To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_32.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (43.6 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:15 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 434 FP additions, 260 FP multiplications,
|
| 32 |
* (or, 236 additions, 62 multiplications, 198 fused multiply/add),
|
| 33 |
* 102 stack variables, 7 constants, and 128 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 40 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 41 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 42 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 43 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 44 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 45 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 46 |
{
|
| 47 |
INT m; |
| 48 |
for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
| 49 |
E T8, T8x, T3w, T87, Tl, T8y, T3B, T83, Tz, T6F, T3J, T5T, TM, T6G, T3Q; |
| 50 |
E T5U, T11, T1e, T6M, T6J, T6K, T6L, T3Z, T5X, T46, T5Y, T1s, T1F, T6O, T6P; |
| 51 |
E T6Q, T6R, T4e, T60, T4l, T61, T32, T7b, T78, T7N, T54, T6f, T5r, T6c, T29; |
| 52 |
E T70, T6X, T7I, T4v, T68, T4S, T65, T3t, T79, T7e, T7O, T5b, T5s, T5i, T5t; |
| 53 |
E T2A, T6Y, T73, T7J, T4C, T4T, T4J, T4U; |
| 54 |
{
|
| 55 |
E T1, T86, T3, T6, T4, T84, T2, T7, T85, T5; |
| 56 |
T1 = ri[0];
|
| 57 |
T86 = ii[0];
|
| 58 |
T3 = ri[WS(rs, 16)];
|
| 59 |
T6 = ii[WS(rs, 16)];
|
| 60 |
T2 = W[30];
|
| 61 |
T4 = T2 * T3; |
| 62 |
T84 = T2 * T6; |
| 63 |
T5 = W[31];
|
| 64 |
T7 = FMA(T5, T6, T4); |
| 65 |
T85 = FNMS(T5, T3, T84); |
| 66 |
T8 = T1 + T7; |
| 67 |
T8x = T86 - T85; |
| 68 |
T3w = T1 - T7; |
| 69 |
T87 = T85 + T86; |
| 70 |
} |
| 71 |
{
|
| 72 |
E Ta, Td, Tb, T3x, Tg, Tj, Th, T3z, T9, Tf; |
| 73 |
Ta = ri[WS(rs, 8)];
|
| 74 |
Td = ii[WS(rs, 8)];
|
| 75 |
T9 = W[14];
|
| 76 |
Tb = T9 * Ta; |
| 77 |
T3x = T9 * Td; |
| 78 |
Tg = ri[WS(rs, 24)];
|
| 79 |
Tj = ii[WS(rs, 24)];
|
| 80 |
Tf = W[46];
|
| 81 |
Th = Tf * Tg; |
| 82 |
T3z = Tf * Tj; |
| 83 |
{
|
| 84 |
E Te, T3y, Tk, T3A, Tc, Ti; |
| 85 |
Tc = W[15];
|
| 86 |
Te = FMA(Tc, Td, Tb); |
| 87 |
T3y = FNMS(Tc, Ta, T3x); |
| 88 |
Ti = W[47];
|
| 89 |
Tk = FMA(Ti, Tj, Th); |
| 90 |
T3A = FNMS(Ti, Tg, T3z); |
| 91 |
Tl = Te + Tk; |
| 92 |
T8y = Te - Tk; |
| 93 |
T3B = T3y - T3A; |
| 94 |
T83 = T3y + T3A; |
| 95 |
} |
| 96 |
} |
| 97 |
{
|
| 98 |
E Ts, T3F, Ty, T3H, T3D, T3I; |
| 99 |
{
|
| 100 |
E To, Tr, Tp, T3E, Tn, Tq; |
| 101 |
To = ri[WS(rs, 4)];
|
| 102 |
Tr = ii[WS(rs, 4)];
|
| 103 |
Tn = W[6];
|
| 104 |
Tp = Tn * To; |
| 105 |
T3E = Tn * Tr; |
| 106 |
Tq = W[7];
|
| 107 |
Ts = FMA(Tq, Tr, Tp); |
| 108 |
T3F = FNMS(Tq, To, T3E); |
| 109 |
} |
| 110 |
{
|
| 111 |
E Tu, Tx, Tv, T3G, Tt, Tw; |
| 112 |
Tu = ri[WS(rs, 20)];
|
| 113 |
Tx = ii[WS(rs, 20)];
|
| 114 |
Tt = W[38];
|
| 115 |
Tv = Tt * Tu; |
| 116 |
T3G = Tt * Tx; |
| 117 |
Tw = W[39];
|
| 118 |
Ty = FMA(Tw, Tx, Tv); |
| 119 |
T3H = FNMS(Tw, Tu, T3G); |
| 120 |
} |
| 121 |
Tz = Ts + Ty; |
| 122 |
T6F = T3F + T3H; |
| 123 |
T3D = Ts - Ty; |
| 124 |
T3I = T3F - T3H; |
| 125 |
T3J = T3D + T3I; |
| 126 |
T5T = T3I - T3D; |
| 127 |
} |
| 128 |
{
|
| 129 |
E TF, T3M, TL, T3O, T3K, T3P; |
| 130 |
{
|
| 131 |
E TB, TE, TC, T3L, TA, TD; |
| 132 |
TB = ri[WS(rs, 28)];
|
| 133 |
TE = ii[WS(rs, 28)];
|
| 134 |
TA = W[54];
|
| 135 |
TC = TA * TB; |
| 136 |
T3L = TA * TE; |
| 137 |
TD = W[55];
|
| 138 |
TF = FMA(TD, TE, TC); |
| 139 |
T3M = FNMS(TD, TB, T3L); |
| 140 |
} |
| 141 |
{
|
| 142 |
E TH, TK, TI, T3N, TG, TJ; |
| 143 |
TH = ri[WS(rs, 12)];
|
| 144 |
TK = ii[WS(rs, 12)];
|
| 145 |
TG = W[22];
|
| 146 |
TI = TG * TH; |
| 147 |
T3N = TG * TK; |
| 148 |
TJ = W[23];
|
| 149 |
TL = FMA(TJ, TK, TI); |
| 150 |
T3O = FNMS(TJ, TH, T3N); |
| 151 |
} |
| 152 |
TM = TF + TL; |
| 153 |
T6G = T3M + T3O; |
| 154 |
T3K = TF - TL; |
| 155 |
T3P = T3M - T3O; |
| 156 |
T3Q = T3K - T3P; |
| 157 |
T5U = T3K + T3P; |
| 158 |
} |
| 159 |
{
|
| 160 |
E TU, T3U, T1d, T44, T10, T3W, T17, T42; |
| 161 |
{
|
| 162 |
E TQ, TT, TR, T3T, TP, TS; |
| 163 |
TQ = ri[WS(rs, 2)];
|
| 164 |
TT = ii[WS(rs, 2)];
|
| 165 |
TP = W[2];
|
| 166 |
TR = TP * TQ; |
| 167 |
T3T = TP * TT; |
| 168 |
TS = W[3];
|
| 169 |
TU = FMA(TS, TT, TR); |
| 170 |
T3U = FNMS(TS, TQ, T3T); |
| 171 |
} |
| 172 |
{
|
| 173 |
E T19, T1c, T1a, T43, T18, T1b; |
| 174 |
T19 = ri[WS(rs, 26)];
|
| 175 |
T1c = ii[WS(rs, 26)];
|
| 176 |
T18 = W[50];
|
| 177 |
T1a = T18 * T19; |
| 178 |
T43 = T18 * T1c; |
| 179 |
T1b = W[51];
|
| 180 |
T1d = FMA(T1b, T1c, T1a); |
| 181 |
T44 = FNMS(T1b, T19, T43); |
| 182 |
} |
| 183 |
{
|
| 184 |
E TW, TZ, TX, T3V, TV, TY; |
| 185 |
TW = ri[WS(rs, 18)];
|
| 186 |
TZ = ii[WS(rs, 18)];
|
| 187 |
TV = W[34];
|
| 188 |
TX = TV * TW; |
| 189 |
T3V = TV * TZ; |
| 190 |
TY = W[35];
|
| 191 |
T10 = FMA(TY, TZ, TX); |
| 192 |
T3W = FNMS(TY, TW, T3V); |
| 193 |
} |
| 194 |
{
|
| 195 |
E T13, T16, T14, T41, T12, T15; |
| 196 |
T13 = ri[WS(rs, 10)];
|
| 197 |
T16 = ii[WS(rs, 10)];
|
| 198 |
T12 = W[18];
|
| 199 |
T14 = T12 * T13; |
| 200 |
T41 = T12 * T16; |
| 201 |
T15 = W[19];
|
| 202 |
T17 = FMA(T15, T16, T14); |
| 203 |
T42 = FNMS(T15, T13, T41); |
| 204 |
} |
| 205 |
T11 = TU + T10; |
| 206 |
T1e = T17 + T1d; |
| 207 |
T6M = T11 - T1e; |
| 208 |
T6J = T3U + T3W; |
| 209 |
T6K = T42 + T44; |
| 210 |
T6L = T6J - T6K; |
| 211 |
{
|
| 212 |
E T3X, T3Y, T40, T45; |
| 213 |
T3X = T3U - T3W; |
| 214 |
T3Y = T17 - T1d; |
| 215 |
T3Z = T3X - T3Y; |
| 216 |
T5X = T3X + T3Y; |
| 217 |
T40 = TU - T10; |
| 218 |
T45 = T42 - T44; |
| 219 |
T46 = T40 + T45; |
| 220 |
T5Y = T40 - T45; |
| 221 |
} |
| 222 |
} |
| 223 |
{
|
| 224 |
E T1l, T49, T1E, T4j, T1r, T4b, T1y, T4h; |
| 225 |
{
|
| 226 |
E T1h, T1k, T1i, T48, T1g, T1j; |
| 227 |
T1h = ri[WS(rs, 30)];
|
| 228 |
T1k = ii[WS(rs, 30)];
|
| 229 |
T1g = W[58];
|
| 230 |
T1i = T1g * T1h; |
| 231 |
T48 = T1g * T1k; |
| 232 |
T1j = W[59];
|
| 233 |
T1l = FMA(T1j, T1k, T1i); |
| 234 |
T49 = FNMS(T1j, T1h, T48); |
| 235 |
} |
| 236 |
{
|
| 237 |
E T1A, T1D, T1B, T4i, T1z, T1C; |
| 238 |
T1A = ri[WS(rs, 22)];
|
| 239 |
T1D = ii[WS(rs, 22)];
|
| 240 |
T1z = W[42];
|
| 241 |
T1B = T1z * T1A; |
| 242 |
T4i = T1z * T1D; |
| 243 |
T1C = W[43];
|
| 244 |
T1E = FMA(T1C, T1D, T1B); |
| 245 |
T4j = FNMS(T1C, T1A, T4i); |
| 246 |
} |
| 247 |
{
|
| 248 |
E T1n, T1q, T1o, T4a, T1m, T1p; |
| 249 |
T1n = ri[WS(rs, 14)];
|
| 250 |
T1q = ii[WS(rs, 14)];
|
| 251 |
T1m = W[26];
|
| 252 |
T1o = T1m * T1n; |
| 253 |
T4a = T1m * T1q; |
| 254 |
T1p = W[27];
|
| 255 |
T1r = FMA(T1p, T1q, T1o); |
| 256 |
T4b = FNMS(T1p, T1n, T4a); |
| 257 |
} |
| 258 |
{
|
| 259 |
E T1u, T1x, T1v, T4g, T1t, T1w; |
| 260 |
T1u = ri[WS(rs, 6)];
|
| 261 |
T1x = ii[WS(rs, 6)];
|
| 262 |
T1t = W[10];
|
| 263 |
T1v = T1t * T1u; |
| 264 |
T4g = T1t * T1x; |
| 265 |
T1w = W[11];
|
| 266 |
T1y = FMA(T1w, T1x, T1v); |
| 267 |
T4h = FNMS(T1w, T1u, T4g); |
| 268 |
} |
| 269 |
T1s = T1l + T1r; |
| 270 |
T1F = T1y + T1E; |
| 271 |
T6O = T1s - T1F; |
| 272 |
T6P = T49 + T4b; |
| 273 |
T6Q = T4h + T4j; |
| 274 |
T6R = T6P - T6Q; |
| 275 |
{
|
| 276 |
E T4c, T4d, T4f, T4k; |
| 277 |
T4c = T49 - T4b; |
| 278 |
T4d = T1y - T1E; |
| 279 |
T4e = T4c - T4d; |
| 280 |
T60 = T4c + T4d; |
| 281 |
T4f = T1l - T1r; |
| 282 |
T4k = T4h - T4j; |
| 283 |
T4l = T4f + T4k; |
| 284 |
T61 = T4f - T4k; |
| 285 |
} |
| 286 |
} |
| 287 |
{
|
| 288 |
E T2H, T4Z, T30, T5p, T2N, T51, T2U, T5n; |
| 289 |
{
|
| 290 |
E T2D, T2G, T2E, T4Y, T2C, T2F; |
| 291 |
T2D = ri[WS(rs, 31)];
|
| 292 |
T2G = ii[WS(rs, 31)];
|
| 293 |
T2C = W[60];
|
| 294 |
T2E = T2C * T2D; |
| 295 |
T4Y = T2C * T2G; |
| 296 |
T2F = W[61];
|
| 297 |
T2H = FMA(T2F, T2G, T2E); |
| 298 |
T4Z = FNMS(T2F, T2D, T4Y); |
| 299 |
} |
| 300 |
{
|
| 301 |
E T2W, T2Z, T2X, T5o, T2V, T2Y; |
| 302 |
T2W = ri[WS(rs, 23)];
|
| 303 |
T2Z = ii[WS(rs, 23)];
|
| 304 |
T2V = W[44];
|
| 305 |
T2X = T2V * T2W; |
| 306 |
T5o = T2V * T2Z; |
| 307 |
T2Y = W[45];
|
| 308 |
T30 = FMA(T2Y, T2Z, T2X); |
| 309 |
T5p = FNMS(T2Y, T2W, T5o); |
| 310 |
} |
| 311 |
{
|
| 312 |
E T2J, T2M, T2K, T50, T2I, T2L; |
| 313 |
T2J = ri[WS(rs, 15)];
|
| 314 |
T2M = ii[WS(rs, 15)];
|
| 315 |
T2I = W[28];
|
| 316 |
T2K = T2I * T2J; |
| 317 |
T50 = T2I * T2M; |
| 318 |
T2L = W[29];
|
| 319 |
T2N = FMA(T2L, T2M, T2K); |
| 320 |
T51 = FNMS(T2L, T2J, T50); |
| 321 |
} |
| 322 |
{
|
| 323 |
E T2Q, T2T, T2R, T5m, T2P, T2S; |
| 324 |
T2Q = ri[WS(rs, 7)];
|
| 325 |
T2T = ii[WS(rs, 7)];
|
| 326 |
T2P = W[12];
|
| 327 |
T2R = T2P * T2Q; |
| 328 |
T5m = T2P * T2T; |
| 329 |
T2S = W[13];
|
| 330 |
T2U = FMA(T2S, T2T, T2R); |
| 331 |
T5n = FNMS(T2S, T2Q, T5m); |
| 332 |
} |
| 333 |
{
|
| 334 |
E T2O, T31, T76, T77; |
| 335 |
T2O = T2H + T2N; |
| 336 |
T31 = T2U + T30; |
| 337 |
T32 = T2O + T31; |
| 338 |
T7b = T2O - T31; |
| 339 |
T76 = T4Z + T51; |
| 340 |
T77 = T5n + T5p; |
| 341 |
T78 = T76 - T77; |
| 342 |
T7N = T76 + T77; |
| 343 |
} |
| 344 |
{
|
| 345 |
E T52, T53, T5l, T5q; |
| 346 |
T52 = T4Z - T51; |
| 347 |
T53 = T2U - T30; |
| 348 |
T54 = T52 - T53; |
| 349 |
T6f = T52 + T53; |
| 350 |
T5l = T2H - T2N; |
| 351 |
T5q = T5n - T5p; |
| 352 |
T5r = T5l + T5q; |
| 353 |
T6c = T5l - T5q; |
| 354 |
} |
| 355 |
} |
| 356 |
{
|
| 357 |
E T1O, T4q, T27, T4Q, T1U, T4s, T21, T4O; |
| 358 |
{
|
| 359 |
E T1K, T1N, T1L, T4p, T1J, T1M; |
| 360 |
T1K = ri[WS(rs, 1)];
|
| 361 |
T1N = ii[WS(rs, 1)];
|
| 362 |
T1J = W[0];
|
| 363 |
T1L = T1J * T1K; |
| 364 |
T4p = T1J * T1N; |
| 365 |
T1M = W[1];
|
| 366 |
T1O = FMA(T1M, T1N, T1L); |
| 367 |
T4q = FNMS(T1M, T1K, T4p); |
| 368 |
} |
| 369 |
{
|
| 370 |
E T23, T26, T24, T4P, T22, T25; |
| 371 |
T23 = ri[WS(rs, 25)];
|
| 372 |
T26 = ii[WS(rs, 25)];
|
| 373 |
T22 = W[48];
|
| 374 |
T24 = T22 * T23; |
| 375 |
T4P = T22 * T26; |
| 376 |
T25 = W[49];
|
| 377 |
T27 = FMA(T25, T26, T24); |
| 378 |
T4Q = FNMS(T25, T23, T4P); |
| 379 |
} |
| 380 |
{
|
| 381 |
E T1Q, T1T, T1R, T4r, T1P, T1S; |
| 382 |
T1Q = ri[WS(rs, 17)];
|
| 383 |
T1T = ii[WS(rs, 17)];
|
| 384 |
T1P = W[32];
|
| 385 |
T1R = T1P * T1Q; |
| 386 |
T4r = T1P * T1T; |
| 387 |
T1S = W[33];
|
| 388 |
T1U = FMA(T1S, T1T, T1R); |
| 389 |
T4s = FNMS(T1S, T1Q, T4r); |
| 390 |
} |
| 391 |
{
|
| 392 |
E T1X, T20, T1Y, T4N, T1W, T1Z; |
| 393 |
T1X = ri[WS(rs, 9)];
|
| 394 |
T20 = ii[WS(rs, 9)];
|
| 395 |
T1W = W[16];
|
| 396 |
T1Y = T1W * T1X; |
| 397 |
T4N = T1W * T20; |
| 398 |
T1Z = W[17];
|
| 399 |
T21 = FMA(T1Z, T20, T1Y); |
| 400 |
T4O = FNMS(T1Z, T1X, T4N); |
| 401 |
} |
| 402 |
{
|
| 403 |
E T1V, T28, T6V, T6W; |
| 404 |
T1V = T1O + T1U; |
| 405 |
T28 = T21 + T27; |
| 406 |
T29 = T1V + T28; |
| 407 |
T70 = T1V - T28; |
| 408 |
T6V = T4q + T4s; |
| 409 |
T6W = T4O + T4Q; |
| 410 |
T6X = T6V - T6W; |
| 411 |
T7I = T6V + T6W; |
| 412 |
} |
| 413 |
{
|
| 414 |
E T4t, T4u, T4M, T4R; |
| 415 |
T4t = T4q - T4s; |
| 416 |
T4u = T21 - T27; |
| 417 |
T4v = T4t - T4u; |
| 418 |
T68 = T4t + T4u; |
| 419 |
T4M = T1O - T1U; |
| 420 |
T4R = T4O - T4Q; |
| 421 |
T4S = T4M + T4R; |
| 422 |
T65 = T4M - T4R; |
| 423 |
} |
| 424 |
} |
| 425 |
{
|
| 426 |
E T38, T56, T3r, T5g, T3e, T58, T3l, T5e; |
| 427 |
{
|
| 428 |
E T34, T37, T35, T55, T33, T36; |
| 429 |
T34 = ri[WS(rs, 3)];
|
| 430 |
T37 = ii[WS(rs, 3)];
|
| 431 |
T33 = W[4];
|
| 432 |
T35 = T33 * T34; |
| 433 |
T55 = T33 * T37; |
| 434 |
T36 = W[5];
|
| 435 |
T38 = FMA(T36, T37, T35); |
| 436 |
T56 = FNMS(T36, T34, T55); |
| 437 |
} |
| 438 |
{
|
| 439 |
E T3n, T3q, T3o, T5f, T3m, T3p; |
| 440 |
T3n = ri[WS(rs, 11)];
|
| 441 |
T3q = ii[WS(rs, 11)];
|
| 442 |
T3m = W[20];
|
| 443 |
T3o = T3m * T3n; |
| 444 |
T5f = T3m * T3q; |
| 445 |
T3p = W[21];
|
| 446 |
T3r = FMA(T3p, T3q, T3o); |
| 447 |
T5g = FNMS(T3p, T3n, T5f); |
| 448 |
} |
| 449 |
{
|
| 450 |
E T3a, T3d, T3b, T57, T39, T3c; |
| 451 |
T3a = ri[WS(rs, 19)];
|
| 452 |
T3d = ii[WS(rs, 19)];
|
| 453 |
T39 = W[36];
|
| 454 |
T3b = T39 * T3a; |
| 455 |
T57 = T39 * T3d; |
| 456 |
T3c = W[37];
|
| 457 |
T3e = FMA(T3c, T3d, T3b); |
| 458 |
T58 = FNMS(T3c, T3a, T57); |
| 459 |
} |
| 460 |
{
|
| 461 |
E T3h, T3k, T3i, T5d, T3g, T3j; |
| 462 |
T3h = ri[WS(rs, 27)];
|
| 463 |
T3k = ii[WS(rs, 27)];
|
| 464 |
T3g = W[52];
|
| 465 |
T3i = T3g * T3h; |
| 466 |
T5d = T3g * T3k; |
| 467 |
T3j = W[53];
|
| 468 |
T3l = FMA(T3j, T3k, T3i); |
| 469 |
T5e = FNMS(T3j, T3h, T5d); |
| 470 |
} |
| 471 |
{
|
| 472 |
E T3f, T3s, T7c, T7d; |
| 473 |
T3f = T38 + T3e; |
| 474 |
T3s = T3l + T3r; |
| 475 |
T3t = T3f + T3s; |
| 476 |
T79 = T3s - T3f; |
| 477 |
T7c = T56 + T58; |
| 478 |
T7d = T5e + T5g; |
| 479 |
T7e = T7c - T7d; |
| 480 |
T7O = T7c + T7d; |
| 481 |
} |
| 482 |
{
|
| 483 |
E T59, T5a, T5c, T5h; |
| 484 |
T59 = T56 - T58; |
| 485 |
T5a = T38 - T3e; |
| 486 |
T5b = T59 - T5a; |
| 487 |
T5s = T5a + T59; |
| 488 |
T5c = T3l - T3r; |
| 489 |
T5h = T5e - T5g; |
| 490 |
T5i = T5c + T5h; |
| 491 |
T5t = T5c - T5h; |
| 492 |
} |
| 493 |
} |
| 494 |
{
|
| 495 |
E T2f, T4x, T2y, T4H, T2l, T4z, T2s, T4F; |
| 496 |
{
|
| 497 |
E T2b, T2e, T2c, T4w, T2a, T2d; |
| 498 |
T2b = ri[WS(rs, 5)];
|
| 499 |
T2e = ii[WS(rs, 5)];
|
| 500 |
T2a = W[8];
|
| 501 |
T2c = T2a * T2b; |
| 502 |
T4w = T2a * T2e; |
| 503 |
T2d = W[9];
|
| 504 |
T2f = FMA(T2d, T2e, T2c); |
| 505 |
T4x = FNMS(T2d, T2b, T4w); |
| 506 |
} |
| 507 |
{
|
| 508 |
E T2u, T2x, T2v, T4G, T2t, T2w; |
| 509 |
T2u = ri[WS(rs, 13)];
|
| 510 |
T2x = ii[WS(rs, 13)];
|
| 511 |
T2t = W[24];
|
| 512 |
T2v = T2t * T2u; |
| 513 |
T4G = T2t * T2x; |
| 514 |
T2w = W[25];
|
| 515 |
T2y = FMA(T2w, T2x, T2v); |
| 516 |
T4H = FNMS(T2w, T2u, T4G); |
| 517 |
} |
| 518 |
{
|
| 519 |
E T2h, T2k, T2i, T4y, T2g, T2j; |
| 520 |
T2h = ri[WS(rs, 21)];
|
| 521 |
T2k = ii[WS(rs, 21)];
|
| 522 |
T2g = W[40];
|
| 523 |
T2i = T2g * T2h; |
| 524 |
T4y = T2g * T2k; |
| 525 |
T2j = W[41];
|
| 526 |
T2l = FMA(T2j, T2k, T2i); |
| 527 |
T4z = FNMS(T2j, T2h, T4y); |
| 528 |
} |
| 529 |
{
|
| 530 |
E T2o, T2r, T2p, T4E, T2n, T2q; |
| 531 |
T2o = ri[WS(rs, 29)];
|
| 532 |
T2r = ii[WS(rs, 29)];
|
| 533 |
T2n = W[56];
|
| 534 |
T2p = T2n * T2o; |
| 535 |
T4E = T2n * T2r; |
| 536 |
T2q = W[57];
|
| 537 |
T2s = FMA(T2q, T2r, T2p); |
| 538 |
T4F = FNMS(T2q, T2o, T4E); |
| 539 |
} |
| 540 |
{
|
| 541 |
E T2m, T2z, T71, T72; |
| 542 |
T2m = T2f + T2l; |
| 543 |
T2z = T2s + T2y; |
| 544 |
T2A = T2m + T2z; |
| 545 |
T6Y = T2z - T2m; |
| 546 |
T71 = T4x + T4z; |
| 547 |
T72 = T4F + T4H; |
| 548 |
T73 = T71 - T72; |
| 549 |
T7J = T71 + T72; |
| 550 |
} |
| 551 |
{
|
| 552 |
E T4A, T4B, T4D, T4I; |
| 553 |
T4A = T4x - T4z; |
| 554 |
T4B = T2f - T2l; |
| 555 |
T4C = T4A - T4B; |
| 556 |
T4T = T4B + T4A; |
| 557 |
T4D = T2s - T2y; |
| 558 |
T4I = T4F - T4H; |
| 559 |
T4J = T4D + T4I; |
| 560 |
T4U = T4D - T4I; |
| 561 |
} |
| 562 |
} |
| 563 |
{
|
| 564 |
E TO, T7C, T7Z, T80, T89, T8e, T1H, T8d, T3v, T8b, T7L, T7T, T7Q, T7U, T7F; |
| 565 |
E T81; |
| 566 |
{
|
| 567 |
E Tm, TN, T7X, T7Y; |
| 568 |
Tm = T8 + Tl; |
| 569 |
TN = Tz + TM; |
| 570 |
TO = Tm + TN; |
| 571 |
T7C = Tm - TN; |
| 572 |
T7X = T7I + T7J; |
| 573 |
T7Y = T7N + T7O; |
| 574 |
T7Z = T7X - T7Y; |
| 575 |
T80 = T7X + T7Y; |
| 576 |
} |
| 577 |
{
|
| 578 |
E T82, T88, T1f, T1G; |
| 579 |
T82 = T6F + T6G; |
| 580 |
T88 = T83 + T87; |
| 581 |
T89 = T82 + T88; |
| 582 |
T8e = T88 - T82; |
| 583 |
T1f = T11 + T1e; |
| 584 |
T1G = T1s + T1F; |
| 585 |
T1H = T1f + T1G; |
| 586 |
T8d = T1G - T1f; |
| 587 |
} |
| 588 |
{
|
| 589 |
E T2B, T3u, T7H, T7K; |
| 590 |
T2B = T29 + T2A; |
| 591 |
T3u = T32 + T3t; |
| 592 |
T3v = T2B + T3u; |
| 593 |
T8b = T3u - T2B; |
| 594 |
T7H = T29 - T2A; |
| 595 |
T7K = T7I - T7J; |
| 596 |
T7L = T7H + T7K; |
| 597 |
T7T = T7K - T7H; |
| 598 |
} |
| 599 |
{
|
| 600 |
E T7M, T7P, T7D, T7E; |
| 601 |
T7M = T32 - T3t; |
| 602 |
T7P = T7N - T7O; |
| 603 |
T7Q = T7M - T7P; |
| 604 |
T7U = T7M + T7P; |
| 605 |
T7D = T6J + T6K; |
| 606 |
T7E = T6P + T6Q; |
| 607 |
T7F = T7D - T7E; |
| 608 |
T81 = T7D + T7E; |
| 609 |
} |
| 610 |
{
|
| 611 |
E T1I, T8a, T7W, T8c; |
| 612 |
T1I = TO + T1H; |
| 613 |
ri[WS(rs, 16)] = T1I - T3v;
|
| 614 |
ri[0] = T1I + T3v;
|
| 615 |
T8a = T81 + T89; |
| 616 |
ii[0] = T80 + T8a;
|
| 617 |
ii[WS(rs, 16)] = T8a - T80;
|
| 618 |
T7W = TO - T1H; |
| 619 |
ri[WS(rs, 24)] = T7W - T7Z;
|
| 620 |
ri[WS(rs, 8)] = T7W + T7Z;
|
| 621 |
T8c = T89 - T81; |
| 622 |
ii[WS(rs, 8)] = T8b + T8c;
|
| 623 |
ii[WS(rs, 24)] = T8c - T8b;
|
| 624 |
} |
| 625 |
{
|
| 626 |
E T7G, T7R, T8f, T8g; |
| 627 |
T7G = T7C + T7F; |
| 628 |
T7R = T7L + T7Q; |
| 629 |
ri[WS(rs, 20)] = FNMS(KP707106781, T7R, T7G);
|
| 630 |
ri[WS(rs, 4)] = FMA(KP707106781, T7R, T7G);
|
| 631 |
T8f = T8d + T8e; |
| 632 |
T8g = T7T + T7U; |
| 633 |
ii[WS(rs, 4)] = FMA(KP707106781, T8g, T8f);
|
| 634 |
ii[WS(rs, 20)] = FNMS(KP707106781, T8g, T8f);
|
| 635 |
} |
| 636 |
{
|
| 637 |
E T7S, T7V, T8h, T8i; |
| 638 |
T7S = T7C - T7F; |
| 639 |
T7V = T7T - T7U; |
| 640 |
ri[WS(rs, 28)] = FNMS(KP707106781, T7V, T7S);
|
| 641 |
ri[WS(rs, 12)] = FMA(KP707106781, T7V, T7S);
|
| 642 |
T8h = T8e - T8d; |
| 643 |
T8i = T7Q - T7L; |
| 644 |
ii[WS(rs, 12)] = FMA(KP707106781, T8i, T8h);
|
| 645 |
ii[WS(rs, 28)] = FNMS(KP707106781, T8i, T8h);
|
| 646 |
} |
| 647 |
} |
| 648 |
{
|
| 649 |
E T6I, T7m, T7w, T7A, T8l, T8r, T6T, T8m, T75, T7j, T7p, T8s, T7t, T7z, T7g; |
| 650 |
E T7k; |
| 651 |
{
|
| 652 |
E T6E, T6H, T7u, T7v; |
| 653 |
T6E = T8 - Tl; |
| 654 |
T6H = T6F - T6G; |
| 655 |
T6I = T6E - T6H; |
| 656 |
T7m = T6E + T6H; |
| 657 |
T7u = T7b + T7e; |
| 658 |
T7v = T78 + T79; |
| 659 |
T7w = FNMS(KP414213562, T7v, T7u); |
| 660 |
T7A = FMA(KP414213562, T7u, T7v); |
| 661 |
} |
| 662 |
{
|
| 663 |
E T8j, T8k, T6N, T6S; |
| 664 |
T8j = TM - Tz; |
| 665 |
T8k = T87 - T83; |
| 666 |
T8l = T8j + T8k; |
| 667 |
T8r = T8k - T8j; |
| 668 |
T6N = T6L - T6M; |
| 669 |
T6S = T6O + T6R; |
| 670 |
T6T = T6N - T6S; |
| 671 |
T8m = T6N + T6S; |
| 672 |
} |
| 673 |
{
|
| 674 |
E T6Z, T74, T7n, T7o; |
| 675 |
T6Z = T6X - T6Y; |
| 676 |
T74 = T70 - T73; |
| 677 |
T75 = FMA(KP414213562, T74, T6Z); |
| 678 |
T7j = FNMS(KP414213562, T6Z, T74); |
| 679 |
T7n = T6M + T6L; |
| 680 |
T7o = T6O - T6R; |
| 681 |
T7p = T7n + T7o; |
| 682 |
T8s = T7o - T7n; |
| 683 |
} |
| 684 |
{
|
| 685 |
E T7r, T7s, T7a, T7f; |
| 686 |
T7r = T70 + T73; |
| 687 |
T7s = T6X + T6Y; |
| 688 |
T7t = FMA(KP414213562, T7s, T7r); |
| 689 |
T7z = FNMS(KP414213562, T7r, T7s); |
| 690 |
T7a = T78 - T79; |
| 691 |
T7f = T7b - T7e; |
| 692 |
T7g = FNMS(KP414213562, T7f, T7a); |
| 693 |
T7k = FMA(KP414213562, T7a, T7f); |
| 694 |
} |
| 695 |
{
|
| 696 |
E T6U, T7h, T8t, T8u; |
| 697 |
T6U = FMA(KP707106781, T6T, T6I); |
| 698 |
T7h = T75 - T7g; |
| 699 |
ri[WS(rs, 22)] = FNMS(KP923879532, T7h, T6U);
|
| 700 |
ri[WS(rs, 6)] = FMA(KP923879532, T7h, T6U);
|
| 701 |
T8t = FMA(KP707106781, T8s, T8r); |
| 702 |
T8u = T7k - T7j; |
| 703 |
ii[WS(rs, 6)] = FMA(KP923879532, T8u, T8t);
|
| 704 |
ii[WS(rs, 22)] = FNMS(KP923879532, T8u, T8t);
|
| 705 |
} |
| 706 |
{
|
| 707 |
E T7i, T7l, T8v, T8w; |
| 708 |
T7i = FNMS(KP707106781, T6T, T6I); |
| 709 |
T7l = T7j + T7k; |
| 710 |
ri[WS(rs, 14)] = FNMS(KP923879532, T7l, T7i);
|
| 711 |
ri[WS(rs, 30)] = FMA(KP923879532, T7l, T7i);
|
| 712 |
T8v = FNMS(KP707106781, T8s, T8r); |
| 713 |
T8w = T75 + T7g; |
| 714 |
ii[WS(rs, 14)] = FNMS(KP923879532, T8w, T8v);
|
| 715 |
ii[WS(rs, 30)] = FMA(KP923879532, T8w, T8v);
|
| 716 |
} |
| 717 |
{
|
| 718 |
E T7q, T7x, T8n, T8o; |
| 719 |
T7q = FMA(KP707106781, T7p, T7m); |
| 720 |
T7x = T7t + T7w; |
| 721 |
ri[WS(rs, 18)] = FNMS(KP923879532, T7x, T7q);
|
| 722 |
ri[WS(rs, 2)] = FMA(KP923879532, T7x, T7q);
|
| 723 |
T8n = FMA(KP707106781, T8m, T8l); |
| 724 |
T8o = T7z + T7A; |
| 725 |
ii[WS(rs, 2)] = FMA(KP923879532, T8o, T8n);
|
| 726 |
ii[WS(rs, 18)] = FNMS(KP923879532, T8o, T8n);
|
| 727 |
} |
| 728 |
{
|
| 729 |
E T7y, T7B, T8p, T8q; |
| 730 |
T7y = FNMS(KP707106781, T7p, T7m); |
| 731 |
T7B = T7z - T7A; |
| 732 |
ri[WS(rs, 26)] = FNMS(KP923879532, T7B, T7y);
|
| 733 |
ri[WS(rs, 10)] = FMA(KP923879532, T7B, T7y);
|
| 734 |
T8p = FNMS(KP707106781, T8m, T8l); |
| 735 |
T8q = T7w - T7t; |
| 736 |
ii[WS(rs, 10)] = FMA(KP923879532, T8q, T8p);
|
| 737 |
ii[WS(rs, 26)] = FNMS(KP923879532, T8q, T8p);
|
| 738 |
} |
| 739 |
} |
| 740 |
{
|
| 741 |
E T3S, T5C, T4n, T8C, T8B, T8H, T5F, T8I, T5w, T5Q, T5A, T5M, T4X, T5P, T5z; |
| 742 |
E T5J; |
| 743 |
{
|
| 744 |
E T3C, T3R, T5D, T5E; |
| 745 |
T3C = T3w + T3B; |
| 746 |
T3R = T3J + T3Q; |
| 747 |
T3S = FNMS(KP707106781, T3R, T3C); |
| 748 |
T5C = FMA(KP707106781, T3R, T3C); |
| 749 |
{
|
| 750 |
E T47, T4m, T8z, T8A; |
| 751 |
T47 = FNMS(KP414213562, T46, T3Z); |
| 752 |
T4m = FMA(KP414213562, T4l, T4e); |
| 753 |
T4n = T47 - T4m; |
| 754 |
T8C = T47 + T4m; |
| 755 |
T8z = T8x - T8y; |
| 756 |
T8A = T5T + T5U; |
| 757 |
T8B = FMA(KP707106781, T8A, T8z); |
| 758 |
T8H = FNMS(KP707106781, T8A, T8z); |
| 759 |
} |
| 760 |
T5D = FMA(KP414213562, T3Z, T46); |
| 761 |
T5E = FNMS(KP414213562, T4e, T4l); |
| 762 |
T5F = T5D + T5E; |
| 763 |
T8I = T5E - T5D; |
| 764 |
{
|
| 765 |
E T5k, T5L, T5v, T5K, T5j, T5u; |
| 766 |
T5j = T5b + T5i; |
| 767 |
T5k = FNMS(KP707106781, T5j, T54); |
| 768 |
T5L = FMA(KP707106781, T5j, T54); |
| 769 |
T5u = T5s + T5t; |
| 770 |
T5v = FNMS(KP707106781, T5u, T5r); |
| 771 |
T5K = FMA(KP707106781, T5u, T5r); |
| 772 |
T5w = FNMS(KP668178637, T5v, T5k); |
| 773 |
T5Q = FMA(KP198912367, T5K, T5L); |
| 774 |
T5A = FMA(KP668178637, T5k, T5v); |
| 775 |
T5M = FNMS(KP198912367, T5L, T5K); |
| 776 |
} |
| 777 |
{
|
| 778 |
E T4L, T5I, T4W, T5H, T4K, T4V; |
| 779 |
T4K = T4C + T4J; |
| 780 |
T4L = FNMS(KP707106781, T4K, T4v); |
| 781 |
T5I = FMA(KP707106781, T4K, T4v); |
| 782 |
T4V = T4T + T4U; |
| 783 |
T4W = FNMS(KP707106781, T4V, T4S); |
| 784 |
T5H = FMA(KP707106781, T4V, T4S); |
| 785 |
T4X = FMA(KP668178637, T4W, T4L); |
| 786 |
T5P = FNMS(KP198912367, T5H, T5I); |
| 787 |
T5z = FNMS(KP668178637, T4L, T4W); |
| 788 |
T5J = FMA(KP198912367, T5I, T5H); |
| 789 |
} |
| 790 |
} |
| 791 |
{
|
| 792 |
E T4o, T5x, T8J, T8K; |
| 793 |
T4o = FMA(KP923879532, T4n, T3S); |
| 794 |
T5x = T4X - T5w; |
| 795 |
ri[WS(rs, 21)] = FNMS(KP831469612, T5x, T4o);
|
| 796 |
ri[WS(rs, 5)] = FMA(KP831469612, T5x, T4o);
|
| 797 |
T8J = FMA(KP923879532, T8I, T8H); |
| 798 |
T8K = T5A - T5z; |
| 799 |
ii[WS(rs, 5)] = FMA(KP831469612, T8K, T8J);
|
| 800 |
ii[WS(rs, 21)] = FNMS(KP831469612, T8K, T8J);
|
| 801 |
} |
| 802 |
{
|
| 803 |
E T5y, T5B, T8L, T8M; |
| 804 |
T5y = FNMS(KP923879532, T4n, T3S); |
| 805 |
T5B = T5z + T5A; |
| 806 |
ri[WS(rs, 13)] = FNMS(KP831469612, T5B, T5y);
|
| 807 |
ri[WS(rs, 29)] = FMA(KP831469612, T5B, T5y);
|
| 808 |
T8L = FNMS(KP923879532, T8I, T8H); |
| 809 |
T8M = T4X + T5w; |
| 810 |
ii[WS(rs, 13)] = FNMS(KP831469612, T8M, T8L);
|
| 811 |
ii[WS(rs, 29)] = FMA(KP831469612, T8M, T8L);
|
| 812 |
} |
| 813 |
{
|
| 814 |
E T5G, T5N, T8D, T8E; |
| 815 |
T5G = FMA(KP923879532, T5F, T5C); |
| 816 |
T5N = T5J + T5M; |
| 817 |
ri[WS(rs, 17)] = FNMS(KP980785280, T5N, T5G);
|
| 818 |
ri[WS(rs, 1)] = FMA(KP980785280, T5N, T5G);
|
| 819 |
T8D = FMA(KP923879532, T8C, T8B); |
| 820 |
T8E = T5P + T5Q; |
| 821 |
ii[WS(rs, 1)] = FMA(KP980785280, T8E, T8D);
|
| 822 |
ii[WS(rs, 17)] = FNMS(KP980785280, T8E, T8D);
|
| 823 |
} |
| 824 |
{
|
| 825 |
E T5O, T5R, T8F, T8G; |
| 826 |
T5O = FNMS(KP923879532, T5F, T5C); |
| 827 |
T5R = T5P - T5Q; |
| 828 |
ri[WS(rs, 25)] = FNMS(KP980785280, T5R, T5O);
|
| 829 |
ri[WS(rs, 9)] = FMA(KP980785280, T5R, T5O);
|
| 830 |
T8F = FNMS(KP923879532, T8C, T8B); |
| 831 |
T8G = T5M - T5J; |
| 832 |
ii[WS(rs, 9)] = FMA(KP980785280, T8G, T8F);
|
| 833 |
ii[WS(rs, 25)] = FNMS(KP980785280, T8G, T8F);
|
| 834 |
} |
| 835 |
} |
| 836 |
{
|
| 837 |
E T5W, T6o, T63, T8W, T8P, T8V, T6r, T8Q, T6i, T6C, T6m, T6y, T6b, T6B, T6l; |
| 838 |
E T6v; |
| 839 |
{
|
| 840 |
E T5S, T5V, T6p, T6q; |
| 841 |
T5S = T3w - T3B; |
| 842 |
T5V = T5T - T5U; |
| 843 |
T5W = FMA(KP707106781, T5V, T5S); |
| 844 |
T6o = FNMS(KP707106781, T5V, T5S); |
| 845 |
{
|
| 846 |
E T5Z, T62, T8N, T8O; |
| 847 |
T5Z = FMA(KP414213562, T5Y, T5X); |
| 848 |
T62 = FNMS(KP414213562, T61, T60); |
| 849 |
T63 = T5Z - T62; |
| 850 |
T8W = T5Z + T62; |
| 851 |
T8N = T8y + T8x; |
| 852 |
T8O = T3Q - T3J; |
| 853 |
T8P = FMA(KP707106781, T8O, T8N); |
| 854 |
T8V = FNMS(KP707106781, T8O, T8N); |
| 855 |
} |
| 856 |
T6p = FNMS(KP414213562, T5X, T5Y); |
| 857 |
T6q = FMA(KP414213562, T60, T61); |
| 858 |
T6r = T6p + T6q; |
| 859 |
T8Q = T6q - T6p; |
| 860 |
{
|
| 861 |
E T6e, T6x, T6h, T6w, T6d, T6g; |
| 862 |
T6d = T5i - T5b; |
| 863 |
T6e = FNMS(KP707106781, T6d, T6c); |
| 864 |
T6x = FMA(KP707106781, T6d, T6c); |
| 865 |
T6g = T5s - T5t; |
| 866 |
T6h = FNMS(KP707106781, T6g, T6f); |
| 867 |
T6w = FMA(KP707106781, T6g, T6f); |
| 868 |
T6i = FNMS(KP668178637, T6h, T6e); |
| 869 |
T6C = FMA(KP198912367, T6w, T6x); |
| 870 |
T6m = FMA(KP668178637, T6e, T6h); |
| 871 |
T6y = FNMS(KP198912367, T6x, T6w); |
| 872 |
} |
| 873 |
{
|
| 874 |
E T67, T6u, T6a, T6t, T66, T69; |
| 875 |
T66 = T4J - T4C; |
| 876 |
T67 = FNMS(KP707106781, T66, T65); |
| 877 |
T6u = FMA(KP707106781, T66, T65); |
| 878 |
T69 = T4T - T4U; |
| 879 |
T6a = FNMS(KP707106781, T69, T68); |
| 880 |
T6t = FMA(KP707106781, T69, T68); |
| 881 |
T6b = FMA(KP668178637, T6a, T67); |
| 882 |
T6B = FNMS(KP198912367, T6t, T6u); |
| 883 |
T6l = FNMS(KP668178637, T67, T6a); |
| 884 |
T6v = FMA(KP198912367, T6u, T6t); |
| 885 |
} |
| 886 |
} |
| 887 |
{
|
| 888 |
E T64, T6j, T8R, T8S; |
| 889 |
T64 = FMA(KP923879532, T63, T5W); |
| 890 |
T6j = T6b + T6i; |
| 891 |
ri[WS(rs, 19)] = FNMS(KP831469612, T6j, T64);
|
| 892 |
ri[WS(rs, 3)] = FMA(KP831469612, T6j, T64);
|
| 893 |
T8R = FMA(KP923879532, T8Q, T8P); |
| 894 |
T8S = T6l + T6m; |
| 895 |
ii[WS(rs, 3)] = FMA(KP831469612, T8S, T8R);
|
| 896 |
ii[WS(rs, 19)] = FNMS(KP831469612, T8S, T8R);
|
| 897 |
} |
| 898 |
{
|
| 899 |
E T6k, T6n, T8T, T8U; |
| 900 |
T6k = FNMS(KP923879532, T63, T5W); |
| 901 |
T6n = T6l - T6m; |
| 902 |
ri[WS(rs, 27)] = FNMS(KP831469612, T6n, T6k);
|
| 903 |
ri[WS(rs, 11)] = FMA(KP831469612, T6n, T6k);
|
| 904 |
T8T = FNMS(KP923879532, T8Q, T8P); |
| 905 |
T8U = T6i - T6b; |
| 906 |
ii[WS(rs, 11)] = FMA(KP831469612, T8U, T8T);
|
| 907 |
ii[WS(rs, 27)] = FNMS(KP831469612, T8U, T8T);
|
| 908 |
} |
| 909 |
{
|
| 910 |
E T6s, T6z, T8X, T8Y; |
| 911 |
T6s = FNMS(KP923879532, T6r, T6o); |
| 912 |
T6z = T6v - T6y; |
| 913 |
ri[WS(rs, 23)] = FNMS(KP980785280, T6z, T6s);
|
| 914 |
ri[WS(rs, 7)] = FMA(KP980785280, T6z, T6s);
|
| 915 |
T8X = FNMS(KP923879532, T8W, T8V); |
| 916 |
T8Y = T6C - T6B; |
| 917 |
ii[WS(rs, 7)] = FMA(KP980785280, T8Y, T8X);
|
| 918 |
ii[WS(rs, 23)] = FNMS(KP980785280, T8Y, T8X);
|
| 919 |
} |
| 920 |
{
|
| 921 |
E T6A, T6D, T8Z, T90; |
| 922 |
T6A = FMA(KP923879532, T6r, T6o); |
| 923 |
T6D = T6B + T6C; |
| 924 |
ri[WS(rs, 15)] = FNMS(KP980785280, T6D, T6A);
|
| 925 |
ri[WS(rs, 31)] = FMA(KP980785280, T6D, T6A);
|
| 926 |
T8Z = FMA(KP923879532, T8W, T8V); |
| 927 |
T90 = T6v + T6y; |
| 928 |
ii[WS(rs, 15)] = FNMS(KP980785280, T90, T8Z);
|
| 929 |
ii[WS(rs, 31)] = FMA(KP980785280, T90, T8Z);
|
| 930 |
} |
| 931 |
} |
| 932 |
} |
| 933 |
} |
| 934 |
} |
| 935 |
|
| 936 |
static const tw_instr twinstr[] = { |
| 937 |
{TW_FULL, 0, 32},
|
| 938 |
{TW_NEXT, 1, 0}
|
| 939 |
}; |
| 940 |
|
| 941 |
static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {236, 62, 198, 0}, 0, 0, 0 }; |
| 942 |
|
| 943 |
void X(codelet_t1_32) (planner *p) {
|
| 944 |
X(kdft_dit_register) (p, t1_32, &desc); |
| 945 |
} |
| 946 |
#else
|
| 947 |
|
| 948 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 32 -name t1_32 -include dft/scalar/t.h */
|
| 949 |
|
| 950 |
/*
|
| 951 |
* This function contains 434 FP additions, 208 FP multiplications,
|
| 952 |
* (or, 340 additions, 114 multiplications, 94 fused multiply/add),
|
| 953 |
* 96 stack variables, 7 constants, and 128 memory accesses
|
| 954 |
*/
|
| 955 |
#include "dft/scalar/t.h" |
| 956 |
|
| 957 |
static void t1_32(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 958 |
{
|
| 959 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 960 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 961 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 962 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 963 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 964 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 965 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 966 |
{
|
| 967 |
INT m; |
| 968 |
for (m = mb, W = W + (mb * 62); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
| 969 |
E Tj, T5F, T7C, T7Q, T35, T4T, T78, T7m, T1Q, T61, T5Y, T6J, T3K, T59, T41; |
| 970 |
E T56, T2B, T67, T6e, T6O, T4b, T5d, T4s, T5g, TG, T7l, T5I, T73, T3a, T4U; |
| 971 |
E T3f, T4V, T14, T5N, T5M, T6E, T3m, T4Y, T3r, T4Z, T1r, T5P, T5S, T6F, T3x; |
| 972 |
E T51, T3C, T52, T2d, T5Z, T64, T6K, T3V, T57, T44, T5a, T2Y, T6f, T6a, T6P; |
| 973 |
E T4m, T5h, T4v, T5e; |
| 974 |
{
|
| 975 |
E T1, T76, T6, T75, Tc, T32, Th, T33; |
| 976 |
T1 = ri[0];
|
| 977 |
T76 = ii[0];
|
| 978 |
{
|
| 979 |
E T3, T5, T2, T4; |
| 980 |
T3 = ri[WS(rs, 16)];
|
| 981 |
T5 = ii[WS(rs, 16)];
|
| 982 |
T2 = W[30];
|
| 983 |
T4 = W[31];
|
| 984 |
T6 = FMA(T2, T3, T4 * T5); |
| 985 |
T75 = FNMS(T4, T3, T2 * T5); |
| 986 |
} |
| 987 |
{
|
| 988 |
E T9, Tb, T8, Ta; |
| 989 |
T9 = ri[WS(rs, 8)];
|
| 990 |
Tb = ii[WS(rs, 8)];
|
| 991 |
T8 = W[14];
|
| 992 |
Ta = W[15];
|
| 993 |
Tc = FMA(T8, T9, Ta * Tb); |
| 994 |
T32 = FNMS(Ta, T9, T8 * Tb); |
| 995 |
} |
| 996 |
{
|
| 997 |
E Te, Tg, Td, Tf; |
| 998 |
Te = ri[WS(rs, 24)];
|
| 999 |
Tg = ii[WS(rs, 24)];
|
| 1000 |
Td = W[46];
|
| 1001 |
Tf = W[47];
|
| 1002 |
Th = FMA(Td, Te, Tf * Tg); |
| 1003 |
T33 = FNMS(Tf, Te, Td * Tg); |
| 1004 |
} |
| 1005 |
{
|
| 1006 |
E T7, Ti, T7A, T7B; |
| 1007 |
T7 = T1 + T6; |
| 1008 |
Ti = Tc + Th; |
| 1009 |
Tj = T7 + Ti; |
| 1010 |
T5F = T7 - Ti; |
| 1011 |
T7A = T76 - T75; |
| 1012 |
T7B = Tc - Th; |
| 1013 |
T7C = T7A - T7B; |
| 1014 |
T7Q = T7B + T7A; |
| 1015 |
} |
| 1016 |
{
|
| 1017 |
E T31, T34, T74, T77; |
| 1018 |
T31 = T1 - T6; |
| 1019 |
T34 = T32 - T33; |
| 1020 |
T35 = T31 - T34; |
| 1021 |
T4T = T31 + T34; |
| 1022 |
T74 = T32 + T33; |
| 1023 |
T77 = T75 + T76; |
| 1024 |
T78 = T74 + T77; |
| 1025 |
T7m = T77 - T74; |
| 1026 |
} |
| 1027 |
} |
| 1028 |
{
|
| 1029 |
E T1y, T3G, T1O, T3Z, T1D, T3H, T1J, T3Y; |
| 1030 |
{
|
| 1031 |
E T1v, T1x, T1u, T1w; |
| 1032 |
T1v = ri[WS(rs, 1)];
|
| 1033 |
T1x = ii[WS(rs, 1)];
|
| 1034 |
T1u = W[0];
|
| 1035 |
T1w = W[1];
|
| 1036 |
T1y = FMA(T1u, T1v, T1w * T1x); |
| 1037 |
T3G = FNMS(T1w, T1v, T1u * T1x); |
| 1038 |
} |
| 1039 |
{
|
| 1040 |
E T1L, T1N, T1K, T1M; |
| 1041 |
T1L = ri[WS(rs, 25)];
|
| 1042 |
T1N = ii[WS(rs, 25)];
|
| 1043 |
T1K = W[48];
|
| 1044 |
T1M = W[49];
|
| 1045 |
T1O = FMA(T1K, T1L, T1M * T1N); |
| 1046 |
T3Z = FNMS(T1M, T1L, T1K * T1N); |
| 1047 |
} |
| 1048 |
{
|
| 1049 |
E T1A, T1C, T1z, T1B; |
| 1050 |
T1A = ri[WS(rs, 17)];
|
| 1051 |
T1C = ii[WS(rs, 17)];
|
| 1052 |
T1z = W[32];
|
| 1053 |
T1B = W[33];
|
| 1054 |
T1D = FMA(T1z, T1A, T1B * T1C); |
| 1055 |
T3H = FNMS(T1B, T1A, T1z * T1C); |
| 1056 |
} |
| 1057 |
{
|
| 1058 |
E T1G, T1I, T1F, T1H; |
| 1059 |
T1G = ri[WS(rs, 9)];
|
| 1060 |
T1I = ii[WS(rs, 9)];
|
| 1061 |
T1F = W[16];
|
| 1062 |
T1H = W[17];
|
| 1063 |
T1J = FMA(T1F, T1G, T1H * T1I); |
| 1064 |
T3Y = FNMS(T1H, T1G, T1F * T1I); |
| 1065 |
} |
| 1066 |
{
|
| 1067 |
E T1E, T1P, T5W, T5X; |
| 1068 |
T1E = T1y + T1D; |
| 1069 |
T1P = T1J + T1O; |
| 1070 |
T1Q = T1E + T1P; |
| 1071 |
T61 = T1E - T1P; |
| 1072 |
T5W = T3G + T3H; |
| 1073 |
T5X = T3Y + T3Z; |
| 1074 |
T5Y = T5W - T5X; |
| 1075 |
T6J = T5W + T5X; |
| 1076 |
} |
| 1077 |
{
|
| 1078 |
E T3I, T3J, T3X, T40; |
| 1079 |
T3I = T3G - T3H; |
| 1080 |
T3J = T1J - T1O; |
| 1081 |
T3K = T3I + T3J; |
| 1082 |
T59 = T3I - T3J; |
| 1083 |
T3X = T1y - T1D; |
| 1084 |
T40 = T3Y - T3Z; |
| 1085 |
T41 = T3X - T40; |
| 1086 |
T56 = T3X + T40; |
| 1087 |
} |
| 1088 |
} |
| 1089 |
{
|
| 1090 |
E T2j, T4o, T2z, T49, T2o, T4p, T2u, T48; |
| 1091 |
{
|
| 1092 |
E T2g, T2i, T2f, T2h; |
| 1093 |
T2g = ri[WS(rs, 31)];
|
| 1094 |
T2i = ii[WS(rs, 31)];
|
| 1095 |
T2f = W[60];
|
| 1096 |
T2h = W[61];
|
| 1097 |
T2j = FMA(T2f, T2g, T2h * T2i); |
| 1098 |
T4o = FNMS(T2h, T2g, T2f * T2i); |
| 1099 |
} |
| 1100 |
{
|
| 1101 |
E T2w, T2y, T2v, T2x; |
| 1102 |
T2w = ri[WS(rs, 23)];
|
| 1103 |
T2y = ii[WS(rs, 23)];
|
| 1104 |
T2v = W[44];
|
| 1105 |
T2x = W[45];
|
| 1106 |
T2z = FMA(T2v, T2w, T2x * T2y); |
| 1107 |
T49 = FNMS(T2x, T2w, T2v * T2y); |
| 1108 |
} |
| 1109 |
{
|
| 1110 |
E T2l, T2n, T2k, T2m; |
| 1111 |
T2l = ri[WS(rs, 15)];
|
| 1112 |
T2n = ii[WS(rs, 15)];
|
| 1113 |
T2k = W[28];
|
| 1114 |
T2m = W[29];
|
| 1115 |
T2o = FMA(T2k, T2l, T2m * T2n); |
| 1116 |
T4p = FNMS(T2m, T2l, T2k * T2n); |
| 1117 |
} |
| 1118 |
{
|
| 1119 |
E T2r, T2t, T2q, T2s; |
| 1120 |
T2r = ri[WS(rs, 7)];
|
| 1121 |
T2t = ii[WS(rs, 7)];
|
| 1122 |
T2q = W[12];
|
| 1123 |
T2s = W[13];
|
| 1124 |
T2u = FMA(T2q, T2r, T2s * T2t); |
| 1125 |
T48 = FNMS(T2s, T2r, T2q * T2t); |
| 1126 |
} |
| 1127 |
{
|
| 1128 |
E T2p, T2A, T6c, T6d; |
| 1129 |
T2p = T2j + T2o; |
| 1130 |
T2A = T2u + T2z; |
| 1131 |
T2B = T2p + T2A; |
| 1132 |
T67 = T2p - T2A; |
| 1133 |
T6c = T4o + T4p; |
| 1134 |
T6d = T48 + T49; |
| 1135 |
T6e = T6c - T6d; |
| 1136 |
T6O = T6c + T6d; |
| 1137 |
} |
| 1138 |
{
|
| 1139 |
E T47, T4a, T4q, T4r; |
| 1140 |
T47 = T2j - T2o; |
| 1141 |
T4a = T48 - T49; |
| 1142 |
T4b = T47 - T4a; |
| 1143 |
T5d = T47 + T4a; |
| 1144 |
T4q = T4o - T4p; |
| 1145 |
T4r = T2u - T2z; |
| 1146 |
T4s = T4q + T4r; |
| 1147 |
T5g = T4q - T4r; |
| 1148 |
} |
| 1149 |
} |
| 1150 |
{
|
| 1151 |
E To, T36, TE, T3d, Tt, T37, Tz, T3c; |
| 1152 |
{
|
| 1153 |
E Tl, Tn, Tk, Tm; |
| 1154 |
Tl = ri[WS(rs, 4)];
|
| 1155 |
Tn = ii[WS(rs, 4)];
|
| 1156 |
Tk = W[6];
|
| 1157 |
Tm = W[7];
|
| 1158 |
To = FMA(Tk, Tl, Tm * Tn); |
| 1159 |
T36 = FNMS(Tm, Tl, Tk * Tn); |
| 1160 |
} |
| 1161 |
{
|
| 1162 |
E TB, TD, TA, TC; |
| 1163 |
TB = ri[WS(rs, 12)];
|
| 1164 |
TD = ii[WS(rs, 12)];
|
| 1165 |
TA = W[22];
|
| 1166 |
TC = W[23];
|
| 1167 |
TE = FMA(TA, TB, TC * TD); |
| 1168 |
T3d = FNMS(TC, TB, TA * TD); |
| 1169 |
} |
| 1170 |
{
|
| 1171 |
E Tq, Ts, Tp, Tr; |
| 1172 |
Tq = ri[WS(rs, 20)];
|
| 1173 |
Ts = ii[WS(rs, 20)];
|
| 1174 |
Tp = W[38];
|
| 1175 |
Tr = W[39];
|
| 1176 |
Tt = FMA(Tp, Tq, Tr * Ts); |
| 1177 |
T37 = FNMS(Tr, Tq, Tp * Ts); |
| 1178 |
} |
| 1179 |
{
|
| 1180 |
E Tw, Ty, Tv, Tx; |
| 1181 |
Tw = ri[WS(rs, 28)];
|
| 1182 |
Ty = ii[WS(rs, 28)];
|
| 1183 |
Tv = W[54];
|
| 1184 |
Tx = W[55];
|
| 1185 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 1186 |
T3c = FNMS(Tx, Tw, Tv * Ty); |
| 1187 |
} |
| 1188 |
{
|
| 1189 |
E Tu, TF, T5G, T5H; |
| 1190 |
Tu = To + Tt; |
| 1191 |
TF = Tz + TE; |
| 1192 |
TG = Tu + TF; |
| 1193 |
T7l = TF - Tu; |
| 1194 |
T5G = T36 + T37; |
| 1195 |
T5H = T3c + T3d; |
| 1196 |
T5I = T5G - T5H; |
| 1197 |
T73 = T5G + T5H; |
| 1198 |
} |
| 1199 |
{
|
| 1200 |
E T38, T39, T3b, T3e; |
| 1201 |
T38 = T36 - T37; |
| 1202 |
T39 = To - Tt; |
| 1203 |
T3a = T38 - T39; |
| 1204 |
T4U = T39 + T38; |
| 1205 |
T3b = Tz - TE; |
| 1206 |
T3e = T3c - T3d; |
| 1207 |
T3f = T3b + T3e; |
| 1208 |
T4V = T3b - T3e; |
| 1209 |
} |
| 1210 |
} |
| 1211 |
{
|
| 1212 |
E TM, T3i, T12, T3p, TR, T3j, TX, T3o; |
| 1213 |
{
|
| 1214 |
E TJ, TL, TI, TK; |
| 1215 |
TJ = ri[WS(rs, 2)];
|
| 1216 |
TL = ii[WS(rs, 2)];
|
| 1217 |
TI = W[2];
|
| 1218 |
TK = W[3];
|
| 1219 |
TM = FMA(TI, TJ, TK * TL); |
| 1220 |
T3i = FNMS(TK, TJ, TI * TL); |
| 1221 |
} |
| 1222 |
{
|
| 1223 |
E TZ, T11, TY, T10; |
| 1224 |
TZ = ri[WS(rs, 26)];
|
| 1225 |
T11 = ii[WS(rs, 26)];
|
| 1226 |
TY = W[50];
|
| 1227 |
T10 = W[51];
|
| 1228 |
T12 = FMA(TY, TZ, T10 * T11); |
| 1229 |
T3p = FNMS(T10, TZ, TY * T11); |
| 1230 |
} |
| 1231 |
{
|
| 1232 |
E TO, TQ, TN, TP; |
| 1233 |
TO = ri[WS(rs, 18)];
|
| 1234 |
TQ = ii[WS(rs, 18)];
|
| 1235 |
TN = W[34];
|
| 1236 |
TP = W[35];
|
| 1237 |
TR = FMA(TN, TO, TP * TQ); |
| 1238 |
T3j = FNMS(TP, TO, TN * TQ); |
| 1239 |
} |
| 1240 |
{
|
| 1241 |
E TU, TW, TT, TV; |
| 1242 |
TU = ri[WS(rs, 10)];
|
| 1243 |
TW = ii[WS(rs, 10)];
|
| 1244 |
TT = W[18];
|
| 1245 |
TV = W[19];
|
| 1246 |
TX = FMA(TT, TU, TV * TW); |
| 1247 |
T3o = FNMS(TV, TU, TT * TW); |
| 1248 |
} |
| 1249 |
{
|
| 1250 |
E TS, T13, T5K, T5L; |
| 1251 |
TS = TM + TR; |
| 1252 |
T13 = TX + T12; |
| 1253 |
T14 = TS + T13; |
| 1254 |
T5N = TS - T13; |
| 1255 |
T5K = T3i + T3j; |
| 1256 |
T5L = T3o + T3p; |
| 1257 |
T5M = T5K - T5L; |
| 1258 |
T6E = T5K + T5L; |
| 1259 |
} |
| 1260 |
{
|
| 1261 |
E T3k, T3l, T3n, T3q; |
| 1262 |
T3k = T3i - T3j; |
| 1263 |
T3l = TX - T12; |
| 1264 |
T3m = T3k + T3l; |
| 1265 |
T4Y = T3k - T3l; |
| 1266 |
T3n = TM - TR; |
| 1267 |
T3q = T3o - T3p; |
| 1268 |
T3r = T3n - T3q; |
| 1269 |
T4Z = T3n + T3q; |
| 1270 |
} |
| 1271 |
} |
| 1272 |
{
|
| 1273 |
E T19, T3t, T1p, T3A, T1e, T3u, T1k, T3z; |
| 1274 |
{
|
| 1275 |
E T16, T18, T15, T17; |
| 1276 |
T16 = ri[WS(rs, 30)];
|
| 1277 |
T18 = ii[WS(rs, 30)];
|
| 1278 |
T15 = W[58];
|
| 1279 |
T17 = W[59];
|
| 1280 |
T19 = FMA(T15, T16, T17 * T18); |
| 1281 |
T3t = FNMS(T17, T16, T15 * T18); |
| 1282 |
} |
| 1283 |
{
|
| 1284 |
E T1m, T1o, T1l, T1n; |
| 1285 |
T1m = ri[WS(rs, 22)];
|
| 1286 |
T1o = ii[WS(rs, 22)];
|
| 1287 |
T1l = W[42];
|
| 1288 |
T1n = W[43];
|
| 1289 |
T1p = FMA(T1l, T1m, T1n * T1o); |
| 1290 |
T3A = FNMS(T1n, T1m, T1l * T1o); |
| 1291 |
} |
| 1292 |
{
|
| 1293 |
E T1b, T1d, T1a, T1c; |
| 1294 |
T1b = ri[WS(rs, 14)];
|
| 1295 |
T1d = ii[WS(rs, 14)];
|
| 1296 |
T1a = W[26];
|
| 1297 |
T1c = W[27];
|
| 1298 |
T1e = FMA(T1a, T1b, T1c * T1d); |
| 1299 |
T3u = FNMS(T1c, T1b, T1a * T1d); |
| 1300 |
} |
| 1301 |
{
|
| 1302 |
E T1h, T1j, T1g, T1i; |
| 1303 |
T1h = ri[WS(rs, 6)];
|
| 1304 |
T1j = ii[WS(rs, 6)];
|
| 1305 |
T1g = W[10];
|
| 1306 |
T1i = W[11];
|
| 1307 |
T1k = FMA(T1g, T1h, T1i * T1j); |
| 1308 |
T3z = FNMS(T1i, T1h, T1g * T1j); |
| 1309 |
} |
| 1310 |
{
|
| 1311 |
E T1f, T1q, T5Q, T5R; |
| 1312 |
T1f = T19 + T1e; |
| 1313 |
T1q = T1k + T1p; |
| 1314 |
T1r = T1f + T1q; |
| 1315 |
T5P = T1f - T1q; |
| 1316 |
T5Q = T3t + T3u; |
| 1317 |
T5R = T3z + T3A; |
| 1318 |
T5S = T5Q - T5R; |
| 1319 |
T6F = T5Q + T5R; |
| 1320 |
} |
| 1321 |
{
|
| 1322 |
E T3v, T3w, T3y, T3B; |
| 1323 |
T3v = T3t - T3u; |
| 1324 |
T3w = T1k - T1p; |
| 1325 |
T3x = T3v + T3w; |
| 1326 |
T51 = T3v - T3w; |
| 1327 |
T3y = T19 - T1e; |
| 1328 |
T3B = T3z - T3A; |
| 1329 |
T3C = T3y - T3B; |
| 1330 |
T52 = T3y + T3B; |
| 1331 |
} |
| 1332 |
} |
| 1333 |
{
|
| 1334 |
E T1V, T3R, T20, T3S, T3Q, T3T, T26, T3M, T2b, T3N, T3L, T3O; |
| 1335 |
{
|
| 1336 |
E T1S, T1U, T1R, T1T; |
| 1337 |
T1S = ri[WS(rs, 5)];
|
| 1338 |
T1U = ii[WS(rs, 5)];
|
| 1339 |
T1R = W[8];
|
| 1340 |
T1T = W[9];
|
| 1341 |
T1V = FMA(T1R, T1S, T1T * T1U); |
| 1342 |
T3R = FNMS(T1T, T1S, T1R * T1U); |
| 1343 |
} |
| 1344 |
{
|
| 1345 |
E T1X, T1Z, T1W, T1Y; |
| 1346 |
T1X = ri[WS(rs, 21)];
|
| 1347 |
T1Z = ii[WS(rs, 21)];
|
| 1348 |
T1W = W[40];
|
| 1349 |
T1Y = W[41];
|
| 1350 |
T20 = FMA(T1W, T1X, T1Y * T1Z); |
| 1351 |
T3S = FNMS(T1Y, T1X, T1W * T1Z); |
| 1352 |
} |
| 1353 |
T3Q = T1V - T20; |
| 1354 |
T3T = T3R - T3S; |
| 1355 |
{
|
| 1356 |
E T23, T25, T22, T24; |
| 1357 |
T23 = ri[WS(rs, 29)];
|
| 1358 |
T25 = ii[WS(rs, 29)];
|
| 1359 |
T22 = W[56];
|
| 1360 |
T24 = W[57];
|
| 1361 |
T26 = FMA(T22, T23, T24 * T25); |
| 1362 |
T3M = FNMS(T24, T23, T22 * T25); |
| 1363 |
} |
| 1364 |
{
|
| 1365 |
E T28, T2a, T27, T29; |
| 1366 |
T28 = ri[WS(rs, 13)];
|
| 1367 |
T2a = ii[WS(rs, 13)];
|
| 1368 |
T27 = W[24];
|
| 1369 |
T29 = W[25];
|
| 1370 |
T2b = FMA(T27, T28, T29 * T2a); |
| 1371 |
T3N = FNMS(T29, T28, T27 * T2a); |
| 1372 |
} |
| 1373 |
T3L = T26 - T2b; |
| 1374 |
T3O = T3M - T3N; |
| 1375 |
{
|
| 1376 |
E T21, T2c, T62, T63; |
| 1377 |
T21 = T1V + T20; |
| 1378 |
T2c = T26 + T2b; |
| 1379 |
T2d = T21 + T2c; |
| 1380 |
T5Z = T2c - T21; |
| 1381 |
T62 = T3R + T3S; |
| 1382 |
T63 = T3M + T3N; |
| 1383 |
T64 = T62 - T63; |
| 1384 |
T6K = T62 + T63; |
| 1385 |
} |
| 1386 |
{
|
| 1387 |
E T3P, T3U, T42, T43; |
| 1388 |
T3P = T3L - T3O; |
| 1389 |
T3U = T3Q + T3T; |
| 1390 |
T3V = KP707106781 * (T3P - T3U); |
| 1391 |
T57 = KP707106781 * (T3U + T3P); |
| 1392 |
T42 = T3T - T3Q; |
| 1393 |
T43 = T3L + T3O; |
| 1394 |
T44 = KP707106781 * (T42 - T43); |
| 1395 |
T5a = KP707106781 * (T42 + T43); |
| 1396 |
} |
| 1397 |
} |
| 1398 |
{
|
| 1399 |
E T2G, T4c, T2L, T4d, T4e, T4f, T2R, T4i, T2W, T4j, T4h, T4k; |
| 1400 |
{
|
| 1401 |
E T2D, T2F, T2C, T2E; |
| 1402 |
T2D = ri[WS(rs, 3)];
|
| 1403 |
T2F = ii[WS(rs, 3)];
|
| 1404 |
T2C = W[4];
|
| 1405 |
T2E = W[5];
|
| 1406 |
T2G = FMA(T2C, T2D, T2E * T2F); |
| 1407 |
T4c = FNMS(T2E, T2D, T2C * T2F); |
| 1408 |
} |
| 1409 |
{
|
| 1410 |
E T2I, T2K, T2H, T2J; |
| 1411 |
T2I = ri[WS(rs, 19)];
|
| 1412 |
T2K = ii[WS(rs, 19)];
|
| 1413 |
T2H = W[36];
|
| 1414 |
T2J = W[37];
|
| 1415 |
T2L = FMA(T2H, T2I, T2J * T2K); |
| 1416 |
T4d = FNMS(T2J, T2I, T2H * T2K); |
| 1417 |
} |
| 1418 |
T4e = T4c - T4d; |
| 1419 |
T4f = T2G - T2L; |
| 1420 |
{
|
| 1421 |
E T2O, T2Q, T2N, T2P; |
| 1422 |
T2O = ri[WS(rs, 27)];
|
| 1423 |
T2Q = ii[WS(rs, 27)];
|
| 1424 |
T2N = W[52];
|
| 1425 |
T2P = W[53];
|
| 1426 |
T2R = FMA(T2N, T2O, T2P * T2Q); |
| 1427 |
T4i = FNMS(T2P, T2O, T2N * T2Q); |
| 1428 |
} |
| 1429 |
{
|
| 1430 |
E T2T, T2V, T2S, T2U; |
| 1431 |
T2T = ri[WS(rs, 11)];
|
| 1432 |
T2V = ii[WS(rs, 11)];
|
| 1433 |
T2S = W[20];
|
| 1434 |
T2U = W[21];
|
| 1435 |
T2W = FMA(T2S, T2T, T2U * T2V); |
| 1436 |
T4j = FNMS(T2U, T2T, T2S * T2V); |
| 1437 |
} |
| 1438 |
T4h = T2R - T2W; |
| 1439 |
T4k = T4i - T4j; |
| 1440 |
{
|
| 1441 |
E T2M, T2X, T68, T69; |
| 1442 |
T2M = T2G + T2L; |
| 1443 |
T2X = T2R + T2W; |
| 1444 |
T2Y = T2M + T2X; |
| 1445 |
T6f = T2X - T2M; |
| 1446 |
T68 = T4c + T4d; |
| 1447 |
T69 = T4i + T4j; |
| 1448 |
T6a = T68 - T69; |
| 1449 |
T6P = T68 + T69; |
| 1450 |
} |
| 1451 |
{
|
| 1452 |
E T4g, T4l, T4t, T4u; |
| 1453 |
T4g = T4e - T4f; |
| 1454 |
T4l = T4h + T4k; |
| 1455 |
T4m = KP707106781 * (T4g - T4l); |
| 1456 |
T5h = KP707106781 * (T4g + T4l); |
| 1457 |
T4t = T4h - T4k; |
| 1458 |
T4u = T4f + T4e; |
| 1459 |
T4v = KP707106781 * (T4t - T4u); |
| 1460 |
T5e = KP707106781 * (T4u + T4t); |
| 1461 |
} |
| 1462 |
} |
| 1463 |
{
|
| 1464 |
E T1t, T6X, T7a, T7c, T30, T7b, T70, T71; |
| 1465 |
{
|
| 1466 |
E TH, T1s, T72, T79; |
| 1467 |
TH = Tj + TG; |
| 1468 |
T1s = T14 + T1r; |
| 1469 |
T1t = TH + T1s; |
| 1470 |
T6X = TH - T1s; |
| 1471 |
T72 = T6E + T6F; |
| 1472 |
T79 = T73 + T78; |
| 1473 |
T7a = T72 + T79; |
| 1474 |
T7c = T79 - T72; |
| 1475 |
} |
| 1476 |
{
|
| 1477 |
E T2e, T2Z, T6Y, T6Z; |
| 1478 |
T2e = T1Q + T2d; |
| 1479 |
T2Z = T2B + T2Y; |
| 1480 |
T30 = T2e + T2Z; |
| 1481 |
T7b = T2Z - T2e; |
| 1482 |
T6Y = T6J + T6K; |
| 1483 |
T6Z = T6O + T6P; |
| 1484 |
T70 = T6Y - T6Z; |
| 1485 |
T71 = T6Y + T6Z; |
| 1486 |
} |
| 1487 |
ri[WS(rs, 16)] = T1t - T30;
|
| 1488 |
ii[WS(rs, 16)] = T7a - T71;
|
| 1489 |
ri[0] = T1t + T30;
|
| 1490 |
ii[0] = T71 + T7a;
|
| 1491 |
ri[WS(rs, 24)] = T6X - T70;
|
| 1492 |
ii[WS(rs, 24)] = T7c - T7b;
|
| 1493 |
ri[WS(rs, 8)] = T6X + T70;
|
| 1494 |
ii[WS(rs, 8)] = T7b + T7c;
|
| 1495 |
} |
| 1496 |
{
|
| 1497 |
E T6H, T6T, T7g, T7i, T6M, T6U, T6R, T6V; |
| 1498 |
{
|
| 1499 |
E T6D, T6G, T7e, T7f; |
| 1500 |
T6D = Tj - TG; |
| 1501 |
T6G = T6E - T6F; |
| 1502 |
T6H = T6D + T6G; |
| 1503 |
T6T = T6D - T6G; |
| 1504 |
T7e = T1r - T14; |
| 1505 |
T7f = T78 - T73; |
| 1506 |
T7g = T7e + T7f; |
| 1507 |
T7i = T7f - T7e; |
| 1508 |
} |
| 1509 |
{
|
| 1510 |
E T6I, T6L, T6N, T6Q; |
| 1511 |
T6I = T1Q - T2d; |
| 1512 |
T6L = T6J - T6K; |
| 1513 |
T6M = T6I + T6L; |
| 1514 |
T6U = T6L - T6I; |
| 1515 |
T6N = T2B - T2Y; |
| 1516 |
T6Q = T6O - T6P; |
| 1517 |
T6R = T6N - T6Q; |
| 1518 |
T6V = T6N + T6Q; |
| 1519 |
} |
| 1520 |
{
|
| 1521 |
E T6S, T7d, T6W, T7h; |
| 1522 |
T6S = KP707106781 * (T6M + T6R); |
| 1523 |
ri[WS(rs, 20)] = T6H - T6S;
|
| 1524 |
ri[WS(rs, 4)] = T6H + T6S;
|
| 1525 |
T7d = KP707106781 * (T6U + T6V); |
| 1526 |
ii[WS(rs, 4)] = T7d + T7g;
|
| 1527 |
ii[WS(rs, 20)] = T7g - T7d;
|
| 1528 |
T6W = KP707106781 * (T6U - T6V); |
| 1529 |
ri[WS(rs, 28)] = T6T - T6W;
|
| 1530 |
ri[WS(rs, 12)] = T6T + T6W;
|
| 1531 |
T7h = KP707106781 * (T6R - T6M); |
| 1532 |
ii[WS(rs, 12)] = T7h + T7i;
|
| 1533 |
ii[WS(rs, 28)] = T7i - T7h;
|
| 1534 |
} |
| 1535 |
} |
| 1536 |
{
|
| 1537 |
E T5J, T7n, T7t, T6n, T5U, T7k, T6x, T6B, T6q, T7s, T66, T6k, T6u, T6A, T6h; |
| 1538 |
E T6l; |
| 1539 |
{
|
| 1540 |
E T5O, T5T, T60, T65; |
| 1541 |
T5J = T5F - T5I; |
| 1542 |
T7n = T7l + T7m; |
| 1543 |
T7t = T7m - T7l; |
| 1544 |
T6n = T5F + T5I; |
| 1545 |
T5O = T5M - T5N; |
| 1546 |
T5T = T5P + T5S; |
| 1547 |
T5U = KP707106781 * (T5O - T5T); |
| 1548 |
T7k = KP707106781 * (T5O + T5T); |
| 1549 |
{
|
| 1550 |
E T6v, T6w, T6o, T6p; |
| 1551 |
T6v = T67 + T6a; |
| 1552 |
T6w = T6e + T6f; |
| 1553 |
T6x = FNMS(KP382683432, T6w, KP923879532 * T6v); |
| 1554 |
T6B = FMA(KP923879532, T6w, KP382683432 * T6v); |
| 1555 |
T6o = T5N + T5M; |
| 1556 |
T6p = T5P - T5S; |
| 1557 |
T6q = KP707106781 * (T6o + T6p); |
| 1558 |
T7s = KP707106781 * (T6p - T6o); |
| 1559 |
} |
| 1560 |
T60 = T5Y - T5Z; |
| 1561 |
T65 = T61 - T64; |
| 1562 |
T66 = FMA(KP923879532, T60, KP382683432 * T65); |
| 1563 |
T6k = FNMS(KP923879532, T65, KP382683432 * T60); |
| 1564 |
{
|
| 1565 |
E T6s, T6t, T6b, T6g; |
| 1566 |
T6s = T5Y + T5Z; |
| 1567 |
T6t = T61 + T64; |
| 1568 |
T6u = FMA(KP382683432, T6s, KP923879532 * T6t); |
| 1569 |
T6A = FNMS(KP382683432, T6t, KP923879532 * T6s); |
| 1570 |
T6b = T67 - T6a; |
| 1571 |
T6g = T6e - T6f; |
| 1572 |
T6h = FNMS(KP923879532, T6g, KP382683432 * T6b); |
| 1573 |
T6l = FMA(KP382683432, T6g, KP923879532 * T6b); |
| 1574 |
} |
| 1575 |
} |
| 1576 |
{
|
| 1577 |
E T5V, T6i, T7r, T7u; |
| 1578 |
T5V = T5J + T5U; |
| 1579 |
T6i = T66 + T6h; |
| 1580 |
ri[WS(rs, 22)] = T5V - T6i;
|
| 1581 |
ri[WS(rs, 6)] = T5V + T6i;
|
| 1582 |
T7r = T6k + T6l; |
| 1583 |
T7u = T7s + T7t; |
| 1584 |
ii[WS(rs, 6)] = T7r + T7u;
|
| 1585 |
ii[WS(rs, 22)] = T7u - T7r;
|
| 1586 |
} |
| 1587 |
{
|
| 1588 |
E T6j, T6m, T7v, T7w; |
| 1589 |
T6j = T5J - T5U; |
| 1590 |
T6m = T6k - T6l; |
| 1591 |
ri[WS(rs, 30)] = T6j - T6m;
|
| 1592 |
ri[WS(rs, 14)] = T6j + T6m;
|
| 1593 |
T7v = T6h - T66; |
| 1594 |
T7w = T7t - T7s; |
| 1595 |
ii[WS(rs, 14)] = T7v + T7w;
|
| 1596 |
ii[WS(rs, 30)] = T7w - T7v;
|
| 1597 |
} |
| 1598 |
{
|
| 1599 |
E T6r, T6y, T7j, T7o; |
| 1600 |
T6r = T6n + T6q; |
| 1601 |
T6y = T6u + T6x; |
| 1602 |
ri[WS(rs, 18)] = T6r - T6y;
|
| 1603 |
ri[WS(rs, 2)] = T6r + T6y;
|
| 1604 |
T7j = T6A + T6B; |
| 1605 |
T7o = T7k + T7n; |
| 1606 |
ii[WS(rs, 2)] = T7j + T7o;
|
| 1607 |
ii[WS(rs, 18)] = T7o - T7j;
|
| 1608 |
} |
| 1609 |
{
|
| 1610 |
E T6z, T6C, T7p, T7q; |
| 1611 |
T6z = T6n - T6q; |
| 1612 |
T6C = T6A - T6B; |
| 1613 |
ri[WS(rs, 26)] = T6z - T6C;
|
| 1614 |
ri[WS(rs, 10)] = T6z + T6C;
|
| 1615 |
T7p = T6x - T6u; |
| 1616 |
T7q = T7n - T7k; |
| 1617 |
ii[WS(rs, 10)] = T7p + T7q;
|
| 1618 |
ii[WS(rs, 26)] = T7q - T7p;
|
| 1619 |
} |
| 1620 |
} |
| 1621 |
{
|
| 1622 |
E T3h, T4D, T7R, T7X, T3E, T7O, T4N, T4R, T46, T4A, T4G, T7W, T4K, T4Q, T4x; |
| 1623 |
E T4B, T3g, T7P; |
| 1624 |
T3g = KP707106781 * (T3a - T3f); |
| 1625 |
T3h = T35 - T3g; |
| 1626 |
T4D = T35 + T3g; |
| 1627 |
T7P = KP707106781 * (T4V - T4U); |
| 1628 |
T7R = T7P + T7Q; |
| 1629 |
T7X = T7Q - T7P; |
| 1630 |
{
|
| 1631 |
E T3s, T3D, T4L, T4M; |
| 1632 |
T3s = FNMS(KP923879532, T3r, KP382683432 * T3m); |
| 1633 |
T3D = FMA(KP382683432, T3x, KP923879532 * T3C); |
| 1634 |
T3E = T3s - T3D; |
| 1635 |
T7O = T3s + T3D; |
| 1636 |
T4L = T4b + T4m; |
| 1637 |
T4M = T4s + T4v; |
| 1638 |
T4N = FNMS(KP555570233, T4M, KP831469612 * T4L); |
| 1639 |
T4R = FMA(KP831469612, T4M, KP555570233 * T4L); |
| 1640 |
} |
| 1641 |
{
|
| 1642 |
E T3W, T45, T4E, T4F; |
| 1643 |
T3W = T3K - T3V; |
| 1644 |
T45 = T41 - T44; |
| 1645 |
T46 = FMA(KP980785280, T3W, KP195090322 * T45); |
| 1646 |
T4A = FNMS(KP980785280, T45, KP195090322 * T3W); |
| 1647 |
T4E = FMA(KP923879532, T3m, KP382683432 * T3r); |
| 1648 |
T4F = FNMS(KP923879532, T3x, KP382683432 * T3C); |
| 1649 |
T4G = T4E + T4F; |
| 1650 |
T7W = T4F - T4E; |
| 1651 |
} |
| 1652 |
{
|
| 1653 |
E T4I, T4J, T4n, T4w; |
| 1654 |
T4I = T3K + T3V; |
| 1655 |
T4J = T41 + T44; |
| 1656 |
T4K = FMA(KP555570233, T4I, KP831469612 * T4J); |
| 1657 |
T4Q = FNMS(KP555570233, T4J, KP831469612 * T4I); |
| 1658 |
T4n = T4b - T4m; |
| 1659 |
T4w = T4s - T4v; |
| 1660 |
T4x = FNMS(KP980785280, T4w, KP195090322 * T4n); |
| 1661 |
T4B = FMA(KP195090322, T4w, KP980785280 * T4n); |
| 1662 |
} |
| 1663 |
{
|
| 1664 |
E T3F, T4y, T7V, T7Y; |
| 1665 |
T3F = T3h + T3E; |
| 1666 |
T4y = T46 + T4x; |
| 1667 |
ri[WS(rs, 23)] = T3F - T4y;
|
| 1668 |
ri[WS(rs, 7)] = T3F + T4y;
|
| 1669 |
T7V = T4A + T4B; |
| 1670 |
T7Y = T7W + T7X; |
| 1671 |
ii[WS(rs, 7)] = T7V + T7Y;
|
| 1672 |
ii[WS(rs, 23)] = T7Y - T7V;
|
| 1673 |
} |
| 1674 |
{
|
| 1675 |
E T4z, T4C, T7Z, T80; |
| 1676 |
T4z = T3h - T3E; |
| 1677 |
T4C = T4A - T4B; |
| 1678 |
ri[WS(rs, 31)] = T4z - T4C;
|
| 1679 |
ri[WS(rs, 15)] = T4z + T4C;
|
| 1680 |
T7Z = T4x - T46; |
| 1681 |
T80 = T7X - T7W; |
| 1682 |
ii[WS(rs, 15)] = T7Z + T80;
|
| 1683 |
ii[WS(rs, 31)] = T80 - T7Z;
|
| 1684 |
} |
| 1685 |
{
|
| 1686 |
E T4H, T4O, T7N, T7S; |
| 1687 |
T4H = T4D + T4G; |
| 1688 |
T4O = T4K + T4N; |
| 1689 |
ri[WS(rs, 19)] = T4H - T4O;
|
| 1690 |
ri[WS(rs, 3)] = T4H + T4O;
|
| 1691 |
T7N = T4Q + T4R; |
| 1692 |
T7S = T7O + T7R; |
| 1693 |
ii[WS(rs, 3)] = T7N + T7S;
|
| 1694 |
ii[WS(rs, 19)] = T7S - T7N;
|
| 1695 |
} |
| 1696 |
{
|
| 1697 |
E T4P, T4S, T7T, T7U; |
| 1698 |
T4P = T4D - T4G; |
| 1699 |
T4S = T4Q - T4R; |
| 1700 |
ri[WS(rs, 27)] = T4P - T4S;
|
| 1701 |
ri[WS(rs, 11)] = T4P + T4S;
|
| 1702 |
T7T = T4N - T4K; |
| 1703 |
T7U = T7R - T7O; |
| 1704 |
ii[WS(rs, 11)] = T7T + T7U;
|
| 1705 |
ii[WS(rs, 27)] = T7U - T7T;
|
| 1706 |
} |
| 1707 |
} |
| 1708 |
{
|
| 1709 |
E T4X, T5p, T7D, T7J, T54, T7y, T5z, T5D, T5c, T5m, T5s, T7I, T5w, T5C, T5j; |
| 1710 |
E T5n, T4W, T7z; |
| 1711 |
T4W = KP707106781 * (T4U + T4V); |
| 1712 |
T4X = T4T - T4W; |
| 1713 |
T5p = T4T + T4W; |
| 1714 |
T7z = KP707106781 * (T3a + T3f); |
| 1715 |
T7D = T7z + T7C; |
| 1716 |
T7J = T7C - T7z; |
| 1717 |
{
|
| 1718 |
E T50, T53, T5x, T5y; |
| 1719 |
T50 = FNMS(KP382683432, T4Z, KP923879532 * T4Y); |
| 1720 |
T53 = FMA(KP923879532, T51, KP382683432 * T52); |
| 1721 |
T54 = T50 - T53; |
| 1722 |
T7y = T50 + T53; |
| 1723 |
T5x = T5d + T5e; |
| 1724 |
T5y = T5g + T5h; |
| 1725 |
T5z = FNMS(KP195090322, T5y, KP980785280 * T5x); |
| 1726 |
T5D = FMA(KP195090322, T5x, KP980785280 * T5y); |
| 1727 |
} |
| 1728 |
{
|
| 1729 |
E T58, T5b, T5q, T5r; |
| 1730 |
T58 = T56 - T57; |
| 1731 |
T5b = T59 - T5a; |
| 1732 |
T5c = FMA(KP555570233, T58, KP831469612 * T5b); |
| 1733 |
T5m = FNMS(KP831469612, T58, KP555570233 * T5b); |
| 1734 |
T5q = FMA(KP382683432, T4Y, KP923879532 * T4Z); |
| 1735 |
T5r = FNMS(KP382683432, T51, KP923879532 * T52); |
| 1736 |
T5s = T5q + T5r; |
| 1737 |
T7I = T5r - T5q; |
| 1738 |
} |
| 1739 |
{
|
| 1740 |
E T5u, T5v, T5f, T5i; |
| 1741 |
T5u = T56 + T57; |
| 1742 |
T5v = T59 + T5a; |
| 1743 |
T5w = FMA(KP980785280, T5u, KP195090322 * T5v); |
| 1744 |
T5C = FNMS(KP195090322, T5u, KP980785280 * T5v); |
| 1745 |
T5f = T5d - T5e; |
| 1746 |
T5i = T5g - T5h; |
| 1747 |
T5j = FNMS(KP831469612, T5i, KP555570233 * T5f); |
| 1748 |
T5n = FMA(KP831469612, T5f, KP555570233 * T5i); |
| 1749 |
} |
| 1750 |
{
|
| 1751 |
E T55, T5k, T7H, T7K; |
| 1752 |
T55 = T4X + T54; |
| 1753 |
T5k = T5c + T5j; |
| 1754 |
ri[WS(rs, 21)] = T55 - T5k;
|
| 1755 |
ri[WS(rs, 5)] = T55 + T5k;
|
| 1756 |
T7H = T5m + T5n; |
| 1757 |
T7K = T7I + T7J; |
| 1758 |
ii[WS(rs, 5)] = T7H + T7K;
|
| 1759 |
ii[WS(rs, 21)] = T7K - T7H;
|
| 1760 |
} |
| 1761 |
{
|
| 1762 |
E T5l, T5o, T7L, T7M; |
| 1763 |
T5l = T4X - T54; |
| 1764 |
T5o = T5m - T5n; |
| 1765 |
ri[WS(rs, 29)] = T5l - T5o;
|
| 1766 |
ri[WS(rs, 13)] = T5l + T5o;
|
| 1767 |
T7L = T5j - T5c; |
| 1768 |
T7M = T7J - T7I; |
| 1769 |
ii[WS(rs, 13)] = T7L + T7M;
|
| 1770 |
ii[WS(rs, 29)] = T7M - T7L;
|
| 1771 |
} |
| 1772 |
{
|
| 1773 |
E T5t, T5A, T7x, T7E; |
| 1774 |
T5t = T5p + T5s; |
| 1775 |
T5A = T5w + T5z; |
| 1776 |
ri[WS(rs, 17)] = T5t - T5A;
|
| 1777 |
ri[WS(rs, 1)] = T5t + T5A;
|
| 1778 |
T7x = T5C + T5D; |
| 1779 |
T7E = T7y + T7D; |
| 1780 |
ii[WS(rs, 1)] = T7x + T7E;
|
| 1781 |
ii[WS(rs, 17)] = T7E - T7x;
|
| 1782 |
} |
| 1783 |
{
|
| 1784 |
E T5B, T5E, T7F, T7G; |
| 1785 |
T5B = T5p - T5s; |
| 1786 |
T5E = T5C - T5D; |
| 1787 |
ri[WS(rs, 25)] = T5B - T5E;
|
| 1788 |
ri[WS(rs, 9)] = T5B + T5E;
|
| 1789 |
T7F = T5z - T5w; |
| 1790 |
T7G = T7D - T7y; |
| 1791 |
ii[WS(rs, 9)] = T7F + T7G;
|
| 1792 |
ii[WS(rs, 25)] = T7G - T7F;
|
| 1793 |
} |
| 1794 |
} |
| 1795 |
} |
| 1796 |
} |
| 1797 |
} |
| 1798 |
|
| 1799 |
static const tw_instr twinstr[] = { |
| 1800 |
{TW_FULL, 0, 32},
|
| 1801 |
{TW_NEXT, 1, 0}
|
| 1802 |
}; |
| 1803 |
|
| 1804 |
static const ct_desc desc = { 32, "t1_32", twinstr, &GENUS, {340, 114, 94, 0}, 0, 0, 0 }; |
| 1805 |
|
| 1806 |
void X(codelet_t1_32) (planner *p) {
|
| 1807 |
X(kdft_dit_register) (p, t1_32, &desc); |
| 1808 |
} |
| 1809 |
#endif
|