027 |
} |
| 4028 |
{
|
| 4029 |
E Ta9, Tar, Tac, Tas; |
| 4030 |
{
|
| 4031 |
E Ta7, Ta8, Taa, Tab; |
| 4032 |
Ta7 = T8D + T8O; |
| 4033 |
Ta8 = T9o + T9n; |
| 4034 |
Ta9 = Ta7 - Ta8; |
| 4035 |
Tar = Ta7 + Ta8; |
| 4036 |
Taa = T9i + T9l; |
| 4037 |
Tab = T90 + T9b; |
| 4038 |
Tac = Taa - Tab; |
| 4039 |
Tas = Taa + Tab; |
| 4040 |
} |
| 4041 |
Tad = FNMS(KP881921264, Tac, KP471396736 * Ta9); |
| 4042 |
Tax = FMA(KP290284677, Tar, KP956940335 * Tas); |
| 4043 |
Tah = FMA(KP881921264, Ta9, KP471396736 * Tac); |
| 4044 |
Tat = FNMS(KP290284677, Tas, KP956940335 * Tar); |
| 4045 |
} |
| 4046 |
{
|
| 4047 |
E T9Z, Tae, Tit, Tiw; |
| 4048 |
T9Z = T9R + T9Y; |
| 4049 |
Tae = Ta6 + Tad; |
| 4050 |
ri[WS(rs, 43)] = T9Z - Tae;
|
| 4051 |
ri[WS(rs, 11)] = T9Z + Tae;
|
| 4052 |
Tit = Tag + Tah; |
| 4053 |
Tiw = Tiu + Tiv; |
| 4054 |
ii[WS(rs, 11)] = Tit + Tiw;
|
| 4055 |
ii[WS(rs, 43)] = Tiw - Tit;
|
| 4056 |
} |
| 4057 |
{
|
| 4058 |
E Taf, Tai, Tix, Tiy; |
| 4059 |
Taf = T9R - T9Y; |
| 4060 |
Tai = Tag - Tah; |
| 4061 |
ri[WS(rs, 59)] = Taf - Tai;
|
| 4062 |
ri[WS(rs, 27)] = Taf + Tai;
|
| 4063 |
Tix = Tad - Ta6; |
| 4064 |
Tiy = Tiv - Tiu; |
| 4065 |
ii[WS(rs, 27)] = Tix + Tiy;
|
| 4066 |
ii[WS(rs, 59)] = Tiy - Tix;
|
| 4067 |
} |
| 4068 |
{
|
| 4069 |
E Tan, Tau, Tij, Tiq; |
| 4070 |
Tan = Taj + Tam; |
| 4071 |
Tau = Taq + Tat; |
| 4072 |
ri[WS(rs, 35)] = Tan - Tau;
|
| 4073 |
ri[WS(rs, 3)] = Tan + Tau;
|
| 4074 |
Tij = Taw + Tax; |
| 4075 |
Tiq = Tik + Tip; |
| 4076 |
ii[WS(rs, 3)] = Tij + Tiq;
|
| 4077 |
ii[WS(rs, 35)] = Tiq - Tij;
|
| 4078 |
} |
| 4079 |
{
|
| 4080 |
E Tav, Tay, Tir, Tis; |
| 4081 |
Tav = Taj - Tam; |
| 4082 |
Tay = Taw - Tax; |
| 4083 |
ri[WS(rs, 51)] = Tav - Tay;
|
| 4084 |
ri[WS(rs, 19)] = Tav + Tay;
|
| 4085 |
Tir = Tat - Taq; |
| 4086 |
Tis = Tip - Tik; |
| 4087 |
ii[WS(rs, 19)] = Tir + Tis;
|
| 4088 |
ii[WS(rs, 51)] = Tis - Tir;
|
| 4089 |
} |
| 4090 |
} |
| 4091 |
} |
| 4092 |
} |
| 4093 |
} |
| 4094 |
|
| 4095 |
static const tw_instr twinstr[] = { |
| 4096 |
{TW_FULL, 0, 64},
|
| 4097 |
{TW_NEXT, 1, 0}
|
| 4098 |
}; |
| 4099 |
|
| 4100 |
static const ct_desc desc = { 64, "t1_64", twinstr, &GENUS, {808, 270, 230, 0}, 0, 0, 0 }; |
| 4101 |
|
| 4102 |
void X(codelet_t1_64) (planner *p) {
|
| 4103 |
X(kdft_dit_register) (p, t1_64, &desc); |
| 4104 |
} |
| 4105 |
#endif
|