To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_20.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (26.6 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:15 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 246 FP additions, 148 FP multiplications,
|
| 32 |
* (or, 136 additions, 38 multiplications, 110 fused multiply/add),
|
| 33 |
* 61 stack variables, 4 constants, and 80 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 42 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 43 |
{
|
| 44 |
INT m; |
| 45 |
for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { |
| 46 |
E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T40, T4b, T2v, T3v, T3i; |
| 47 |
E T3F, T27, T2f, T3W, T4f, T2R, T3z, T3a, T3J, T1G, T2e, T3T, T4e, T2K, T3y; |
| 48 |
E T33, T3I, T1e, T2c, T43, T4c, T2C, T3w, T3p, T3G; |
| 49 |
{
|
| 50 |
E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5; |
| 51 |
T1 = ri[0];
|
| 52 |
T4q = ii[0];
|
| 53 |
T3 = ri[WS(rs, 10)];
|
| 54 |
T6 = ii[WS(rs, 10)];
|
| 55 |
T2 = W[18];
|
| 56 |
T4 = T2 * T3; |
| 57 |
T4o = T2 * T6; |
| 58 |
T5 = W[19];
|
| 59 |
T7 = FMA(T5, T6, T4); |
| 60 |
T4p = FNMS(T5, T3, T4o); |
| 61 |
T8 = T1 + T7; |
| 62 |
T4N = T4q - T4p; |
| 63 |
T2i = T1 - T7; |
| 64 |
T4r = T4p + T4q; |
| 65 |
} |
| 66 |
{
|
| 67 |
E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf; |
| 68 |
Ta = ri[WS(rs, 5)];
|
| 69 |
Td = ii[WS(rs, 5)];
|
| 70 |
T9 = W[8];
|
| 71 |
Tb = T9 * Ta; |
| 72 |
T2j = T9 * Td; |
| 73 |
Tg = ri[WS(rs, 15)];
|
| 74 |
Tj = ii[WS(rs, 15)];
|
| 75 |
Tf = W[28];
|
| 76 |
Th = Tf * Tg; |
| 77 |
T2l = Tf * Tj; |
| 78 |
{
|
| 79 |
E Te, T2k, Tk, T2m, Tc, Ti; |
| 80 |
Tc = W[9];
|
| 81 |
Te = FMA(Tc, Td, Tb); |
| 82 |
T2k = FNMS(Tc, Ta, T2j); |
| 83 |
Ti = W[29];
|
| 84 |
Tk = FMA(Ti, Tj, Th); |
| 85 |
T2m = FNMS(Ti, Tg, T2l); |
| 86 |
Tl = Te + Tk; |
| 87 |
T4O = Te - Tk; |
| 88 |
T2n = T2k - T2m; |
| 89 |
T4n = T2k + T2m; |
| 90 |
} |
| 91 |
} |
| 92 |
{
|
| 93 |
E Ts, T3d, TL, T2t, Ty, T3f, TF, T2r; |
| 94 |
{
|
| 95 |
E To, Tr, Tp, T3c, Tn, Tq; |
| 96 |
To = ri[WS(rs, 4)];
|
| 97 |
Tr = ii[WS(rs, 4)];
|
| 98 |
Tn = W[6];
|
| 99 |
Tp = Tn * To; |
| 100 |
T3c = Tn * Tr; |
| 101 |
Tq = W[7];
|
| 102 |
Ts = FMA(Tq, Tr, Tp); |
| 103 |
T3d = FNMS(Tq, To, T3c); |
| 104 |
} |
| 105 |
{
|
| 106 |
E TH, TK, TI, T2s, TG, TJ; |
| 107 |
TH = ri[WS(rs, 19)];
|
| 108 |
TK = ii[WS(rs, 19)];
|
| 109 |
TG = W[36];
|
| 110 |
TI = TG * TH; |
| 111 |
T2s = TG * TK; |
| 112 |
TJ = W[37];
|
| 113 |
TL = FMA(TJ, TK, TI); |
| 114 |
T2t = FNMS(TJ, TH, T2s); |
| 115 |
} |
| 116 |
{
|
| 117 |
E Tu, Tx, Tv, T3e, Tt, Tw; |
| 118 |
Tu = ri[WS(rs, 14)];
|
| 119 |
Tx = ii[WS(rs, 14)];
|
| 120 |
Tt = W[26];
|
| 121 |
Tv = Tt * Tu; |
| 122 |
T3e = Tt * Tx; |
| 123 |
Tw = W[27];
|
| 124 |
Ty = FMA(Tw, Tx, Tv); |
| 125 |
T3f = FNMS(Tw, Tu, T3e); |
| 126 |
} |
| 127 |
{
|
| 128 |
E TB, TE, TC, T2q, TA, TD; |
| 129 |
TB = ri[WS(rs, 9)];
|
| 130 |
TE = ii[WS(rs, 9)];
|
| 131 |
TA = W[16];
|
| 132 |
TC = TA * TB; |
| 133 |
T2q = TA * TE; |
| 134 |
TD = W[17];
|
| 135 |
TF = FMA(TD, TE, TC); |
| 136 |
T2r = FNMS(TD, TB, T2q); |
| 137 |
} |
| 138 |
{
|
| 139 |
E Tz, TM, T3Y, T3Z; |
| 140 |
Tz = Ts + Ty; |
| 141 |
TM = TF + TL; |
| 142 |
TN = Tz - TM; |
| 143 |
T2b = Tz + TM; |
| 144 |
T3Y = T3d + T3f; |
| 145 |
T3Z = T2r + T2t; |
| 146 |
T40 = T3Y - T3Z; |
| 147 |
T4b = T3Y + T3Z; |
| 148 |
} |
| 149 |
{
|
| 150 |
E T2p, T2u, T3g, T3h; |
| 151 |
T2p = Ts - Ty; |
| 152 |
T2u = T2r - T2t; |
| 153 |
T2v = T2p - T2u; |
| 154 |
T3v = T2p + T2u; |
| 155 |
T3g = T3d - T3f; |
| 156 |
T3h = TF - TL; |
| 157 |
T3i = T3g + T3h; |
| 158 |
T3F = T3g - T3h; |
| 159 |
} |
| 160 |
} |
| 161 |
{
|
| 162 |
E T1M, T35, T25, T2P, T1S, T37, T1Z, T2N; |
| 163 |
{
|
| 164 |
E T1I, T1L, T1J, T34, T1H, T1K; |
| 165 |
T1I = ri[WS(rs, 12)];
|
| 166 |
T1L = ii[WS(rs, 12)];
|
| 167 |
T1H = W[22];
|
| 168 |
T1J = T1H * T1I; |
| 169 |
T34 = T1H * T1L; |
| 170 |
T1K = W[23];
|
| 171 |
T1M = FMA(T1K, T1L, T1J); |
| 172 |
T35 = FNMS(T1K, T1I, T34); |
| 173 |
} |
| 174 |
{
|
| 175 |
E T21, T24, T22, T2O, T20, T23; |
| 176 |
T21 = ri[WS(rs, 7)];
|
| 177 |
T24 = ii[WS(rs, 7)];
|
| 178 |
T20 = W[12];
|
| 179 |
T22 = T20 * T21; |
| 180 |
T2O = T20 * T24; |
| 181 |
T23 = W[13];
|
| 182 |
T25 = FMA(T23, T24, T22); |
| 183 |
T2P = FNMS(T23, T21, T2O); |
| 184 |
} |
| 185 |
{
|
| 186 |
E T1O, T1R, T1P, T36, T1N, T1Q; |
| 187 |
T1O = ri[WS(rs, 2)];
|
| 188 |
T1R = ii[WS(rs, 2)];
|
| 189 |
T1N = W[2];
|
| 190 |
T1P = T1N * T1O; |
| 191 |
T36 = T1N * T1R; |
| 192 |
T1Q = W[3];
|
| 193 |
T1S = FMA(T1Q, T1R, T1P); |
| 194 |
T37 = FNMS(T1Q, T1O, T36); |
| 195 |
} |
| 196 |
{
|
| 197 |
E T1V, T1Y, T1W, T2M, T1U, T1X; |
| 198 |
T1V = ri[WS(rs, 17)];
|
| 199 |
T1Y = ii[WS(rs, 17)];
|
| 200 |
T1U = W[32];
|
| 201 |
T1W = T1U * T1V; |
| 202 |
T2M = T1U * T1Y; |
| 203 |
T1X = W[33];
|
| 204 |
T1Z = FMA(T1X, T1Y, T1W); |
| 205 |
T2N = FNMS(T1X, T1V, T2M); |
| 206 |
} |
| 207 |
{
|
| 208 |
E T1T, T26, T3U, T3V; |
| 209 |
T1T = T1M + T1S; |
| 210 |
T26 = T1Z + T25; |
| 211 |
T27 = T1T - T26; |
| 212 |
T2f = T1T + T26; |
| 213 |
T3U = T35 + T37; |
| 214 |
T3V = T2N + T2P; |
| 215 |
T3W = T3U - T3V; |
| 216 |
T4f = T3U + T3V; |
| 217 |
} |
| 218 |
{
|
| 219 |
E T2L, T2Q, T38, T39; |
| 220 |
T2L = T1M - T1S; |
| 221 |
T2Q = T2N - T2P; |
| 222 |
T2R = T2L - T2Q; |
| 223 |
T3z = T2L + T2Q; |
| 224 |
T38 = T35 - T37; |
| 225 |
T39 = T1Z - T25; |
| 226 |
T3a = T38 + T39; |
| 227 |
T3J = T38 - T39; |
| 228 |
} |
| 229 |
} |
| 230 |
{
|
| 231 |
E T1l, T2Y, T1E, T2I, T1r, T30, T1y, T2G; |
| 232 |
{
|
| 233 |
E T1h, T1k, T1i, T2X, T1g, T1j; |
| 234 |
T1h = ri[WS(rs, 8)];
|
| 235 |
T1k = ii[WS(rs, 8)];
|
| 236 |
T1g = W[14];
|
| 237 |
T1i = T1g * T1h; |
| 238 |
T2X = T1g * T1k; |
| 239 |
T1j = W[15];
|
| 240 |
T1l = FMA(T1j, T1k, T1i); |
| 241 |
T2Y = FNMS(T1j, T1h, T2X); |
| 242 |
} |
| 243 |
{
|
| 244 |
E T1A, T1D, T1B, T2H, T1z, T1C; |
| 245 |
T1A = ri[WS(rs, 3)];
|
| 246 |
T1D = ii[WS(rs, 3)];
|
| 247 |
T1z = W[4];
|
| 248 |
T1B = T1z * T1A; |
| 249 |
T2H = T1z * T1D; |
| 250 |
T1C = W[5];
|
| 251 |
T1E = FMA(T1C, T1D, T1B); |
| 252 |
T2I = FNMS(T1C, T1A, T2H); |
| 253 |
} |
| 254 |
{
|
| 255 |
E T1n, T1q, T1o, T2Z, T1m, T1p; |
| 256 |
T1n = ri[WS(rs, 18)];
|
| 257 |
T1q = ii[WS(rs, 18)];
|
| 258 |
T1m = W[34];
|
| 259 |
T1o = T1m * T1n; |
| 260 |
T2Z = T1m * T1q; |
| 261 |
T1p = W[35];
|
| 262 |
T1r = FMA(T1p, T1q, T1o); |
| 263 |
T30 = FNMS(T1p, T1n, T2Z); |
| 264 |
} |
| 265 |
{
|
| 266 |
E T1u, T1x, T1v, T2F, T1t, T1w; |
| 267 |
T1u = ri[WS(rs, 13)];
|
| 268 |
T1x = ii[WS(rs, 13)];
|
| 269 |
T1t = W[24];
|
| 270 |
T1v = T1t * T1u; |
| 271 |
T2F = T1t * T1x; |
| 272 |
T1w = W[25];
|
| 273 |
T1y = FMA(T1w, T1x, T1v); |
| 274 |
T2G = FNMS(T1w, T1u, T2F); |
| 275 |
} |
| 276 |
{
|
| 277 |
E T1s, T1F, T3R, T3S; |
| 278 |
T1s = T1l + T1r; |
| 279 |
T1F = T1y + T1E; |
| 280 |
T1G = T1s - T1F; |
| 281 |
T2e = T1s + T1F; |
| 282 |
T3R = T2Y + T30; |
| 283 |
T3S = T2G + T2I; |
| 284 |
T3T = T3R - T3S; |
| 285 |
T4e = T3R + T3S; |
| 286 |
} |
| 287 |
{
|
| 288 |
E T2E, T2J, T31, T32; |
| 289 |
T2E = T1l - T1r; |
| 290 |
T2J = T2G - T2I; |
| 291 |
T2K = T2E - T2J; |
| 292 |
T3y = T2E + T2J; |
| 293 |
T31 = T2Y - T30; |
| 294 |
T32 = T1y - T1E; |
| 295 |
T33 = T31 + T32; |
| 296 |
T3I = T31 - T32; |
| 297 |
} |
| 298 |
} |
| 299 |
{
|
| 300 |
E TT, T3k, T1c, T2A, TZ, T3m, T16, T2y; |
| 301 |
{
|
| 302 |
E TP, TS, TQ, T3j, TO, TR; |
| 303 |
TP = ri[WS(rs, 16)];
|
| 304 |
TS = ii[WS(rs, 16)];
|
| 305 |
TO = W[30];
|
| 306 |
TQ = TO * TP; |
| 307 |
T3j = TO * TS; |
| 308 |
TR = W[31];
|
| 309 |
TT = FMA(TR, TS, TQ); |
| 310 |
T3k = FNMS(TR, TP, T3j); |
| 311 |
} |
| 312 |
{
|
| 313 |
E T18, T1b, T19, T2z, T17, T1a; |
| 314 |
T18 = ri[WS(rs, 11)];
|
| 315 |
T1b = ii[WS(rs, 11)];
|
| 316 |
T17 = W[20];
|
| 317 |
T19 = T17 * T18; |
| 318 |
T2z = T17 * T1b; |
| 319 |
T1a = W[21];
|
| 320 |
T1c = FMA(T1a, T1b, T19); |
| 321 |
T2A = FNMS(T1a, T18, T2z); |
| 322 |
} |
| 323 |
{
|
| 324 |
E TV, TY, TW, T3l, TU, TX; |
| 325 |
TV = ri[WS(rs, 6)];
|
| 326 |
TY = ii[WS(rs, 6)];
|
| 327 |
TU = W[10];
|
| 328 |
TW = TU * TV; |
| 329 |
T3l = TU * TY; |
| 330 |
TX = W[11];
|
| 331 |
TZ = FMA(TX, TY, TW); |
| 332 |
T3m = FNMS(TX, TV, T3l); |
| 333 |
} |
| 334 |
{
|
| 335 |
E T12, T15, T13, T2x, T11, T14; |
| 336 |
T12 = ri[WS(rs, 1)];
|
| 337 |
T15 = ii[WS(rs, 1)];
|
| 338 |
T11 = W[0];
|
| 339 |
T13 = T11 * T12; |
| 340 |
T2x = T11 * T15; |
| 341 |
T14 = W[1];
|
| 342 |
T16 = FMA(T14, T15, T13); |
| 343 |
T2y = FNMS(T14, T12, T2x); |
| 344 |
} |
| 345 |
{
|
| 346 |
E T10, T1d, T41, T42; |
| 347 |
T10 = TT + TZ; |
| 348 |
T1d = T16 + T1c; |
| 349 |
T1e = T10 - T1d; |
| 350 |
T2c = T10 + T1d; |
| 351 |
T41 = T3k + T3m; |
| 352 |
T42 = T2y + T2A; |
| 353 |
T43 = T41 - T42; |
| 354 |
T4c = T41 + T42; |
| 355 |
} |
| 356 |
{
|
| 357 |
E T2w, T2B, T3n, T3o; |
| 358 |
T2w = TT - TZ; |
| 359 |
T2B = T2y - T2A; |
| 360 |
T2C = T2w - T2B; |
| 361 |
T3w = T2w + T2B; |
| 362 |
T3n = T3k - T3m; |
| 363 |
T3o = T16 - T1c; |
| 364 |
T3p = T3n + T3o; |
| 365 |
T3G = T3n - T3o; |
| 366 |
} |
| 367 |
} |
| 368 |
{
|
| 369 |
E T45, T47, Tm, T29, T3O, T3P, T46, T3Q; |
| 370 |
{
|
| 371 |
E T3X, T44, T1f, T28; |
| 372 |
T3X = T3T - T3W; |
| 373 |
T44 = T40 - T43; |
| 374 |
T45 = FNMS(KP618033988, T44, T3X); |
| 375 |
T47 = FMA(KP618033988, T3X, T44); |
| 376 |
Tm = T8 - Tl; |
| 377 |
T1f = TN + T1e; |
| 378 |
T28 = T1G + T27; |
| 379 |
T29 = T1f + T28; |
| 380 |
T3O = FNMS(KP250000000, T29, Tm); |
| 381 |
T3P = T1f - T28; |
| 382 |
} |
| 383 |
ri[WS(rs, 10)] = Tm + T29;
|
| 384 |
T46 = FMA(KP559016994, T3P, T3O); |
| 385 |
ri[WS(rs, 14)] = FNMS(KP951056516, T47, T46);
|
| 386 |
ri[WS(rs, 6)] = FMA(KP951056516, T47, T46);
|
| 387 |
T3Q = FNMS(KP559016994, T3P, T3O); |
| 388 |
ri[WS(rs, 2)] = FNMS(KP951056516, T45, T3Q);
|
| 389 |
ri[WS(rs, 18)] = FMA(KP951056516, T45, T3Q);
|
| 390 |
} |
| 391 |
{
|
| 392 |
E T4K, T4M, T4B, T4E, T4F, T4G, T4L, T4H; |
| 393 |
{
|
| 394 |
E T4I, T4J, T4C, T4D; |
| 395 |
T4I = T1G - T27; |
| 396 |
T4J = TN - T1e; |
| 397 |
T4K = FNMS(KP618033988, T4J, T4I); |
| 398 |
T4M = FMA(KP618033988, T4I, T4J); |
| 399 |
T4B = T4r - T4n; |
| 400 |
T4C = T40 + T43; |
| 401 |
T4D = T3T + T3W; |
| 402 |
T4E = T4C + T4D; |
| 403 |
T4F = FNMS(KP250000000, T4E, T4B); |
| 404 |
T4G = T4C - T4D; |
| 405 |
} |
| 406 |
ii[WS(rs, 10)] = T4E + T4B;
|
| 407 |
T4L = FMA(KP559016994, T4G, T4F); |
| 408 |
ii[WS(rs, 6)] = FNMS(KP951056516, T4M, T4L);
|
| 409 |
ii[WS(rs, 14)] = FMA(KP951056516, T4M, T4L);
|
| 410 |
T4H = FNMS(KP559016994, T4G, T4F); |
| 411 |
ii[WS(rs, 2)] = FMA(KP951056516, T4K, T4H);
|
| 412 |
ii[WS(rs, 18)] = FNMS(KP951056516, T4K, T4H);
|
| 413 |
} |
| 414 |
{
|
| 415 |
E T4h, T4j, T2a, T2h, T48, T49, T4i, T4a; |
| 416 |
{
|
| 417 |
E T4d, T4g, T2d, T2g; |
| 418 |
T4d = T4b - T4c; |
| 419 |
T4g = T4e - T4f; |
| 420 |
T4h = FMA(KP618033988, T4g, T4d); |
| 421 |
T4j = FNMS(KP618033988, T4d, T4g); |
| 422 |
T2a = T8 + Tl; |
| 423 |
T2d = T2b + T2c; |
| 424 |
T2g = T2e + T2f; |
| 425 |
T2h = T2d + T2g; |
| 426 |
T48 = FNMS(KP250000000, T2h, T2a); |
| 427 |
T49 = T2d - T2g; |
| 428 |
} |
| 429 |
ri[0] = T2a + T2h;
|
| 430 |
T4i = FNMS(KP559016994, T49, T48); |
| 431 |
ri[WS(rs, 12)] = FNMS(KP951056516, T4j, T4i);
|
| 432 |
ri[WS(rs, 8)] = FMA(KP951056516, T4j, T4i);
|
| 433 |
T4a = FMA(KP559016994, T49, T48); |
| 434 |
ri[WS(rs, 4)] = FNMS(KP951056516, T4h, T4a);
|
| 435 |
ri[WS(rs, 16)] = FMA(KP951056516, T4h, T4a);
|
| 436 |
} |
| 437 |
{
|
| 438 |
E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v; |
| 439 |
{
|
| 440 |
E T4w, T4x, T4k, T4l; |
| 441 |
T4w = T2b - T2c; |
| 442 |
T4x = T2e - T2f; |
| 443 |
T4y = FMA(KP618033988, T4x, T4w); |
| 444 |
T4A = FNMS(KP618033988, T4w, T4x); |
| 445 |
T4s = T4n + T4r; |
| 446 |
T4k = T4b + T4c; |
| 447 |
T4l = T4e + T4f; |
| 448 |
T4m = T4k + T4l; |
| 449 |
T4t = FNMS(KP250000000, T4m, T4s); |
| 450 |
T4u = T4k - T4l; |
| 451 |
} |
| 452 |
ii[0] = T4m + T4s;
|
| 453 |
T4z = FNMS(KP559016994, T4u, T4t); |
| 454 |
ii[WS(rs, 8)] = FNMS(KP951056516, T4A, T4z);
|
| 455 |
ii[WS(rs, 12)] = FMA(KP951056516, T4A, T4z);
|
| 456 |
T4v = FMA(KP559016994, T4u, T4t); |
| 457 |
ii[WS(rs, 4)] = FMA(KP951056516, T4y, T4v);
|
| 458 |
ii[WS(rs, 16)] = FNMS(KP951056516, T4y, T4v);
|
| 459 |
} |
| 460 |
{
|
| 461 |
E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W; |
| 462 |
{
|
| 463 |
E T3b, T3q, T2D, T2S; |
| 464 |
T3b = T33 - T3a; |
| 465 |
T3q = T3i - T3p; |
| 466 |
T3r = FNMS(KP618033988, T3q, T3b); |
| 467 |
T3t = FMA(KP618033988, T3b, T3q); |
| 468 |
T2o = T2i - T2n; |
| 469 |
T2D = T2v + T2C; |
| 470 |
T2S = T2K + T2R; |
| 471 |
T2T = T2D + T2S; |
| 472 |
T2U = FNMS(KP250000000, T2T, T2o); |
| 473 |
T2V = T2D - T2S; |
| 474 |
} |
| 475 |
ri[WS(rs, 15)] = T2o + T2T;
|
| 476 |
T3s = FMA(KP559016994, T2V, T2U); |
| 477 |
ri[WS(rs, 11)] = FMA(KP951056516, T3t, T3s);
|
| 478 |
ri[WS(rs, 19)] = FNMS(KP951056516, T3t, T3s);
|
| 479 |
T2W = FNMS(KP559016994, T2V, T2U); |
| 480 |
ri[WS(rs, 3)] = FMA(KP951056516, T3r, T2W);
|
| 481 |
ri[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W);
|
| 482 |
} |
| 483 |
{
|
| 484 |
E T5a, T5c, T51, T54, T55, T56, T5b, T57; |
| 485 |
{
|
| 486 |
E T58, T59, T52, T53; |
| 487 |
T58 = T2K - T2R; |
| 488 |
T59 = T2v - T2C; |
| 489 |
T5a = FNMS(KP618033988, T59, T58); |
| 490 |
T5c = FMA(KP618033988, T58, T59); |
| 491 |
T51 = T4O + T4N; |
| 492 |
T52 = T3i + T3p; |
| 493 |
T53 = T33 + T3a; |
| 494 |
T54 = T52 + T53; |
| 495 |
T55 = FNMS(KP250000000, T54, T51); |
| 496 |
T56 = T52 - T53; |
| 497 |
} |
| 498 |
ii[WS(rs, 15)] = T54 + T51;
|
| 499 |
T5b = FMA(KP559016994, T56, T55); |
| 500 |
ii[WS(rs, 11)] = FNMS(KP951056516, T5c, T5b);
|
| 501 |
ii[WS(rs, 19)] = FMA(KP951056516, T5c, T5b);
|
| 502 |
T57 = FNMS(KP559016994, T56, T55); |
| 503 |
ii[WS(rs, 3)] = FNMS(KP951056516, T5a, T57);
|
| 504 |
ii[WS(rs, 7)] = FMA(KP951056516, T5a, T57);
|
| 505 |
} |
| 506 |
{
|
| 507 |
E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E; |
| 508 |
{
|
| 509 |
E T3H, T3K, T3x, T3A; |
| 510 |
T3H = T3F - T3G; |
| 511 |
T3K = T3I - T3J; |
| 512 |
T3L = FMA(KP618033988, T3K, T3H); |
| 513 |
T3N = FNMS(KP618033988, T3H, T3K); |
| 514 |
T3u = T2i + T2n; |
| 515 |
T3x = T3v + T3w; |
| 516 |
T3A = T3y + T3z; |
| 517 |
T3B = T3x + T3A; |
| 518 |
T3C = FNMS(KP250000000, T3B, T3u); |
| 519 |
T3D = T3x - T3A; |
| 520 |
} |
| 521 |
ri[WS(rs, 5)] = T3u + T3B;
|
| 522 |
T3M = FNMS(KP559016994, T3D, T3C); |
| 523 |
ri[WS(rs, 13)] = FMA(KP951056516, T3N, T3M);
|
| 524 |
ri[WS(rs, 17)] = FNMS(KP951056516, T3N, T3M);
|
| 525 |
T3E = FMA(KP559016994, T3D, T3C); |
| 526 |
ri[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
|
| 527 |
ri[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E);
|
| 528 |
} |
| 529 |
{
|
| 530 |
E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V; |
| 531 |
{
|
| 532 |
E T4W, T4X, T4Q, T4R; |
| 533 |
T4W = T3v - T3w; |
| 534 |
T4X = T3y - T3z; |
| 535 |
T4Y = FMA(KP618033988, T4X, T4W); |
| 536 |
T50 = FNMS(KP618033988, T4W, T4X); |
| 537 |
T4P = T4N - T4O; |
| 538 |
T4Q = T3F + T3G; |
| 539 |
T4R = T3I + T3J; |
| 540 |
T4S = T4Q + T4R; |
| 541 |
T4T = FNMS(KP250000000, T4S, T4P); |
| 542 |
T4U = T4Q - T4R; |
| 543 |
} |
| 544 |
ii[WS(rs, 5)] = T4S + T4P;
|
| 545 |
T4Z = FNMS(KP559016994, T4U, T4T); |
| 546 |
ii[WS(rs, 13)] = FNMS(KP951056516, T50, T4Z);
|
| 547 |
ii[WS(rs, 17)] = FMA(KP951056516, T50, T4Z);
|
| 548 |
T4V = FMA(KP559016994, T4U, T4T); |
| 549 |
ii[WS(rs, 1)] = FNMS(KP951056516, T4Y, T4V);
|
| 550 |
ii[WS(rs, 9)] = FMA(KP951056516, T4Y, T4V);
|
| 551 |
} |
| 552 |
} |
| 553 |
} |
| 554 |
} |
| 555 |
|
| 556 |
static const tw_instr twinstr[] = { |
| 557 |
{TW_FULL, 0, 20},
|
| 558 |
{TW_NEXT, 1, 0}
|
| 559 |
}; |
| 560 |
|
| 561 |
static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {136, 38, 110, 0}, 0, 0, 0 }; |
| 562 |
|
| 563 |
void X(codelet_t1_20) (planner *p) {
|
| 564 |
X(kdft_dit_register) (p, t1_20, &desc); |
| 565 |
} |
| 566 |
#else
|
| 567 |
|
| 568 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 20 -name t1_20 -include dft/scalar/t.h */
|
| 569 |
|
| 570 |
/*
|
| 571 |
* This function contains 246 FP additions, 124 FP multiplications,
|
| 572 |
* (or, 184 additions, 62 multiplications, 62 fused multiply/add),
|
| 573 |
* 85 stack variables, 4 constants, and 80 memory accesses
|
| 574 |
*/
|
| 575 |
#include "dft/scalar/t.h" |
| 576 |
|
| 577 |
static void t1_20(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 578 |
{
|
| 579 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 580 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 581 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 582 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 583 |
{
|
| 584 |
INT m; |
| 585 |
for (m = mb, W = W + (mb * 38); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 38, MAKE_VOLATILE_STRIDE(40, rs)) { |
| 586 |
E Tj, T1R, T4g, T4p, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3i, T3l, T44, T3D; |
| 587 |
E T3E, T3K, T1V, T1W, T1X, T23, T28, T4r, T2W, T2X, T4c, T33, T34, T35, T2G; |
| 588 |
E T2L, T2M, TG, T13, T14, T3p, T3s, T43, T3A, T3B, T3J, T1S, T1T, T1U, T2e; |
| 589 |
E T2j, T4q, T2T, T2U, T4b, T30, T31, T32, T2v, T2A, T2B; |
| 590 |
{
|
| 591 |
E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; |
| 592 |
T1 = ri[0];
|
| 593 |
T3O = ii[0];
|
| 594 |
{
|
| 595 |
E T3, T5, T2, T4; |
| 596 |
T3 = ri[WS(rs, 10)];
|
| 597 |
T5 = ii[WS(rs, 10)];
|
| 598 |
T2 = W[18];
|
| 599 |
T4 = W[19];
|
| 600 |
T6 = FMA(T2, T3, T4 * T5); |
| 601 |
T3N = FNMS(T4, T3, T2 * T5); |
| 602 |
} |
| 603 |
{
|
| 604 |
E T9, Tb, T8, Ta; |
| 605 |
T9 = ri[WS(rs, 5)];
|
| 606 |
Tb = ii[WS(rs, 5)];
|
| 607 |
T8 = W[8];
|
| 608 |
Ta = W[9];
|
| 609 |
Tc = FMA(T8, T9, Ta * Tb); |
| 610 |
T2n = FNMS(Ta, T9, T8 * Tb); |
| 611 |
} |
| 612 |
{
|
| 613 |
E Te, Tg, Td, Tf; |
| 614 |
Te = ri[WS(rs, 15)];
|
| 615 |
Tg = ii[WS(rs, 15)];
|
| 616 |
Td = W[28];
|
| 617 |
Tf = W[29];
|
| 618 |
Th = FMA(Td, Te, Tf * Tg); |
| 619 |
T2o = FNMS(Tf, Te, Td * Tg); |
| 620 |
} |
| 621 |
{
|
| 622 |
E T7, Ti, T4e, T4f; |
| 623 |
T7 = T1 + T6; |
| 624 |
Ti = Tc + Th; |
| 625 |
Tj = T7 - Ti; |
| 626 |
T1R = T7 + Ti; |
| 627 |
T4e = T3O - T3N; |
| 628 |
T4f = Tc - Th; |
| 629 |
T4g = T4e - T4f; |
| 630 |
T4p = T4f + T4e; |
| 631 |
} |
| 632 |
{
|
| 633 |
E T2m, T2p, T3M, T3P; |
| 634 |
T2m = T1 - T6; |
| 635 |
T2p = T2n - T2o; |
| 636 |
T2q = T2m - T2p; |
| 637 |
T37 = T2m + T2p; |
| 638 |
T3M = T2n + T2o; |
| 639 |
T3P = T3N + T3O; |
| 640 |
T3Q = T3M + T3P; |
| 641 |
T42 = T3P - T3M; |
| 642 |
} |
| 643 |
} |
| 644 |
{
|
| 645 |
E T1f, T3g, T21, T2C, T1N, T3k, T27, T2K, T1q, T3h, T22, T2F, T1C, T3j, T26; |
| 646 |
E T2H; |
| 647 |
{
|
| 648 |
E T19, T1Z, T1e, T20; |
| 649 |
{
|
| 650 |
E T16, T18, T15, T17; |
| 651 |
T16 = ri[WS(rs, 8)];
|
| 652 |
T18 = ii[WS(rs, 8)];
|
| 653 |
T15 = W[14];
|
| 654 |
T17 = W[15];
|
| 655 |
T19 = FMA(T15, T16, T17 * T18); |
| 656 |
T1Z = FNMS(T17, T16, T15 * T18); |
| 657 |
} |
| 658 |
{
|
| 659 |
E T1b, T1d, T1a, T1c; |
| 660 |
T1b = ri[WS(rs, 18)];
|
| 661 |
T1d = ii[WS(rs, 18)];
|
| 662 |
T1a = W[34];
|
| 663 |
T1c = W[35];
|
| 664 |
T1e = FMA(T1a, T1b, T1c * T1d); |
| 665 |
T20 = FNMS(T1c, T1b, T1a * T1d); |
| 666 |
} |
| 667 |
T1f = T19 + T1e; |
| 668 |
T3g = T1Z + T20; |
| 669 |
T21 = T1Z - T20; |
| 670 |
T2C = T19 - T1e; |
| 671 |
} |
| 672 |
{
|
| 673 |
E T1H, T2I, T1M, T2J; |
| 674 |
{
|
| 675 |
E T1E, T1G, T1D, T1F; |
| 676 |
T1E = ri[WS(rs, 17)];
|
| 677 |
T1G = ii[WS(rs, 17)];
|
| 678 |
T1D = W[32];
|
| 679 |
T1F = W[33];
|
| 680 |
T1H = FMA(T1D, T1E, T1F * T1G); |
| 681 |
T2I = FNMS(T1F, T1E, T1D * T1G); |
| 682 |
} |
| 683 |
{
|
| 684 |
E T1J, T1L, T1I, T1K; |
| 685 |
T1J = ri[WS(rs, 7)];
|
| 686 |
T1L = ii[WS(rs, 7)];
|
| 687 |
T1I = W[12];
|
| 688 |
T1K = W[13];
|
| 689 |
T1M = FMA(T1I, T1J, T1K * T1L); |
| 690 |
T2J = FNMS(T1K, T1J, T1I * T1L); |
| 691 |
} |
| 692 |
T1N = T1H + T1M; |
| 693 |
T3k = T2I + T2J; |
| 694 |
T27 = T1H - T1M; |
| 695 |
T2K = T2I - T2J; |
| 696 |
} |
| 697 |
{
|
| 698 |
E T1k, T2D, T1p, T2E; |
| 699 |
{
|
| 700 |
E T1h, T1j, T1g, T1i; |
| 701 |
T1h = ri[WS(rs, 13)];
|
| 702 |
T1j = ii[WS(rs, 13)];
|
| 703 |
T1g = W[24];
|
| 704 |
T1i = W[25];
|
| 705 |
T1k = FMA(T1g, T1h, T1i * T1j); |
| 706 |
T2D = FNMS(T1i, T1h, T1g * T1j); |
| 707 |
} |
| 708 |
{
|
| 709 |
E T1m, T1o, T1l, T1n; |
| 710 |
T1m = ri[WS(rs, 3)];
|
| 711 |
T1o = ii[WS(rs, 3)];
|
| 712 |
T1l = W[4];
|
| 713 |
T1n = W[5];
|
| 714 |
T1p = FMA(T1l, T1m, T1n * T1o); |
| 715 |
T2E = FNMS(T1n, T1m, T1l * T1o); |
| 716 |
} |
| 717 |
T1q = T1k + T1p; |
| 718 |
T3h = T2D + T2E; |
| 719 |
T22 = T1k - T1p; |
| 720 |
T2F = T2D - T2E; |
| 721 |
} |
| 722 |
{
|
| 723 |
E T1w, T24, T1B, T25; |
| 724 |
{
|
| 725 |
E T1t, T1v, T1s, T1u; |
| 726 |
T1t = ri[WS(rs, 12)];
|
| 727 |
T1v = ii[WS(rs, 12)];
|
| 728 |
T1s = W[22];
|
| 729 |
T1u = W[23];
|
| 730 |
T1w = FMA(T1s, T1t, T1u * T1v); |
| 731 |
T24 = FNMS(T1u, T1t, T1s * T1v); |
| 732 |
} |
| 733 |
{
|
| 734 |
E T1y, T1A, T1x, T1z; |
| 735 |
T1y = ri[WS(rs, 2)];
|
| 736 |
T1A = ii[WS(rs, 2)];
|
| 737 |
T1x = W[2];
|
| 738 |
T1z = W[3];
|
| 739 |
T1B = FMA(T1x, T1y, T1z * T1A); |
| 740 |
T25 = FNMS(T1z, T1y, T1x * T1A); |
| 741 |
} |
| 742 |
T1C = T1w + T1B; |
| 743 |
T3j = T24 + T25; |
| 744 |
T26 = T24 - T25; |
| 745 |
T2H = T1w - T1B; |
| 746 |
} |
| 747 |
T1r = T1f - T1q; |
| 748 |
T1O = T1C - T1N; |
| 749 |
T1P = T1r + T1O; |
| 750 |
T3i = T3g - T3h; |
| 751 |
T3l = T3j - T3k; |
| 752 |
T44 = T3i + T3l; |
| 753 |
T3D = T3g + T3h; |
| 754 |
T3E = T3j + T3k; |
| 755 |
T3K = T3D + T3E; |
| 756 |
T1V = T1f + T1q; |
| 757 |
T1W = T1C + T1N; |
| 758 |
T1X = T1V + T1W; |
| 759 |
T23 = T21 + T22; |
| 760 |
T28 = T26 + T27; |
| 761 |
T4r = T23 + T28; |
| 762 |
T2W = T21 - T22; |
| 763 |
T2X = T26 - T27; |
| 764 |
T4c = T2W + T2X; |
| 765 |
T33 = T2C + T2F; |
| 766 |
T34 = T2H + T2K; |
| 767 |
T35 = T33 + T34; |
| 768 |
T2G = T2C - T2F; |
| 769 |
T2L = T2H - T2K; |
| 770 |
T2M = T2G + T2L; |
| 771 |
} |
| 772 |
{
|
| 773 |
E Tu, T3n, T2c, T2r, T12, T3r, T2i, T2z, TF, T3o, T2d, T2u, TR, T3q, T2h; |
| 774 |
E T2w; |
| 775 |
{
|
| 776 |
E To, T2a, Tt, T2b; |
| 777 |
{
|
| 778 |
E Tl, Tn, Tk, Tm; |
| 779 |
Tl = ri[WS(rs, 4)];
|
| 780 |
Tn = ii[WS(rs, 4)];
|
| 781 |
Tk = W[6];
|
| 782 |
Tm = W[7];
|
| 783 |
To = FMA(Tk, Tl, Tm * Tn); |
| 784 |
T2a = FNMS(Tm, Tl, Tk * Tn); |
| 785 |
} |
| 786 |
{
|
| 787 |
E Tq, Ts, Tp, Tr; |
| 788 |
Tq = ri[WS(rs, 14)];
|
| 789 |
Ts = ii[WS(rs, 14)];
|
| 790 |
Tp = W[26];
|
| 791 |
Tr = W[27];
|
| 792 |
Tt = FMA(Tp, Tq, Tr * Ts); |
| 793 |
T2b = FNMS(Tr, Tq, Tp * Ts); |
| 794 |
} |
| 795 |
Tu = To + Tt; |
| 796 |
T3n = T2a + T2b; |
| 797 |
T2c = T2a - T2b; |
| 798 |
T2r = To - Tt; |
| 799 |
} |
| 800 |
{
|
| 801 |
E TW, T2x, T11, T2y; |
| 802 |
{
|
| 803 |
E TT, TV, TS, TU; |
| 804 |
TT = ri[WS(rs, 1)];
|
| 805 |
TV = ii[WS(rs, 1)];
|
| 806 |
TS = W[0];
|
| 807 |
TU = W[1];
|
| 808 |
TW = FMA(TS, TT, TU * TV); |
| 809 |
T2x = FNMS(TU, TT, TS * TV); |
| 810 |
} |
| 811 |
{
|
| 812 |
E TY, T10, TX, TZ; |
| 813 |
TY = ri[WS(rs, 11)];
|
| 814 |
T10 = ii[WS(rs, 11)];
|
| 815 |
TX = W[20];
|
| 816 |
TZ = W[21];
|
| 817 |
T11 = FMA(TX, TY, TZ * T10); |
| 818 |
T2y = FNMS(TZ, TY, TX * T10); |
| 819 |
} |
| 820 |
T12 = TW + T11; |
| 821 |
T3r = T2x + T2y; |
| 822 |
T2i = TW - T11; |
| 823 |
T2z = T2x - T2y; |
| 824 |
} |
| 825 |
{
|
| 826 |
E Tz, T2s, TE, T2t; |
| 827 |
{
|
| 828 |
E Tw, Ty, Tv, Tx; |
| 829 |
Tw = ri[WS(rs, 9)];
|
| 830 |
Ty = ii[WS(rs, 9)];
|
| 831 |
Tv = W[16];
|
| 832 |
Tx = W[17];
|
| 833 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 834 |
T2s = FNMS(Tx, Tw, Tv * Ty); |
| 835 |
} |
| 836 |
{
|
| 837 |
E TB, TD, TA, TC; |
| 838 |
TB = ri[WS(rs, 19)];
|
| 839 |
TD = ii[WS(rs, 19)];
|
| 840 |
TA = W[36];
|
| 841 |
TC = W[37];
|
| 842 |
TE = FMA(TA, TB, TC * TD); |
| 843 |
T2t = FNMS(TC, TB, TA * TD); |
| 844 |
} |
| 845 |
TF = Tz + TE; |
| 846 |
T3o = T2s + T2t; |
| 847 |
T2d = Tz - TE; |
| 848 |
T2u = T2s - T2t; |
| 849 |
} |
| 850 |
{
|
| 851 |
E TL, T2f, TQ, T2g; |
| 852 |
{
|
| 853 |
E TI, TK, TH, TJ; |
| 854 |
TI = ri[WS(rs, 16)];
|
| 855 |
TK = ii[WS(rs, 16)];
|
| 856 |
TH = W[30];
|
| 857 |
TJ = W[31];
|
| 858 |
TL = FMA(TH, TI, TJ * TK); |
| 859 |
T2f = FNMS(TJ, TI, TH * TK); |
| 860 |
} |
| 861 |
{
|
| 862 |
E TN, TP, TM, TO; |
| 863 |
TN = ri[WS(rs, 6)];
|
| 864 |
TP = ii[WS(rs, 6)];
|
| 865 |
TM = W[10];
|
| 866 |
TO = W[11];
|
| 867 |
TQ = FMA(TM, TN, TO * TP); |
| 868 |
T2g = FNMS(TO, TN, TM * TP); |
| 869 |
} |
| 870 |
TR = TL + TQ; |
| 871 |
T3q = T2f + T2g; |
| 872 |
T2h = T2f - T2g; |
| 873 |
T2w = TL - TQ; |
| 874 |
} |
| 875 |
TG = Tu - TF; |
| 876 |
T13 = TR - T12; |
| 877 |
T14 = TG + T13; |
| 878 |
T3p = T3n - T3o; |
| 879 |
T3s = T3q - T3r; |
| 880 |
T43 = T3p + T3s; |
| 881 |
T3A = T3n + T3o; |
| 882 |
T3B = T3q + T3r; |
| 883 |
T3J = T3A + T3B; |
| 884 |
T1S = Tu + TF; |
| 885 |
T1T = TR + T12; |
| 886 |
T1U = T1S + T1T; |
| 887 |
T2e = T2c + T2d; |
| 888 |
T2j = T2h + T2i; |
| 889 |
T4q = T2e + T2j; |
| 890 |
T2T = T2c - T2d; |
| 891 |
T2U = T2h - T2i; |
| 892 |
T4b = T2T + T2U; |
| 893 |
T30 = T2r + T2u; |
| 894 |
T31 = T2w + T2z; |
| 895 |
T32 = T30 + T31; |
| 896 |
T2v = T2r - T2u; |
| 897 |
T2A = T2w - T2z; |
| 898 |
T2B = T2v + T2A; |
| 899 |
} |
| 900 |
{
|
| 901 |
E T3e, T1Q, T3d, T3u, T3w, T3m, T3t, T3v, T3f; |
| 902 |
T3e = KP559016994 * (T14 - T1P); |
| 903 |
T1Q = T14 + T1P; |
| 904 |
T3d = FNMS(KP250000000, T1Q, Tj); |
| 905 |
T3m = T3i - T3l; |
| 906 |
T3t = T3p - T3s; |
| 907 |
T3u = FNMS(KP587785252, T3t, KP951056516 * T3m); |
| 908 |
T3w = FMA(KP951056516, T3t, KP587785252 * T3m); |
| 909 |
ri[WS(rs, 10)] = Tj + T1Q;
|
| 910 |
T3v = T3e + T3d; |
| 911 |
ri[WS(rs, 14)] = T3v - T3w;
|
| 912 |
ri[WS(rs, 6)] = T3v + T3w;
|
| 913 |
T3f = T3d - T3e; |
| 914 |
ri[WS(rs, 2)] = T3f - T3u;
|
| 915 |
ri[WS(rs, 18)] = T3f + T3u;
|
| 916 |
} |
| 917 |
{
|
| 918 |
E T47, T45, T46, T41, T4a, T3Z, T40, T49, T48; |
| 919 |
T47 = KP559016994 * (T43 - T44); |
| 920 |
T45 = T43 + T44; |
| 921 |
T46 = FNMS(KP250000000, T45, T42); |
| 922 |
T3Z = T1r - T1O; |
| 923 |
T40 = TG - T13; |
| 924 |
T41 = FNMS(KP587785252, T40, KP951056516 * T3Z); |
| 925 |
T4a = FMA(KP951056516, T40, KP587785252 * T3Z); |
| 926 |
ii[WS(rs, 10)] = T45 + T42;
|
| 927 |
T49 = T47 + T46; |
| 928 |
ii[WS(rs, 6)] = T49 - T4a;
|
| 929 |
ii[WS(rs, 14)] = T4a + T49;
|
| 930 |
T48 = T46 - T47; |
| 931 |
ii[WS(rs, 2)] = T41 + T48;
|
| 932 |
ii[WS(rs, 18)] = T48 - T41;
|
| 933 |
} |
| 934 |
{
|
| 935 |
E T3x, T1Y, T3y, T3G, T3I, T3C, T3F, T3H, T3z; |
| 936 |
T3x = KP559016994 * (T1U - T1X); |
| 937 |
T1Y = T1U + T1X; |
| 938 |
T3y = FNMS(KP250000000, T1Y, T1R); |
| 939 |
T3C = T3A - T3B; |
| 940 |
T3F = T3D - T3E; |
| 941 |
T3G = FMA(KP951056516, T3C, KP587785252 * T3F); |
| 942 |
T3I = FNMS(KP587785252, T3C, KP951056516 * T3F); |
| 943 |
ri[0] = T1R + T1Y;
|
| 944 |
T3H = T3y - T3x; |
| 945 |
ri[WS(rs, 12)] = T3H - T3I;
|
| 946 |
ri[WS(rs, 8)] = T3H + T3I;
|
| 947 |
T3z = T3x + T3y; |
| 948 |
ri[WS(rs, 4)] = T3z - T3G;
|
| 949 |
ri[WS(rs, 16)] = T3z + T3G;
|
| 950 |
} |
| 951 |
{
|
| 952 |
E T3U, T3L, T3V, T3T, T3Y, T3R, T3S, T3X, T3W; |
| 953 |
T3U = KP559016994 * (T3J - T3K); |
| 954 |
T3L = T3J + T3K; |
| 955 |
T3V = FNMS(KP250000000, T3L, T3Q); |
| 956 |
T3R = T1S - T1T; |
| 957 |
T3S = T1V - T1W; |
| 958 |
T3T = FMA(KP951056516, T3R, KP587785252 * T3S); |
| 959 |
T3Y = FNMS(KP587785252, T3R, KP951056516 * T3S); |
| 960 |
ii[0] = T3L + T3Q;
|
| 961 |
T3X = T3V - T3U; |
| 962 |
ii[WS(rs, 8)] = T3X - T3Y;
|
| 963 |
ii[WS(rs, 12)] = T3Y + T3X;
|
| 964 |
T3W = T3U + T3V; |
| 965 |
ii[WS(rs, 4)] = T3T + T3W;
|
| 966 |
ii[WS(rs, 16)] = T3W - T3T;
|
| 967 |
} |
| 968 |
{
|
| 969 |
E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; |
| 970 |
T2P = KP559016994 * (T2B - T2M); |
| 971 |
T2N = T2B + T2M; |
| 972 |
T2O = FNMS(KP250000000, T2N, T2q); |
| 973 |
T29 = T23 - T28; |
| 974 |
T2k = T2e - T2j; |
| 975 |
T2l = FNMS(KP587785252, T2k, KP951056516 * T29); |
| 976 |
T2R = FMA(KP951056516, T2k, KP587785252 * T29); |
| 977 |
ri[WS(rs, 15)] = T2q + T2N;
|
| 978 |
T2S = T2P + T2O; |
| 979 |
ri[WS(rs, 11)] = T2R + T2S;
|
| 980 |
ri[WS(rs, 19)] = T2S - T2R;
|
| 981 |
T2Q = T2O - T2P; |
| 982 |
ri[WS(rs, 3)] = T2l + T2Q;
|
| 983 |
ri[WS(rs, 7)] = T2Q - T2l;
|
| 984 |
} |
| 985 |
{
|
| 986 |
E T4u, T4s, T4t, T4y, T4A, T4w, T4x, T4z, T4v; |
| 987 |
T4u = KP559016994 * (T4q - T4r); |
| 988 |
T4s = T4q + T4r; |
| 989 |
T4t = FNMS(KP250000000, T4s, T4p); |
| 990 |
T4w = T2G - T2L; |
| 991 |
T4x = T2v - T2A; |
| 992 |
T4y = FNMS(KP587785252, T4x, KP951056516 * T4w); |
| 993 |
T4A = FMA(KP951056516, T4x, KP587785252 * T4w); |
| 994 |
ii[WS(rs, 15)] = T4s + T4p;
|
| 995 |
T4z = T4u + T4t; |
| 996 |
ii[WS(rs, 11)] = T4z - T4A;
|
| 997 |
ii[WS(rs, 19)] = T4A + T4z;
|
| 998 |
T4v = T4t - T4u; |
| 999 |
ii[WS(rs, 3)] = T4v - T4y;
|
| 1000 |
ii[WS(rs, 7)] = T4y + T4v;
|
| 1001 |
} |
| 1002 |
{
|
| 1003 |
E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; |
| 1004 |
T36 = KP559016994 * (T32 - T35); |
| 1005 |
T38 = T32 + T35; |
| 1006 |
T39 = FNMS(KP250000000, T38, T37); |
| 1007 |
T2V = T2T - T2U; |
| 1008 |
T2Y = T2W - T2X; |
| 1009 |
T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); |
| 1010 |
T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); |
| 1011 |
ri[WS(rs, 5)] = T37 + T38;
|
| 1012 |
T3c = T39 - T36; |
| 1013 |
ri[WS(rs, 13)] = T3b + T3c;
|
| 1014 |
ri[WS(rs, 17)] = T3c - T3b;
|
| 1015 |
T3a = T36 + T39; |
| 1016 |
ri[WS(rs, 1)] = T2Z + T3a;
|
| 1017 |
ri[WS(rs, 9)] = T3a - T2Z;
|
| 1018 |
} |
| 1019 |
{
|
| 1020 |
E T4d, T4h, T4i, T4m, T4o, T4k, T4l, T4n, T4j; |
| 1021 |
T4d = KP559016994 * (T4b - T4c); |
| 1022 |
T4h = T4b + T4c; |
| 1023 |
T4i = FNMS(KP250000000, T4h, T4g); |
| 1024 |
T4k = T30 - T31; |
| 1025 |
T4l = T33 - T34; |
| 1026 |
T4m = FMA(KP951056516, T4k, KP587785252 * T4l); |
| 1027 |
T4o = FNMS(KP587785252, T4k, KP951056516 * T4l); |
| 1028 |
ii[WS(rs, 5)] = T4h + T4g;
|
| 1029 |
T4n = T4i - T4d; |
| 1030 |
ii[WS(rs, 13)] = T4n - T4o;
|
| 1031 |
ii[WS(rs, 17)] = T4o + T4n;
|
| 1032 |
T4j = T4d + T4i; |
| 1033 |
ii[WS(rs, 1)] = T4j - T4m;
|
| 1034 |
ii[WS(rs, 9)] = T4m + T4j;
|
| 1035 |
} |
| 1036 |
} |
| 1037 |
} |
| 1038 |
} |
| 1039 |
|
| 1040 |
static const tw_instr twinstr[] = { |
| 1041 |
{TW_FULL, 0, 20},
|
| 1042 |
{TW_NEXT, 1, 0}
|
| 1043 |
}; |
| 1044 |
|
| 1045 |
static const ct_desc desc = { 20, "t1_20", twinstr, &GENUS, {184, 62, 62, 0}, 0, 0, 0 }; |
| 1046 |
|
| 1047 |
void X(codelet_t1_20) (planner *p) {
|
| 1048 |
X(kdft_dit_register) (p, t1_20, &desc); |
| 1049 |
} |
| 1050 |
#endif
|