To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_16.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (19.5 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:15 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 174 FP additions, 100 FP multiplications,
|
| 32 |
* (or, 104 additions, 30 multiplications, 70 fused multiply/add),
|
| 33 |
* 60 stack variables, 3 constants, and 64 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 40 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 41 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 42 |
{
|
| 43 |
INT m; |
| 44 |
for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { |
| 45 |
E T8, T3z, T1I, T3o, T1s, T35, T2o, T2r, T1F, T36, T2p, T2w, Tl, T3A, T1N; |
| 46 |
E T3k, Tz, T2V, T1T, T1U, T11, T30, T29, T2c, T1e, T31, T2a, T2h, TM, T2W; |
| 47 |
E T1W, T21; |
| 48 |
{
|
| 49 |
E T1, T3n, T3, T6, T4, T3l, T2, T7, T3m, T5; |
| 50 |
T1 = ri[0];
|
| 51 |
T3n = ii[0];
|
| 52 |
T3 = ri[WS(rs, 8)];
|
| 53 |
T6 = ii[WS(rs, 8)];
|
| 54 |
T2 = W[14];
|
| 55 |
T4 = T2 * T3; |
| 56 |
T3l = T2 * T6; |
| 57 |
T5 = W[15];
|
| 58 |
T7 = FMA(T5, T6, T4); |
| 59 |
T3m = FNMS(T5, T3, T3l); |
| 60 |
T8 = T1 + T7; |
| 61 |
T3z = T3n - T3m; |
| 62 |
T1I = T1 - T7; |
| 63 |
T3o = T3m + T3n; |
| 64 |
} |
| 65 |
{
|
| 66 |
E T1h, T1k, T1i, T2k, T1n, T1q, T1o, T2m, T1g, T1m; |
| 67 |
T1h = ri[WS(rs, 15)];
|
| 68 |
T1k = ii[WS(rs, 15)];
|
| 69 |
T1g = W[28];
|
| 70 |
T1i = T1g * T1h; |
| 71 |
T2k = T1g * T1k; |
| 72 |
T1n = ri[WS(rs, 7)];
|
| 73 |
T1q = ii[WS(rs, 7)];
|
| 74 |
T1m = W[12];
|
| 75 |
T1o = T1m * T1n; |
| 76 |
T2m = T1m * T1q; |
| 77 |
{
|
| 78 |
E T1l, T2l, T1r, T2n, T1j, T1p; |
| 79 |
T1j = W[29];
|
| 80 |
T1l = FMA(T1j, T1k, T1i); |
| 81 |
T2l = FNMS(T1j, T1h, T2k); |
| 82 |
T1p = W[13];
|
| 83 |
T1r = FMA(T1p, T1q, T1o); |
| 84 |
T2n = FNMS(T1p, T1n, T2m); |
| 85 |
T1s = T1l + T1r; |
| 86 |
T35 = T2l + T2n; |
| 87 |
T2o = T2l - T2n; |
| 88 |
T2r = T1l - T1r; |
| 89 |
} |
| 90 |
} |
| 91 |
{
|
| 92 |
E T1u, T1x, T1v, T2s, T1A, T1D, T1B, T2u, T1t, T1z; |
| 93 |
T1u = ri[WS(rs, 3)];
|
| 94 |
T1x = ii[WS(rs, 3)];
|
| 95 |
T1t = W[4];
|
| 96 |
T1v = T1t * T1u; |
| 97 |
T2s = T1t * T1x; |
| 98 |
T1A = ri[WS(rs, 11)];
|
| 99 |
T1D = ii[WS(rs, 11)];
|
| 100 |
T1z = W[20];
|
| 101 |
T1B = T1z * T1A; |
| 102 |
T2u = T1z * T1D; |
| 103 |
{
|
| 104 |
E T1y, T2t, T1E, T2v, T1w, T1C; |
| 105 |
T1w = W[5];
|
| 106 |
T1y = FMA(T1w, T1x, T1v); |
| 107 |
T2t = FNMS(T1w, T1u, T2s); |
| 108 |
T1C = W[21];
|
| 109 |
T1E = FMA(T1C, T1D, T1B); |
| 110 |
T2v = FNMS(T1C, T1A, T2u); |
| 111 |
T1F = T1y + T1E; |
| 112 |
T36 = T2t + T2v; |
| 113 |
T2p = T1y - T1E; |
| 114 |
T2w = T2t - T2v; |
| 115 |
} |
| 116 |
} |
| 117 |
{
|
| 118 |
E Ta, Td, Tb, T1J, Tg, Tj, Th, T1L, T9, Tf; |
| 119 |
Ta = ri[WS(rs, 4)];
|
| 120 |
Td = ii[WS(rs, 4)];
|
| 121 |
T9 = W[6];
|
| 122 |
Tb = T9 * Ta; |
| 123 |
T1J = T9 * Td; |
| 124 |
Tg = ri[WS(rs, 12)];
|
| 125 |
Tj = ii[WS(rs, 12)];
|
| 126 |
Tf = W[22];
|
| 127 |
Th = Tf * Tg; |
| 128 |
T1L = Tf * Tj; |
| 129 |
{
|
| 130 |
E Te, T1K, Tk, T1M, Tc, Ti; |
| 131 |
Tc = W[7];
|
| 132 |
Te = FMA(Tc, Td, Tb); |
| 133 |
T1K = FNMS(Tc, Ta, T1J); |
| 134 |
Ti = W[23];
|
| 135 |
Tk = FMA(Ti, Tj, Th); |
| 136 |
T1M = FNMS(Ti, Tg, T1L); |
| 137 |
Tl = Te + Tk; |
| 138 |
T3A = Te - Tk; |
| 139 |
T1N = T1K - T1M; |
| 140 |
T3k = T1K + T1M; |
| 141 |
} |
| 142 |
} |
| 143 |
{
|
| 144 |
E To, Tr, Tp, T1P, Tu, Tx, Tv, T1R, Tn, Tt; |
| 145 |
To = ri[WS(rs, 2)];
|
| 146 |
Tr = ii[WS(rs, 2)];
|
| 147 |
Tn = W[2];
|
| 148 |
Tp = Tn * To; |
| 149 |
T1P = Tn * Tr; |
| 150 |
Tu = ri[WS(rs, 10)];
|
| 151 |
Tx = ii[WS(rs, 10)];
|
| 152 |
Tt = W[18];
|
| 153 |
Tv = Tt * Tu; |
| 154 |
T1R = Tt * Tx; |
| 155 |
{
|
| 156 |
E Ts, T1Q, Ty, T1S, Tq, Tw; |
| 157 |
Tq = W[3];
|
| 158 |
Ts = FMA(Tq, Tr, Tp); |
| 159 |
T1Q = FNMS(Tq, To, T1P); |
| 160 |
Tw = W[19];
|
| 161 |
Ty = FMA(Tw, Tx, Tv); |
| 162 |
T1S = FNMS(Tw, Tu, T1R); |
| 163 |
Tz = Ts + Ty; |
| 164 |
T2V = T1Q + T1S; |
| 165 |
T1T = T1Q - T1S; |
| 166 |
T1U = Ts - Ty; |
| 167 |
} |
| 168 |
} |
| 169 |
{
|
| 170 |
E TQ, TT, TR, T25, TW, TZ, TX, T27, TP, TV; |
| 171 |
TQ = ri[WS(rs, 1)];
|
| 172 |
TT = ii[WS(rs, 1)];
|
| 173 |
TP = W[0];
|
| 174 |
TR = TP * TQ; |
| 175 |
T25 = TP * TT; |
| 176 |
TW = ri[WS(rs, 9)];
|
| 177 |
TZ = ii[WS(rs, 9)];
|
| 178 |
TV = W[16];
|
| 179 |
TX = TV * TW; |
| 180 |
T27 = TV * TZ; |
| 181 |
{
|
| 182 |
E TU, T26, T10, T28, TS, TY; |
| 183 |
TS = W[1];
|
| 184 |
TU = FMA(TS, TT, TR); |
| 185 |
T26 = FNMS(TS, TQ, T25); |
| 186 |
TY = W[17];
|
| 187 |
T10 = FMA(TY, TZ, TX); |
| 188 |
T28 = FNMS(TY, TW, T27); |
| 189 |
T11 = TU + T10; |
| 190 |
T30 = T26 + T28; |
| 191 |
T29 = T26 - T28; |
| 192 |
T2c = TU - T10; |
| 193 |
} |
| 194 |
} |
| 195 |
{
|
| 196 |
E T13, T16, T14, T2d, T19, T1c, T1a, T2f, T12, T18; |
| 197 |
T13 = ri[WS(rs, 5)];
|
| 198 |
T16 = ii[WS(rs, 5)];
|
| 199 |
T12 = W[8];
|
| 200 |
T14 = T12 * T13; |
| 201 |
T2d = T12 * T16; |
| 202 |
T19 = ri[WS(rs, 13)];
|
| 203 |
T1c = ii[WS(rs, 13)];
|
| 204 |
T18 = W[24];
|
| 205 |
T1a = T18 * T19; |
| 206 |
T2f = T18 * T1c; |
| 207 |
{
|
| 208 |
E T17, T2e, T1d, T2g, T15, T1b; |
| 209 |
T15 = W[9];
|
| 210 |
T17 = FMA(T15, T16, T14); |
| 211 |
T2e = FNMS(T15, T13, T2d); |
| 212 |
T1b = W[25];
|
| 213 |
T1d = FMA(T1b, T1c, T1a); |
| 214 |
T2g = FNMS(T1b, T19, T2f); |
| 215 |
T1e = T17 + T1d; |
| 216 |
T31 = T2e + T2g; |
| 217 |
T2a = T17 - T1d; |
| 218 |
T2h = T2e - T2g; |
| 219 |
} |
| 220 |
} |
| 221 |
{
|
| 222 |
E TB, TE, TC, T1X, TH, TK, TI, T1Z, TA, TG; |
| 223 |
TB = ri[WS(rs, 14)];
|
| 224 |
TE = ii[WS(rs, 14)];
|
| 225 |
TA = W[26];
|
| 226 |
TC = TA * TB; |
| 227 |
T1X = TA * TE; |
| 228 |
TH = ri[WS(rs, 6)];
|
| 229 |
TK = ii[WS(rs, 6)];
|
| 230 |
TG = W[10];
|
| 231 |
TI = TG * TH; |
| 232 |
T1Z = TG * TK; |
| 233 |
{
|
| 234 |
E TF, T1Y, TL, T20, TD, TJ; |
| 235 |
TD = W[27];
|
| 236 |
TF = FMA(TD, TE, TC); |
| 237 |
T1Y = FNMS(TD, TB, T1X); |
| 238 |
TJ = W[11];
|
| 239 |
TL = FMA(TJ, TK, TI); |
| 240 |
T20 = FNMS(TJ, TH, T1Z); |
| 241 |
TM = TF + TL; |
| 242 |
T2W = T1Y + T20; |
| 243 |
T1W = TF - TL; |
| 244 |
T21 = T1Y - T20; |
| 245 |
} |
| 246 |
} |
| 247 |
{
|
| 248 |
E TO, T3e, T3q, T3s, T1H, T3r, T3h, T3i; |
| 249 |
{
|
| 250 |
E Tm, TN, T3j, T3p; |
| 251 |
Tm = T8 + Tl; |
| 252 |
TN = Tz + TM; |
| 253 |
TO = Tm + TN; |
| 254 |
T3e = Tm - TN; |
| 255 |
T3j = T2V + T2W; |
| 256 |
T3p = T3k + T3o; |
| 257 |
T3q = T3j + T3p; |
| 258 |
T3s = T3p - T3j; |
| 259 |
} |
| 260 |
{
|
| 261 |
E T1f, T1G, T3f, T3g; |
| 262 |
T1f = T11 + T1e; |
| 263 |
T1G = T1s + T1F; |
| 264 |
T1H = T1f + T1G; |
| 265 |
T3r = T1G - T1f; |
| 266 |
T3f = T30 + T31; |
| 267 |
T3g = T35 + T36; |
| 268 |
T3h = T3f - T3g; |
| 269 |
T3i = T3f + T3g; |
| 270 |
} |
| 271 |
ri[WS(rs, 8)] = TO - T1H;
|
| 272 |
ii[WS(rs, 8)] = T3q - T3i;
|
| 273 |
ri[0] = TO + T1H;
|
| 274 |
ii[0] = T3i + T3q;
|
| 275 |
ri[WS(rs, 12)] = T3e - T3h;
|
| 276 |
ii[WS(rs, 12)] = T3s - T3r;
|
| 277 |
ri[WS(rs, 4)] = T3e + T3h;
|
| 278 |
ii[WS(rs, 4)] = T3r + T3s;
|
| 279 |
} |
| 280 |
{
|
| 281 |
E T2Y, T3a, T3v, T3x, T33, T3b, T38, T3c; |
| 282 |
{
|
| 283 |
E T2U, T2X, T3t, T3u; |
| 284 |
T2U = T8 - Tl; |
| 285 |
T2X = T2V - T2W; |
| 286 |
T2Y = T2U + T2X; |
| 287 |
T3a = T2U - T2X; |
| 288 |
T3t = TM - Tz; |
| 289 |
T3u = T3o - T3k; |
| 290 |
T3v = T3t + T3u; |
| 291 |
T3x = T3u - T3t; |
| 292 |
} |
| 293 |
{
|
| 294 |
E T2Z, T32, T34, T37; |
| 295 |
T2Z = T11 - T1e; |
| 296 |
T32 = T30 - T31; |
| 297 |
T33 = T2Z + T32; |
| 298 |
T3b = T32 - T2Z; |
| 299 |
T34 = T1s - T1F; |
| 300 |
T37 = T35 - T36; |
| 301 |
T38 = T34 - T37; |
| 302 |
T3c = T34 + T37; |
| 303 |
} |
| 304 |
{
|
| 305 |
E T39, T3w, T3d, T3y; |
| 306 |
T39 = T33 + T38; |
| 307 |
ri[WS(rs, 10)] = FNMS(KP707106781, T39, T2Y);
|
| 308 |
ri[WS(rs, 2)] = FMA(KP707106781, T39, T2Y);
|
| 309 |
T3w = T3b + T3c; |
| 310 |
ii[WS(rs, 2)] = FMA(KP707106781, T3w, T3v);
|
| 311 |
ii[WS(rs, 10)] = FNMS(KP707106781, T3w, T3v);
|
| 312 |
T3d = T3b - T3c; |
| 313 |
ri[WS(rs, 14)] = FNMS(KP707106781, T3d, T3a);
|
| 314 |
ri[WS(rs, 6)] = FMA(KP707106781, T3d, T3a);
|
| 315 |
T3y = T38 - T33; |
| 316 |
ii[WS(rs, 6)] = FMA(KP707106781, T3y, T3x);
|
| 317 |
ii[WS(rs, 14)] = FNMS(KP707106781, T3y, T3x);
|
| 318 |
} |
| 319 |
} |
| 320 |
{
|
| 321 |
E T1O, T3B, T3H, T2E, T23, T3C, T2O, T2S, T2H, T3I, T2j, T2B, T2L, T2R, T2y; |
| 322 |
E T2C; |
| 323 |
{
|
| 324 |
E T1V, T22, T2b, T2i; |
| 325 |
T1O = T1I - T1N; |
| 326 |
T3B = T3z - T3A; |
| 327 |
T3H = T3A + T3z; |
| 328 |
T2E = T1I + T1N; |
| 329 |
T1V = T1T - T1U; |
| 330 |
T22 = T1W + T21; |
| 331 |
T23 = T1V - T22; |
| 332 |
T3C = T1V + T22; |
| 333 |
{
|
| 334 |
E T2M, T2N, T2F, T2G; |
| 335 |
T2M = T2r + T2w; |
| 336 |
T2N = T2o - T2p; |
| 337 |
T2O = FNMS(KP414213562, T2N, T2M); |
| 338 |
T2S = FMA(KP414213562, T2M, T2N); |
| 339 |
T2F = T1U + T1T; |
| 340 |
T2G = T1W - T21; |
| 341 |
T2H = T2F + T2G; |
| 342 |
T3I = T2G - T2F; |
| 343 |
} |
| 344 |
T2b = T29 + T2a; |
| 345 |
T2i = T2c - T2h; |
| 346 |
T2j = FMA(KP414213562, T2i, T2b); |
| 347 |
T2B = FNMS(KP414213562, T2b, T2i); |
| 348 |
{
|
| 349 |
E T2J, T2K, T2q, T2x; |
| 350 |
T2J = T2c + T2h; |
| 351 |
T2K = T29 - T2a; |
| 352 |
T2L = FMA(KP414213562, T2K, T2J); |
| 353 |
T2R = FNMS(KP414213562, T2J, T2K); |
| 354 |
T2q = T2o + T2p; |
| 355 |
T2x = T2r - T2w; |
| 356 |
T2y = FNMS(KP414213562, T2x, T2q); |
| 357 |
T2C = FMA(KP414213562, T2q, T2x); |
| 358 |
} |
| 359 |
} |
| 360 |
{
|
| 361 |
E T24, T2z, T3J, T3K; |
| 362 |
T24 = FMA(KP707106781, T23, T1O); |
| 363 |
T2z = T2j - T2y; |
| 364 |
ri[WS(rs, 11)] = FNMS(KP923879532, T2z, T24);
|
| 365 |
ri[WS(rs, 3)] = FMA(KP923879532, T2z, T24);
|
| 366 |
T3J = FMA(KP707106781, T3I, T3H); |
| 367 |
T3K = T2C - T2B; |
| 368 |
ii[WS(rs, 3)] = FMA(KP923879532, T3K, T3J);
|
| 369 |
ii[WS(rs, 11)] = FNMS(KP923879532, T3K, T3J);
|
| 370 |
} |
| 371 |
{
|
| 372 |
E T2A, T2D, T3L, T3M; |
| 373 |
T2A = FNMS(KP707106781, T23, T1O); |
| 374 |
T2D = T2B + T2C; |
| 375 |
ri[WS(rs, 7)] = FNMS(KP923879532, T2D, T2A);
|
| 376 |
ri[WS(rs, 15)] = FMA(KP923879532, T2D, T2A);
|
| 377 |
T3L = FNMS(KP707106781, T3I, T3H); |
| 378 |
T3M = T2j + T2y; |
| 379 |
ii[WS(rs, 7)] = FNMS(KP923879532, T3M, T3L);
|
| 380 |
ii[WS(rs, 15)] = FMA(KP923879532, T3M, T3L);
|
| 381 |
} |
| 382 |
{
|
| 383 |
E T2I, T2P, T3D, T3E; |
| 384 |
T2I = FMA(KP707106781, T2H, T2E); |
| 385 |
T2P = T2L + T2O; |
| 386 |
ri[WS(rs, 9)] = FNMS(KP923879532, T2P, T2I);
|
| 387 |
ri[WS(rs, 1)] = FMA(KP923879532, T2P, T2I);
|
| 388 |
T3D = FMA(KP707106781, T3C, T3B); |
| 389 |
T3E = T2R + T2S; |
| 390 |
ii[WS(rs, 1)] = FMA(KP923879532, T3E, T3D);
|
| 391 |
ii[WS(rs, 9)] = FNMS(KP923879532, T3E, T3D);
|
| 392 |
} |
| 393 |
{
|
| 394 |
E T2Q, T2T, T3F, T3G; |
| 395 |
T2Q = FNMS(KP707106781, T2H, T2E); |
| 396 |
T2T = T2R - T2S; |
| 397 |
ri[WS(rs, 13)] = FNMS(KP923879532, T2T, T2Q);
|
| 398 |
ri[WS(rs, 5)] = FMA(KP923879532, T2T, T2Q);
|
| 399 |
T3F = FNMS(KP707106781, T3C, T3B); |
| 400 |
T3G = T2O - T2L; |
| 401 |
ii[WS(rs, 5)] = FMA(KP923879532, T3G, T3F);
|
| 402 |
ii[WS(rs, 13)] = FNMS(KP923879532, T3G, T3F);
|
| 403 |
} |
| 404 |
} |
| 405 |
} |
| 406 |
} |
| 407 |
} |
| 408 |
|
| 409 |
static const tw_instr twinstr[] = { |
| 410 |
{TW_FULL, 0, 16},
|
| 411 |
{TW_NEXT, 1, 0}
|
| 412 |
}; |
| 413 |
|
| 414 |
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {104, 30, 70, 0}, 0, 0, 0 }; |
| 415 |
|
| 416 |
void X(codelet_t1_16) (planner *p) {
|
| 417 |
X(kdft_dit_register) (p, t1_16, &desc); |
| 418 |
} |
| 419 |
#else
|
| 420 |
|
| 421 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 16 -name t1_16 -include dft/scalar/t.h */
|
| 422 |
|
| 423 |
/*
|
| 424 |
* This function contains 174 FP additions, 84 FP multiplications,
|
| 425 |
* (or, 136 additions, 46 multiplications, 38 fused multiply/add),
|
| 426 |
* 52 stack variables, 3 constants, and 64 memory accesses
|
| 427 |
*/
|
| 428 |
#include "dft/scalar/t.h" |
| 429 |
|
| 430 |
static void t1_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 431 |
{
|
| 432 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 433 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 434 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 435 |
{
|
| 436 |
INT m; |
| 437 |
for (m = mb, W = W + (mb * 30); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 30, MAKE_VOLATILE_STRIDE(32, rs)) { |
| 438 |
E T7, T37, T1t, T2U, Ti, T38, T1w, T2R, Tu, T2s, T1C, T2c, TF, T2t, T1H; |
| 439 |
E T2d, T1f, T1q, T2B, T2C, T2D, T2E, T1Z, T2j, T24, T2k, TS, T13, T2w, T2x; |
| 440 |
E T2y, T2z, T1O, T2g, T1T, T2h; |
| 441 |
{
|
| 442 |
E T1, T2T, T6, T2S; |
| 443 |
T1 = ri[0];
|
| 444 |
T2T = ii[0];
|
| 445 |
{
|
| 446 |
E T3, T5, T2, T4; |
| 447 |
T3 = ri[WS(rs, 8)];
|
| 448 |
T5 = ii[WS(rs, 8)];
|
| 449 |
T2 = W[14];
|
| 450 |
T4 = W[15];
|
| 451 |
T6 = FMA(T2, T3, T4 * T5); |
| 452 |
T2S = FNMS(T4, T3, T2 * T5); |
| 453 |
} |
| 454 |
T7 = T1 + T6; |
| 455 |
T37 = T2T - T2S; |
| 456 |
T1t = T1 - T6; |
| 457 |
T2U = T2S + T2T; |
| 458 |
} |
| 459 |
{
|
| 460 |
E Tc, T1u, Th, T1v; |
| 461 |
{
|
| 462 |
E T9, Tb, T8, Ta; |
| 463 |
T9 = ri[WS(rs, 4)];
|
| 464 |
Tb = ii[WS(rs, 4)];
|
| 465 |
T8 = W[6];
|
| 466 |
Ta = W[7];
|
| 467 |
Tc = FMA(T8, T9, Ta * Tb); |
| 468 |
T1u = FNMS(Ta, T9, T8 * Tb); |
| 469 |
} |
| 470 |
{
|
| 471 |
E Te, Tg, Td, Tf; |
| 472 |
Te = ri[WS(rs, 12)];
|
| 473 |
Tg = ii[WS(rs, 12)];
|
| 474 |
Td = W[22];
|
| 475 |
Tf = W[23];
|
| 476 |
Th = FMA(Td, Te, Tf * Tg); |
| 477 |
T1v = FNMS(Tf, Te, Td * Tg); |
| 478 |
} |
| 479 |
Ti = Tc + Th; |
| 480 |
T38 = Tc - Th; |
| 481 |
T1w = T1u - T1v; |
| 482 |
T2R = T1u + T1v; |
| 483 |
} |
| 484 |
{
|
| 485 |
E To, T1y, Tt, T1z, T1A, T1B; |
| 486 |
{
|
| 487 |
E Tl, Tn, Tk, Tm; |
| 488 |
Tl = ri[WS(rs, 2)];
|
| 489 |
Tn = ii[WS(rs, 2)];
|
| 490 |
Tk = W[2];
|
| 491 |
Tm = W[3];
|
| 492 |
To = FMA(Tk, Tl, Tm * Tn); |
| 493 |
T1y = FNMS(Tm, Tl, Tk * Tn); |
| 494 |
} |
| 495 |
{
|
| 496 |
E Tq, Ts, Tp, Tr; |
| 497 |
Tq = ri[WS(rs, 10)];
|
| 498 |
Ts = ii[WS(rs, 10)];
|
| 499 |
Tp = W[18];
|
| 500 |
Tr = W[19];
|
| 501 |
Tt = FMA(Tp, Tq, Tr * Ts); |
| 502 |
T1z = FNMS(Tr, Tq, Tp * Ts); |
| 503 |
} |
| 504 |
Tu = To + Tt; |
| 505 |
T2s = T1y + T1z; |
| 506 |
T1A = T1y - T1z; |
| 507 |
T1B = To - Tt; |
| 508 |
T1C = T1A - T1B; |
| 509 |
T2c = T1B + T1A; |
| 510 |
} |
| 511 |
{
|
| 512 |
E Tz, T1E, TE, T1F, T1D, T1G; |
| 513 |
{
|
| 514 |
E Tw, Ty, Tv, Tx; |
| 515 |
Tw = ri[WS(rs, 14)];
|
| 516 |
Ty = ii[WS(rs, 14)];
|
| 517 |
Tv = W[26];
|
| 518 |
Tx = W[27];
|
| 519 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 520 |
T1E = FNMS(Tx, Tw, Tv * Ty); |
| 521 |
} |
| 522 |
{
|
| 523 |
E TB, TD, TA, TC; |
| 524 |
TB = ri[WS(rs, 6)];
|
| 525 |
TD = ii[WS(rs, 6)];
|
| 526 |
TA = W[10];
|
| 527 |
TC = W[11];
|
| 528 |
TE = FMA(TA, TB, TC * TD); |
| 529 |
T1F = FNMS(TC, TB, TA * TD); |
| 530 |
} |
| 531 |
TF = Tz + TE; |
| 532 |
T2t = T1E + T1F; |
| 533 |
T1D = Tz - TE; |
| 534 |
T1G = T1E - T1F; |
| 535 |
T1H = T1D + T1G; |
| 536 |
T2d = T1D - T1G; |
| 537 |
} |
| 538 |
{
|
| 539 |
E T19, T20, T1p, T1X, T1e, T21, T1k, T1W; |
| 540 |
{
|
| 541 |
E T16, T18, T15, T17; |
| 542 |
T16 = ri[WS(rs, 15)];
|
| 543 |
T18 = ii[WS(rs, 15)];
|
| 544 |
T15 = W[28];
|
| 545 |
T17 = W[29];
|
| 546 |
T19 = FMA(T15, T16, T17 * T18); |
| 547 |
T20 = FNMS(T17, T16, T15 * T18); |
| 548 |
} |
| 549 |
{
|
| 550 |
E T1m, T1o, T1l, T1n; |
| 551 |
T1m = ri[WS(rs, 11)];
|
| 552 |
T1o = ii[WS(rs, 11)];
|
| 553 |
T1l = W[20];
|
| 554 |
T1n = W[21];
|
| 555 |
T1p = FMA(T1l, T1m, T1n * T1o); |
| 556 |
T1X = FNMS(T1n, T1m, T1l * T1o); |
| 557 |
} |
| 558 |
{
|
| 559 |
E T1b, T1d, T1a, T1c; |
| 560 |
T1b = ri[WS(rs, 7)];
|
| 561 |
T1d = ii[WS(rs, 7)];
|
| 562 |
T1a = W[12];
|
| 563 |
T1c = W[13];
|
| 564 |
T1e = FMA(T1a, T1b, T1c * T1d); |
| 565 |
T21 = FNMS(T1c, T1b, T1a * T1d); |
| 566 |
} |
| 567 |
{
|
| 568 |
E T1h, T1j, T1g, T1i; |
| 569 |
T1h = ri[WS(rs, 3)];
|
| 570 |
T1j = ii[WS(rs, 3)];
|
| 571 |
T1g = W[4];
|
| 572 |
T1i = W[5];
|
| 573 |
T1k = FMA(T1g, T1h, T1i * T1j); |
| 574 |
T1W = FNMS(T1i, T1h, T1g * T1j); |
| 575 |
} |
| 576 |
T1f = T19 + T1e; |
| 577 |
T1q = T1k + T1p; |
| 578 |
T2B = T1f - T1q; |
| 579 |
T2C = T20 + T21; |
| 580 |
T2D = T1W + T1X; |
| 581 |
T2E = T2C - T2D; |
| 582 |
{
|
| 583 |
E T1V, T1Y, T22, T23; |
| 584 |
T1V = T19 - T1e; |
| 585 |
T1Y = T1W - T1X; |
| 586 |
T1Z = T1V - T1Y; |
| 587 |
T2j = T1V + T1Y; |
| 588 |
T22 = T20 - T21; |
| 589 |
T23 = T1k - T1p; |
| 590 |
T24 = T22 + T23; |
| 591 |
T2k = T22 - T23; |
| 592 |
} |
| 593 |
} |
| 594 |
{
|
| 595 |
E TM, T1K, T12, T1R, TR, T1L, TX, T1Q; |
| 596 |
{
|
| 597 |
E TJ, TL, TI, TK; |
| 598 |
TJ = ri[WS(rs, 1)];
|
| 599 |
TL = ii[WS(rs, 1)];
|
| 600 |
TI = W[0];
|
| 601 |
TK = W[1];
|
| 602 |
TM = FMA(TI, TJ, TK * TL); |
| 603 |
T1K = FNMS(TK, TJ, TI * TL); |
| 604 |
} |
| 605 |
{
|
| 606 |
E TZ, T11, TY, T10; |
| 607 |
TZ = ri[WS(rs, 13)];
|
| 608 |
T11 = ii[WS(rs, 13)];
|
| 609 |
TY = W[24];
|
| 610 |
T10 = W[25];
|
| 611 |
T12 = FMA(TY, TZ, T10 * T11); |
| 612 |
T1R = FNMS(T10, TZ, TY * T11); |
| 613 |
} |
| 614 |
{
|
| 615 |
E TO, TQ, TN, TP; |
| 616 |
TO = ri[WS(rs, 9)];
|
| 617 |
TQ = ii[WS(rs, 9)];
|
| 618 |
TN = W[16];
|
| 619 |
TP = W[17];
|
| 620 |
TR = FMA(TN, TO, TP * TQ); |
| 621 |
T1L = FNMS(TP, TO, TN * TQ); |
| 622 |
} |
| 623 |
{
|
| 624 |
E TU, TW, TT, TV; |
| 625 |
TU = ri[WS(rs, 5)];
|
| 626 |
TW = ii[WS(rs, 5)];
|
| 627 |
TT = W[8];
|
| 628 |
TV = W[9];
|
| 629 |
TX = FMA(TT, TU, TV * TW); |
| 630 |
T1Q = FNMS(TV, TU, TT * TW); |
| 631 |
} |
| 632 |
TS = TM + TR; |
| 633 |
T13 = TX + T12; |
| 634 |
T2w = TS - T13; |
| 635 |
T2x = T1K + T1L; |
| 636 |
T2y = T1Q + T1R; |
| 637 |
T2z = T2x - T2y; |
| 638 |
{
|
| 639 |
E T1M, T1N, T1P, T1S; |
| 640 |
T1M = T1K - T1L; |
| 641 |
T1N = TX - T12; |
| 642 |
T1O = T1M + T1N; |
| 643 |
T2g = T1M - T1N; |
| 644 |
T1P = TM - TR; |
| 645 |
T1S = T1Q - T1R; |
| 646 |
T1T = T1P - T1S; |
| 647 |
T2h = T1P + T1S; |
| 648 |
} |
| 649 |
} |
| 650 |
{
|
| 651 |
E T1J, T27, T3g, T3i, T26, T3h, T2a, T3d; |
| 652 |
{
|
| 653 |
E T1x, T1I, T3e, T3f; |
| 654 |
T1x = T1t - T1w; |
| 655 |
T1I = KP707106781 * (T1C - T1H); |
| 656 |
T1J = T1x + T1I; |
| 657 |
T27 = T1x - T1I; |
| 658 |
T3e = KP707106781 * (T2d - T2c); |
| 659 |
T3f = T38 + T37; |
| 660 |
T3g = T3e + T3f; |
| 661 |
T3i = T3f - T3e; |
| 662 |
} |
| 663 |
{
|
| 664 |
E T1U, T25, T28, T29; |
| 665 |
T1U = FMA(KP923879532, T1O, KP382683432 * T1T); |
| 666 |
T25 = FNMS(KP923879532, T24, KP382683432 * T1Z); |
| 667 |
T26 = T1U + T25; |
| 668 |
T3h = T25 - T1U; |
| 669 |
T28 = FNMS(KP923879532, T1T, KP382683432 * T1O); |
| 670 |
T29 = FMA(KP382683432, T24, KP923879532 * T1Z); |
| 671 |
T2a = T28 - T29; |
| 672 |
T3d = T28 + T29; |
| 673 |
} |
| 674 |
ri[WS(rs, 11)] = T1J - T26;
|
| 675 |
ii[WS(rs, 11)] = T3g - T3d;
|
| 676 |
ri[WS(rs, 3)] = T1J + T26;
|
| 677 |
ii[WS(rs, 3)] = T3d + T3g;
|
| 678 |
ri[WS(rs, 15)] = T27 - T2a;
|
| 679 |
ii[WS(rs, 15)] = T3i - T3h;
|
| 680 |
ri[WS(rs, 7)] = T27 + T2a;
|
| 681 |
ii[WS(rs, 7)] = T3h + T3i;
|
| 682 |
} |
| 683 |
{
|
| 684 |
E T2v, T2H, T32, T34, T2G, T33, T2K, T2Z; |
| 685 |
{
|
| 686 |
E T2r, T2u, T30, T31; |
| 687 |
T2r = T7 - Ti; |
| 688 |
T2u = T2s - T2t; |
| 689 |
T2v = T2r + T2u; |
| 690 |
T2H = T2r - T2u; |
| 691 |
T30 = TF - Tu; |
| 692 |
T31 = T2U - T2R; |
| 693 |
T32 = T30 + T31; |
| 694 |
T34 = T31 - T30; |
| 695 |
} |
| 696 |
{
|
| 697 |
E T2A, T2F, T2I, T2J; |
| 698 |
T2A = T2w + T2z; |
| 699 |
T2F = T2B - T2E; |
| 700 |
T2G = KP707106781 * (T2A + T2F); |
| 701 |
T33 = KP707106781 * (T2F - T2A); |
| 702 |
T2I = T2z - T2w; |
| 703 |
T2J = T2B + T2E; |
| 704 |
T2K = KP707106781 * (T2I - T2J); |
| 705 |
T2Z = KP707106781 * (T2I + T2J); |
| 706 |
} |
| 707 |
ri[WS(rs, 10)] = T2v - T2G;
|
| 708 |
ii[WS(rs, 10)] = T32 - T2Z;
|
| 709 |
ri[WS(rs, 2)] = T2v + T2G;
|
| 710 |
ii[WS(rs, 2)] = T2Z + T32;
|
| 711 |
ri[WS(rs, 14)] = T2H - T2K;
|
| 712 |
ii[WS(rs, 14)] = T34 - T33;
|
| 713 |
ri[WS(rs, 6)] = T2H + T2K;
|
| 714 |
ii[WS(rs, 6)] = T33 + T34;
|
| 715 |
} |
| 716 |
{
|
| 717 |
E T2f, T2n, T3a, T3c, T2m, T3b, T2q, T35; |
| 718 |
{
|
| 719 |
E T2b, T2e, T36, T39; |
| 720 |
T2b = T1t + T1w; |
| 721 |
T2e = KP707106781 * (T2c + T2d); |
| 722 |
T2f = T2b + T2e; |
| 723 |
T2n = T2b - T2e; |
| 724 |
T36 = KP707106781 * (T1C + T1H); |
| 725 |
T39 = T37 - T38; |
| 726 |
T3a = T36 + T39; |
| 727 |
T3c = T39 - T36; |
| 728 |
} |
| 729 |
{
|
| 730 |
E T2i, T2l, T2o, T2p; |
| 731 |
T2i = FMA(KP382683432, T2g, KP923879532 * T2h); |
| 732 |
T2l = FNMS(KP382683432, T2k, KP923879532 * T2j); |
| 733 |
T2m = T2i + T2l; |
| 734 |
T3b = T2l - T2i; |
| 735 |
T2o = FNMS(KP382683432, T2h, KP923879532 * T2g); |
| 736 |
T2p = FMA(KP923879532, T2k, KP382683432 * T2j); |
| 737 |
T2q = T2o - T2p; |
| 738 |
T35 = T2o + T2p; |
| 739 |
} |
| 740 |
ri[WS(rs, 9)] = T2f - T2m;
|
| 741 |
ii[WS(rs, 9)] = T3a - T35;
|
| 742 |
ri[WS(rs, 1)] = T2f + T2m;
|
| 743 |
ii[WS(rs, 1)] = T35 + T3a;
|
| 744 |
ri[WS(rs, 13)] = T2n - T2q;
|
| 745 |
ii[WS(rs, 13)] = T3c - T3b;
|
| 746 |
ri[WS(rs, 5)] = T2n + T2q;
|
| 747 |
ii[WS(rs, 5)] = T3b + T3c;
|
| 748 |
} |
| 749 |
{
|
| 750 |
E TH, T2L, T2W, T2Y, T1s, T2X, T2O, T2P; |
| 751 |
{
|
| 752 |
E Tj, TG, T2Q, T2V; |
| 753 |
Tj = T7 + Ti; |
| 754 |
TG = Tu + TF; |
| 755 |
TH = Tj + TG; |
| 756 |
T2L = Tj - TG; |
| 757 |
T2Q = T2s + T2t; |
| 758 |
T2V = T2R + T2U; |
| 759 |
T2W = T2Q + T2V; |
| 760 |
T2Y = T2V - T2Q; |
| 761 |
} |
| 762 |
{
|
| 763 |
E T14, T1r, T2M, T2N; |
| 764 |
T14 = TS + T13; |
| 765 |
T1r = T1f + T1q; |
| 766 |
T1s = T14 + T1r; |
| 767 |
T2X = T1r - T14; |
| 768 |
T2M = T2x + T2y; |
| 769 |
T2N = T2C + T2D; |
| 770 |
T2O = T2M - T2N; |
| 771 |
T2P = T2M + T2N; |
| 772 |
} |
| 773 |
ri[WS(rs, 8)] = TH - T1s;
|
| 774 |
ii[WS(rs, 8)] = T2W - T2P;
|
| 775 |
ri[0] = TH + T1s;
|
| 776 |
ii[0] = T2P + T2W;
|
| 777 |
ri[WS(rs, 12)] = T2L - T2O;
|
| 778 |
ii[WS(rs, 12)] = T2Y - T2X;
|
| 779 |
ri[WS(rs, 4)] = T2L + T2O;
|
| 780 |
ii[WS(rs, 4)] = T2X + T2Y;
|
| 781 |
} |
| 782 |
} |
| 783 |
} |
| 784 |
} |
| 785 |
|
| 786 |
static const tw_instr twinstr[] = { |
| 787 |
{TW_FULL, 0, 16},
|
| 788 |
{TW_NEXT, 1, 0}
|
| 789 |
}; |
| 790 |
|
| 791 |
static const ct_desc desc = { 16, "t1_16", twinstr, &GENUS, {136, 46, 38, 0}, 0, 0, 0 }; |
| 792 |
|
| 793 |
void X(codelet_t1_16) (planner *p) {
|
| 794 |
X(kdft_dit_register) (p, t1_16, &desc); |
| 795 |
} |
| 796 |
#endif
|