To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_15.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (21.3 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:14 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 184 FP additions, 140 FP multiplications,
|
| 32 |
* (or, 72 additions, 28 multiplications, 112 fused multiply/add),
|
| 33 |
* 51 stack variables, 6 constants, and 60 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 42 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 43 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 44 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 45 |
{
|
| 46 |
INT m; |
| 47 |
for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
| 48 |
E T1, T3j, T1G, T3u, Te, T1B, T3i, T3t, T1y, T2i, T2a, T2M, T37, T2V, Tz; |
| 49 |
E T2e, T1O, T2t, T39, T2X, TT, T2f, T1V, T2z, T3a, T2Y, T1e, T2h, T23, T2G; |
| 50 |
E T36, T2U; |
| 51 |
{
|
| 52 |
E T7, T1D, Td, T1F; |
| 53 |
T1 = ri[0];
|
| 54 |
T3j = ii[0];
|
| 55 |
{
|
| 56 |
E T3, T6, T4, T1C, T2, T5; |
| 57 |
T3 = ri[WS(rs, 5)];
|
| 58 |
T6 = ii[WS(rs, 5)];
|
| 59 |
T2 = W[8];
|
| 60 |
T4 = T2 * T3; |
| 61 |
T1C = T2 * T6; |
| 62 |
T5 = W[9];
|
| 63 |
T7 = FMA(T5, T6, T4); |
| 64 |
T1D = FNMS(T5, T3, T1C); |
| 65 |
} |
| 66 |
{
|
| 67 |
E T9, Tc, Ta, T1E, T8, Tb; |
| 68 |
T9 = ri[WS(rs, 10)];
|
| 69 |
Tc = ii[WS(rs, 10)];
|
| 70 |
T8 = W[18];
|
| 71 |
Ta = T8 * T9; |
| 72 |
T1E = T8 * Tc; |
| 73 |
Tb = W[19];
|
| 74 |
Td = FMA(Tb, Tc, Ta); |
| 75 |
T1F = FNMS(Tb, T9, T1E); |
| 76 |
} |
| 77 |
T1G = T1D - T1F; |
| 78 |
T3u = Td - T7; |
| 79 |
Te = T7 + Td; |
| 80 |
T1B = FNMS(KP500000000, Te, T1); |
| 81 |
T3i = T1D + T1F; |
| 82 |
T3t = FNMS(KP500000000, T3i, T3j); |
| 83 |
} |
| 84 |
{
|
| 85 |
E T1k, T2I, T1w, T28, T1q, T26; |
| 86 |
{
|
| 87 |
E T1g, T1j, T1h, T2H, T1f, T1i; |
| 88 |
T1g = ri[WS(rs, 9)];
|
| 89 |
T1j = ii[WS(rs, 9)];
|
| 90 |
T1f = W[16];
|
| 91 |
T1h = T1f * T1g; |
| 92 |
T2H = T1f * T1j; |
| 93 |
T1i = W[17];
|
| 94 |
T1k = FMA(T1i, T1j, T1h); |
| 95 |
T2I = FNMS(T1i, T1g, T2H); |
| 96 |
} |
| 97 |
{
|
| 98 |
E T1s, T1v, T1t, T27, T1r, T1u; |
| 99 |
T1s = ri[WS(rs, 4)];
|
| 100 |
T1v = ii[WS(rs, 4)];
|
| 101 |
T1r = W[6];
|
| 102 |
T1t = T1r * T1s; |
| 103 |
T27 = T1r * T1v; |
| 104 |
T1u = W[7];
|
| 105 |
T1w = FMA(T1u, T1v, T1t); |
| 106 |
T28 = FNMS(T1u, T1s, T27); |
| 107 |
} |
| 108 |
{
|
| 109 |
E T1m, T1p, T1n, T25, T1l, T1o; |
| 110 |
T1m = ri[WS(rs, 14)];
|
| 111 |
T1p = ii[WS(rs, 14)];
|
| 112 |
T1l = W[26];
|
| 113 |
T1n = T1l * T1m; |
| 114 |
T25 = T1l * T1p; |
| 115 |
T1o = W[27];
|
| 116 |
T1q = FMA(T1o, T1p, T1n); |
| 117 |
T26 = FNMS(T1o, T1m, T25); |
| 118 |
} |
| 119 |
{
|
| 120 |
E T29, T1x, T24, T2L, T2J, T2K; |
| 121 |
T29 = T26 - T28; |
| 122 |
T1x = T1q + T1w; |
| 123 |
T24 = FNMS(KP500000000, T1x, T1k); |
| 124 |
T1y = T1k + T1x; |
| 125 |
T2i = FMA(KP866025403, T29, T24); |
| 126 |
T2a = FNMS(KP866025403, T29, T24); |
| 127 |
T2L = T1w - T1q; |
| 128 |
T2J = T26 + T28; |
| 129 |
T2K = FNMS(KP500000000, T2J, T2I); |
| 130 |
T2M = FMA(KP866025403, T2L, T2K); |
| 131 |
T37 = T2I + T2J; |
| 132 |
T2V = FNMS(KP866025403, T2L, T2K); |
| 133 |
} |
| 134 |
} |
| 135 |
{
|
| 136 |
E Tl, T2p, Tx, T1M, Tr, T1K; |
| 137 |
{
|
| 138 |
E Th, Tk, Ti, T2o, Tg, Tj; |
| 139 |
Th = ri[WS(rs, 3)];
|
| 140 |
Tk = ii[WS(rs, 3)];
|
| 141 |
Tg = W[4];
|
| 142 |
Ti = Tg * Th; |
| 143 |
T2o = Tg * Tk; |
| 144 |
Tj = W[5];
|
| 145 |
Tl = FMA(Tj, Tk, Ti); |
| 146 |
T2p = FNMS(Tj, Th, T2o); |
| 147 |
} |
| 148 |
{
|
| 149 |
E Tt, Tw, Tu, T1L, Ts, Tv; |
| 150 |
Tt = ri[WS(rs, 13)];
|
| 151 |
Tw = ii[WS(rs, 13)];
|
| 152 |
Ts = W[24];
|
| 153 |
Tu = Ts * Tt; |
| 154 |
T1L = Ts * Tw; |
| 155 |
Tv = W[25];
|
| 156 |
Tx = FMA(Tv, Tw, Tu); |
| 157 |
T1M = FNMS(Tv, Tt, T1L); |
| 158 |
} |
| 159 |
{
|
| 160 |
E Tn, Tq, To, T1J, Tm, Tp; |
| 161 |
Tn = ri[WS(rs, 8)];
|
| 162 |
Tq = ii[WS(rs, 8)];
|
| 163 |
Tm = W[14];
|
| 164 |
To = Tm * Tn; |
| 165 |
T1J = Tm * Tq; |
| 166 |
Tp = W[15];
|
| 167 |
Tr = FMA(Tp, Tq, To); |
| 168 |
T1K = FNMS(Tp, Tn, T1J); |
| 169 |
} |
| 170 |
{
|
| 171 |
E T1N, Ty, T1I, T2s, T2q, T2r; |
| 172 |
T1N = T1K - T1M; |
| 173 |
Ty = Tr + Tx; |
| 174 |
T1I = FNMS(KP500000000, Ty, Tl); |
| 175 |
Tz = Tl + Ty; |
| 176 |
T2e = FMA(KP866025403, T1N, T1I); |
| 177 |
T1O = FNMS(KP866025403, T1N, T1I); |
| 178 |
T2s = Tx - Tr; |
| 179 |
T2q = T1K + T1M; |
| 180 |
T2r = FNMS(KP500000000, T2q, T2p); |
| 181 |
T2t = FMA(KP866025403, T2s, T2r); |
| 182 |
T39 = T2p + T2q; |
| 183 |
T2X = FNMS(KP866025403, T2s, T2r); |
| 184 |
} |
| 185 |
} |
| 186 |
{
|
| 187 |
E TF, T2v, TR, T1T, TL, T1R; |
| 188 |
{
|
| 189 |
E TB, TE, TC, T2u, TA, TD; |
| 190 |
TB = ri[WS(rs, 12)];
|
| 191 |
TE = ii[WS(rs, 12)];
|
| 192 |
TA = W[22];
|
| 193 |
TC = TA * TB; |
| 194 |
T2u = TA * TE; |
| 195 |
TD = W[23];
|
| 196 |
TF = FMA(TD, TE, TC); |
| 197 |
T2v = FNMS(TD, TB, T2u); |
| 198 |
} |
| 199 |
{
|
| 200 |
E TN, TQ, TO, T1S, TM, TP; |
| 201 |
TN = ri[WS(rs, 7)];
|
| 202 |
TQ = ii[WS(rs, 7)];
|
| 203 |
TM = W[12];
|
| 204 |
TO = TM * TN; |
| 205 |
T1S = TM * TQ; |
| 206 |
TP = W[13];
|
| 207 |
TR = FMA(TP, TQ, TO); |
| 208 |
T1T = FNMS(TP, TN, T1S); |
| 209 |
} |
| 210 |
{
|
| 211 |
E TH, TK, TI, T1Q, TG, TJ; |
| 212 |
TH = ri[WS(rs, 2)];
|
| 213 |
TK = ii[WS(rs, 2)];
|
| 214 |
TG = W[2];
|
| 215 |
TI = TG * TH; |
| 216 |
T1Q = TG * TK; |
| 217 |
TJ = W[3];
|
| 218 |
TL = FMA(TJ, TK, TI); |
| 219 |
T1R = FNMS(TJ, TH, T1Q); |
| 220 |
} |
| 221 |
{
|
| 222 |
E T1U, TS, T1P, T2y, T2w, T2x; |
| 223 |
T1U = T1R - T1T; |
| 224 |
TS = TL + TR; |
| 225 |
T1P = FNMS(KP500000000, TS, TF); |
| 226 |
TT = TF + TS; |
| 227 |
T2f = FMA(KP866025403, T1U, T1P); |
| 228 |
T1V = FNMS(KP866025403, T1U, T1P); |
| 229 |
T2y = TR - TL; |
| 230 |
T2w = T1R + T1T; |
| 231 |
T2x = FNMS(KP500000000, T2w, T2v); |
| 232 |
T2z = FMA(KP866025403, T2y, T2x); |
| 233 |
T3a = T2v + T2w; |
| 234 |
T2Y = FNMS(KP866025403, T2y, T2x); |
| 235 |
} |
| 236 |
} |
| 237 |
{
|
| 238 |
E T10, T2C, T1c, T21, T16, T1Z; |
| 239 |
{
|
| 240 |
E TW, TZ, TX, T2B, TV, TY; |
| 241 |
TW = ri[WS(rs, 6)];
|
| 242 |
TZ = ii[WS(rs, 6)];
|
| 243 |
TV = W[10];
|
| 244 |
TX = TV * TW; |
| 245 |
T2B = TV * TZ; |
| 246 |
TY = W[11];
|
| 247 |
T10 = FMA(TY, TZ, TX); |
| 248 |
T2C = FNMS(TY, TW, T2B); |
| 249 |
} |
| 250 |
{
|
| 251 |
E T18, T1b, T19, T20, T17, T1a; |
| 252 |
T18 = ri[WS(rs, 1)];
|
| 253 |
T1b = ii[WS(rs, 1)];
|
| 254 |
T17 = W[0];
|
| 255 |
T19 = T17 * T18; |
| 256 |
T20 = T17 * T1b; |
| 257 |
T1a = W[1];
|
| 258 |
T1c = FMA(T1a, T1b, T19); |
| 259 |
T21 = FNMS(T1a, T18, T20); |
| 260 |
} |
| 261 |
{
|
| 262 |
E T12, T15, T13, T1Y, T11, T14; |
| 263 |
T12 = ri[WS(rs, 11)];
|
| 264 |
T15 = ii[WS(rs, 11)];
|
| 265 |
T11 = W[20];
|
| 266 |
T13 = T11 * T12; |
| 267 |
T1Y = T11 * T15; |
| 268 |
T14 = W[21];
|
| 269 |
T16 = FMA(T14, T15, T13); |
| 270 |
T1Z = FNMS(T14, T12, T1Y); |
| 271 |
} |
| 272 |
{
|
| 273 |
E T22, T1d, T1X, T2F, T2D, T2E; |
| 274 |
T22 = T1Z - T21; |
| 275 |
T1d = T16 + T1c; |
| 276 |
T1X = FNMS(KP500000000, T1d, T10); |
| 277 |
T1e = T10 + T1d; |
| 278 |
T2h = FMA(KP866025403, T22, T1X); |
| 279 |
T23 = FNMS(KP866025403, T22, T1X); |
| 280 |
T2F = T1c - T16; |
| 281 |
T2D = T1Z + T21; |
| 282 |
T2E = FNMS(KP500000000, T2D, T2C); |
| 283 |
T2G = FMA(KP866025403, T2F, T2E); |
| 284 |
T36 = T2C + T2D; |
| 285 |
T2U = FNMS(KP866025403, T2F, T2E); |
| 286 |
} |
| 287 |
} |
| 288 |
{
|
| 289 |
E T3c, T3e, Tf, T1A, T33, T34, T3d, T35; |
| 290 |
{
|
| 291 |
E T38, T3b, TU, T1z; |
| 292 |
T38 = T36 - T37; |
| 293 |
T3b = T39 - T3a; |
| 294 |
T3c = FNMS(KP618033988, T3b, T38); |
| 295 |
T3e = FMA(KP618033988, T38, T3b); |
| 296 |
Tf = T1 + Te; |
| 297 |
TU = Tz + TT; |
| 298 |
T1z = T1e + T1y; |
| 299 |
T1A = TU + T1z; |
| 300 |
T33 = FNMS(KP250000000, T1A, Tf); |
| 301 |
T34 = TU - T1z; |
| 302 |
} |
| 303 |
ri[0] = Tf + T1A;
|
| 304 |
T3d = FMA(KP559016994, T34, T33); |
| 305 |
ri[WS(rs, 9)] = FNMS(KP951056516, T3e, T3d);
|
| 306 |
ri[WS(rs, 6)] = FMA(KP951056516, T3e, T3d);
|
| 307 |
T35 = FNMS(KP559016994, T34, T33); |
| 308 |
ri[WS(rs, 12)] = FNMS(KP951056516, T3c, T35);
|
| 309 |
ri[WS(rs, 3)] = FMA(KP951056516, T3c, T35);
|
| 310 |
} |
| 311 |
{
|
| 312 |
E T3q, T3s, T3k, T3h, T3l, T3m, T3r, T3n; |
| 313 |
{
|
| 314 |
E T3o, T3p, T3f, T3g; |
| 315 |
T3o = T1e - T1y; |
| 316 |
T3p = Tz - TT; |
| 317 |
T3q = FNMS(KP618033988, T3p, T3o); |
| 318 |
T3s = FMA(KP618033988, T3o, T3p); |
| 319 |
T3k = T3i + T3j; |
| 320 |
T3f = T39 + T3a; |
| 321 |
T3g = T36 + T37; |
| 322 |
T3h = T3f + T3g; |
| 323 |
T3l = FNMS(KP250000000, T3h, T3k); |
| 324 |
T3m = T3f - T3g; |
| 325 |
} |
| 326 |
ii[0] = T3h + T3k;
|
| 327 |
T3r = FMA(KP559016994, T3m, T3l); |
| 328 |
ii[WS(rs, 6)] = FNMS(KP951056516, T3s, T3r);
|
| 329 |
ii[WS(rs, 9)] = FMA(KP951056516, T3s, T3r);
|
| 330 |
T3n = FNMS(KP559016994, T3m, T3l); |
| 331 |
ii[WS(rs, 3)] = FNMS(KP951056516, T3q, T3n);
|
| 332 |
ii[WS(rs, 12)] = FMA(KP951056516, T3q, T3n);
|
| 333 |
} |
| 334 |
{
|
| 335 |
E T30, T32, T1H, T2c, T2R, T2S, T31, T2T; |
| 336 |
{
|
| 337 |
E T2W, T2Z, T1W, T2b; |
| 338 |
T2W = T2U - T2V; |
| 339 |
T2Z = T2X - T2Y; |
| 340 |
T30 = FNMS(KP618033988, T2Z, T2W); |
| 341 |
T32 = FMA(KP618033988, T2W, T2Z); |
| 342 |
T1H = FNMS(KP866025403, T1G, T1B); |
| 343 |
T1W = T1O + T1V; |
| 344 |
T2b = T23 + T2a; |
| 345 |
T2c = T1W + T2b; |
| 346 |
T2R = FNMS(KP250000000, T2c, T1H); |
| 347 |
T2S = T1W - T2b; |
| 348 |
} |
| 349 |
ri[WS(rs, 5)] = T1H + T2c;
|
| 350 |
T31 = FMA(KP559016994, T2S, T2R); |
| 351 |
ri[WS(rs, 14)] = FNMS(KP951056516, T32, T31);
|
| 352 |
ri[WS(rs, 11)] = FMA(KP951056516, T32, T31);
|
| 353 |
T2T = FNMS(KP559016994, T2S, T2R); |
| 354 |
ri[WS(rs, 2)] = FNMS(KP951056516, T30, T2T);
|
| 355 |
ri[WS(rs, 8)] = FMA(KP951056516, T30, T2T);
|
| 356 |
} |
| 357 |
{
|
| 358 |
E T3Q, T3S, T3H, T3K, T3L, T3M, T3R, T3N; |
| 359 |
{
|
| 360 |
E T3O, T3P, T3I, T3J; |
| 361 |
T3O = T23 - T2a; |
| 362 |
T3P = T1O - T1V; |
| 363 |
T3Q = FNMS(KP618033988, T3P, T3O); |
| 364 |
T3S = FMA(KP618033988, T3O, T3P); |
| 365 |
T3H = FNMS(KP866025403, T3u, T3t); |
| 366 |
T3I = T2X + T2Y; |
| 367 |
T3J = T2U + T2V; |
| 368 |
T3K = T3I + T3J; |
| 369 |
T3L = FNMS(KP250000000, T3K, T3H); |
| 370 |
T3M = T3I - T3J; |
| 371 |
} |
| 372 |
ii[WS(rs, 5)] = T3K + T3H;
|
| 373 |
T3R = FMA(KP559016994, T3M, T3L); |
| 374 |
ii[WS(rs, 11)] = FNMS(KP951056516, T3S, T3R);
|
| 375 |
ii[WS(rs, 14)] = FMA(KP951056516, T3S, T3R);
|
| 376 |
T3N = FNMS(KP559016994, T3M, T3L); |
| 377 |
ii[WS(rs, 2)] = FMA(KP951056516, T3Q, T3N);
|
| 378 |
ii[WS(rs, 8)] = FNMS(KP951056516, T3Q, T3N);
|
| 379 |
} |
| 380 |
{
|
| 381 |
E T3E, T3G, T3v, T3y, T3z, T3A, T3F, T3B; |
| 382 |
{
|
| 383 |
E T3C, T3D, T3w, T3x; |
| 384 |
T3C = T2e - T2f; |
| 385 |
T3D = T2h - T2i; |
| 386 |
T3E = FMA(KP618033988, T3D, T3C); |
| 387 |
T3G = FNMS(KP618033988, T3C, T3D); |
| 388 |
T3v = FMA(KP866025403, T3u, T3t); |
| 389 |
T3w = T2t + T2z; |
| 390 |
T3x = T2G + T2M; |
| 391 |
T3y = T3w + T3x; |
| 392 |
T3z = FNMS(KP250000000, T3y, T3v); |
| 393 |
T3A = T3w - T3x; |
| 394 |
} |
| 395 |
ii[WS(rs, 10)] = T3y + T3v;
|
| 396 |
T3F = FNMS(KP559016994, T3A, T3z); |
| 397 |
ii[WS(rs, 7)] = FMA(KP951056516, T3G, T3F);
|
| 398 |
ii[WS(rs, 13)] = FNMS(KP951056516, T3G, T3F);
|
| 399 |
T3B = FMA(KP559016994, T3A, T3z); |
| 400 |
ii[WS(rs, 1)] = FNMS(KP951056516, T3E, T3B);
|
| 401 |
ii[WS(rs, 4)] = FMA(KP951056516, T3E, T3B);
|
| 402 |
} |
| 403 |
{
|
| 404 |
E T2O, T2Q, T2d, T2k, T2l, T2m, T2P, T2n; |
| 405 |
{
|
| 406 |
E T2A, T2N, T2g, T2j; |
| 407 |
T2A = T2t - T2z; |
| 408 |
T2N = T2G - T2M; |
| 409 |
T2O = FMA(KP618033988, T2N, T2A); |
| 410 |
T2Q = FNMS(KP618033988, T2A, T2N); |
| 411 |
T2d = FMA(KP866025403, T1G, T1B); |
| 412 |
T2g = T2e + T2f; |
| 413 |
T2j = T2h + T2i; |
| 414 |
T2k = T2g + T2j; |
| 415 |
T2l = FNMS(KP250000000, T2k, T2d); |
| 416 |
T2m = T2g - T2j; |
| 417 |
} |
| 418 |
ri[WS(rs, 10)] = T2d + T2k;
|
| 419 |
T2P = FNMS(KP559016994, T2m, T2l); |
| 420 |
ri[WS(rs, 7)] = FNMS(KP951056516, T2Q, T2P);
|
| 421 |
ri[WS(rs, 13)] = FMA(KP951056516, T2Q, T2P);
|
| 422 |
T2n = FMA(KP559016994, T2m, T2l); |
| 423 |
ri[WS(rs, 4)] = FNMS(KP951056516, T2O, T2n);
|
| 424 |
ri[WS(rs, 1)] = FMA(KP951056516, T2O, T2n);
|
| 425 |
} |
| 426 |
} |
| 427 |
} |
| 428 |
} |
| 429 |
|
| 430 |
static const tw_instr twinstr[] = { |
| 431 |
{TW_FULL, 0, 15},
|
| 432 |
{TW_NEXT, 1, 0}
|
| 433 |
}; |
| 434 |
|
| 435 |
static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {72, 28, 112, 0}, 0, 0, 0 }; |
| 436 |
|
| 437 |
void X(codelet_t1_15) (planner *p) {
|
| 438 |
X(kdft_dit_register) (p, t1_15, &desc); |
| 439 |
} |
| 440 |
#else
|
| 441 |
|
| 442 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 15 -name t1_15 -include dft/scalar/t.h */
|
| 443 |
|
| 444 |
/*
|
| 445 |
* This function contains 184 FP additions, 112 FP multiplications,
|
| 446 |
* (or, 128 additions, 56 multiplications, 56 fused multiply/add),
|
| 447 |
* 65 stack variables, 6 constants, and 60 memory accesses
|
| 448 |
*/
|
| 449 |
#include "dft/scalar/t.h" |
| 450 |
|
| 451 |
static void t1_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 452 |
{
|
| 453 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 454 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 455 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 456 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 457 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 458 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 459 |
{
|
| 460 |
INT m; |
| 461 |
for (m = mb, W = W + (mb * 28); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 28, MAKE_VOLATILE_STRIDE(30, rs)) { |
| 462 |
E T1q, T34, Td, T1n, T2S, T35, T13, T1k, T1l, T2E, T2F, T2O, T1H, T1T, T2k; |
| 463 |
E T2t, T2f, T2s, T1M, T1U, Tu, TL, TM, T2H, T2I, T2N, T1w, T1Q, T29, T2w; |
| 464 |
E T24, T2v, T1B, T1R; |
| 465 |
{
|
| 466 |
E T1, T2R, T6, T1o, Tb, T1p, Tc, T2Q; |
| 467 |
T1 = ri[0];
|
| 468 |
T2R = ii[0];
|
| 469 |
{
|
| 470 |
E T3, T5, T2, T4; |
| 471 |
T3 = ri[WS(rs, 5)];
|
| 472 |
T5 = ii[WS(rs, 5)];
|
| 473 |
T2 = W[8];
|
| 474 |
T4 = W[9];
|
| 475 |
T6 = FMA(T2, T3, T4 * T5); |
| 476 |
T1o = FNMS(T4, T3, T2 * T5); |
| 477 |
} |
| 478 |
{
|
| 479 |
E T8, Ta, T7, T9; |
| 480 |
T8 = ri[WS(rs, 10)];
|
| 481 |
Ta = ii[WS(rs, 10)];
|
| 482 |
T7 = W[18];
|
| 483 |
T9 = W[19];
|
| 484 |
Tb = FMA(T7, T8, T9 * Ta); |
| 485 |
T1p = FNMS(T9, T8, T7 * Ta); |
| 486 |
} |
| 487 |
T1q = KP866025403 * (T1o - T1p); |
| 488 |
T34 = KP866025403 * (Tb - T6); |
| 489 |
Tc = T6 + Tb; |
| 490 |
Td = T1 + Tc; |
| 491 |
T1n = FNMS(KP500000000, Tc, T1); |
| 492 |
T2Q = T1o + T1p; |
| 493 |
T2S = T2Q + T2R; |
| 494 |
T35 = FNMS(KP500000000, T2Q, T2R); |
| 495 |
} |
| 496 |
{
|
| 497 |
E TR, T2c, T18, T2h, TW, T1E, T11, T1F, T12, T2d, T1d, T1J, T1i, T1K, T1j; |
| 498 |
E T2i; |
| 499 |
{
|
| 500 |
E TO, TQ, TN, TP; |
| 501 |
TO = ri[WS(rs, 6)];
|
| 502 |
TQ = ii[WS(rs, 6)];
|
| 503 |
TN = W[10];
|
| 504 |
TP = W[11];
|
| 505 |
TR = FMA(TN, TO, TP * TQ); |
| 506 |
T2c = FNMS(TP, TO, TN * TQ); |
| 507 |
} |
| 508 |
{
|
| 509 |
E T15, T17, T14, T16; |
| 510 |
T15 = ri[WS(rs, 9)];
|
| 511 |
T17 = ii[WS(rs, 9)];
|
| 512 |
T14 = W[16];
|
| 513 |
T16 = W[17];
|
| 514 |
T18 = FMA(T14, T15, T16 * T17); |
| 515 |
T2h = FNMS(T16, T15, T14 * T17); |
| 516 |
} |
| 517 |
{
|
| 518 |
E TT, TV, TS, TU; |
| 519 |
TT = ri[WS(rs, 11)];
|
| 520 |
TV = ii[WS(rs, 11)];
|
| 521 |
TS = W[20];
|
| 522 |
TU = W[21];
|
| 523 |
TW = FMA(TS, TT, TU * TV); |
| 524 |
T1E = FNMS(TU, TT, TS * TV); |
| 525 |
} |
| 526 |
{
|
| 527 |
E TY, T10, TX, TZ; |
| 528 |
TY = ri[WS(rs, 1)];
|
| 529 |
T10 = ii[WS(rs, 1)];
|
| 530 |
TX = W[0];
|
| 531 |
TZ = W[1];
|
| 532 |
T11 = FMA(TX, TY, TZ * T10); |
| 533 |
T1F = FNMS(TZ, TY, TX * T10); |
| 534 |
} |
| 535 |
T12 = TW + T11; |
| 536 |
T2d = T1E + T1F; |
| 537 |
{
|
| 538 |
E T1a, T1c, T19, T1b; |
| 539 |
T1a = ri[WS(rs, 14)];
|
| 540 |
T1c = ii[WS(rs, 14)];
|
| 541 |
T19 = W[26];
|
| 542 |
T1b = W[27];
|
| 543 |
T1d = FMA(T19, T1a, T1b * T1c); |
| 544 |
T1J = FNMS(T1b, T1a, T19 * T1c); |
| 545 |
} |
| 546 |
{
|
| 547 |
E T1f, T1h, T1e, T1g; |
| 548 |
T1f = ri[WS(rs, 4)];
|
| 549 |
T1h = ii[WS(rs, 4)];
|
| 550 |
T1e = W[6];
|
| 551 |
T1g = W[7];
|
| 552 |
T1i = FMA(T1e, T1f, T1g * T1h); |
| 553 |
T1K = FNMS(T1g, T1f, T1e * T1h); |
| 554 |
} |
| 555 |
T1j = T1d + T1i; |
| 556 |
T2i = T1J + T1K; |
| 557 |
{
|
| 558 |
E T1D, T1G, T2g, T2j; |
| 559 |
T13 = TR + T12; |
| 560 |
T1k = T18 + T1j; |
| 561 |
T1l = T13 + T1k; |
| 562 |
T2E = T2c + T2d; |
| 563 |
T2F = T2h + T2i; |
| 564 |
T2O = T2E + T2F; |
| 565 |
T1D = FNMS(KP500000000, T12, TR); |
| 566 |
T1G = KP866025403 * (T1E - T1F); |
| 567 |
T1H = T1D - T1G; |
| 568 |
T1T = T1D + T1G; |
| 569 |
T2g = KP866025403 * (T1i - T1d); |
| 570 |
T2j = FNMS(KP500000000, T2i, T2h); |
| 571 |
T2k = T2g + T2j; |
| 572 |
T2t = T2j - T2g; |
| 573 |
{
|
| 574 |
E T2b, T2e, T1I, T1L; |
| 575 |
T2b = KP866025403 * (T11 - TW); |
| 576 |
T2e = FNMS(KP500000000, T2d, T2c); |
| 577 |
T2f = T2b + T2e; |
| 578 |
T2s = T2e - T2b; |
| 579 |
T1I = FNMS(KP500000000, T1j, T18); |
| 580 |
T1L = KP866025403 * (T1J - T1K); |
| 581 |
T1M = T1I - T1L; |
| 582 |
T1U = T1I + T1L; |
| 583 |
} |
| 584 |
} |
| 585 |
} |
| 586 |
{
|
| 587 |
E Ti, T21, Tz, T26, Tn, T1t, Ts, T1u, Tt, T22, TE, T1y, TJ, T1z, TK; |
| 588 |
E T27; |
| 589 |
{
|
| 590 |
E Tf, Th, Te, Tg; |
| 591 |
Tf = ri[WS(rs, 3)];
|
| 592 |
Th = ii[WS(rs, 3)];
|
| 593 |
Te = W[4];
|
| 594 |
Tg = W[5];
|
| 595 |
Ti = FMA(Te, Tf, Tg * Th); |
| 596 |
T21 = FNMS(Tg, Tf, Te * Th); |
| 597 |
} |
| 598 |
{
|
| 599 |
E Tw, Ty, Tv, Tx; |
| 600 |
Tw = ri[WS(rs, 12)];
|
| 601 |
Ty = ii[WS(rs, 12)];
|
| 602 |
Tv = W[22];
|
| 603 |
Tx = W[23];
|
| 604 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 605 |
T26 = FNMS(Tx, Tw, Tv * Ty); |
| 606 |
} |
| 607 |
{
|
| 608 |
E Tk, Tm, Tj, Tl; |
| 609 |
Tk = ri[WS(rs, 8)];
|
| 610 |
Tm = ii[WS(rs, 8)];
|
| 611 |
Tj = W[14];
|
| 612 |
Tl = W[15];
|
| 613 |
Tn = FMA(Tj, Tk, Tl * Tm); |
| 614 |
T1t = FNMS(Tl, Tk, Tj * Tm); |
| 615 |
} |
| 616 |
{
|
| 617 |
E Tp, Tr, To, Tq; |
| 618 |
Tp = ri[WS(rs, 13)];
|
| 619 |
Tr = ii[WS(rs, 13)];
|
| 620 |
To = W[24];
|
| 621 |
Tq = W[25];
|
| 622 |
Ts = FMA(To, Tp, Tq * Tr); |
| 623 |
T1u = FNMS(Tq, Tp, To * Tr); |
| 624 |
} |
| 625 |
Tt = Tn + Ts; |
| 626 |
T22 = T1t + T1u; |
| 627 |
{
|
| 628 |
E TB, TD, TA, TC; |
| 629 |
TB = ri[WS(rs, 2)];
|
| 630 |
TD = ii[WS(rs, 2)];
|
| 631 |
TA = W[2];
|
| 632 |
TC = W[3];
|
| 633 |
TE = FMA(TA, TB, TC * TD); |
| 634 |
T1y = FNMS(TC, TB, TA * TD); |
| 635 |
} |
| 636 |
{
|
| 637 |
E TG, TI, TF, TH; |
| 638 |
TG = ri[WS(rs, 7)];
|
| 639 |
TI = ii[WS(rs, 7)];
|
| 640 |
TF = W[12];
|
| 641 |
TH = W[13];
|
| 642 |
TJ = FMA(TF, TG, TH * TI); |
| 643 |
T1z = FNMS(TH, TG, TF * TI); |
| 644 |
} |
| 645 |
TK = TE + TJ; |
| 646 |
T27 = T1y + T1z; |
| 647 |
{
|
| 648 |
E T1s, T1v, T25, T28; |
| 649 |
Tu = Ti + Tt; |
| 650 |
TL = Tz + TK; |
| 651 |
TM = Tu + TL; |
| 652 |
T2H = T21 + T22; |
| 653 |
T2I = T26 + T27; |
| 654 |
T2N = T2H + T2I; |
| 655 |
T1s = FNMS(KP500000000, Tt, Ti); |
| 656 |
T1v = KP866025403 * (T1t - T1u); |
| 657 |
T1w = T1s - T1v; |
| 658 |
T1Q = T1s + T1v; |
| 659 |
T25 = KP866025403 * (TJ - TE); |
| 660 |
T28 = FNMS(KP500000000, T27, T26); |
| 661 |
T29 = T25 + T28; |
| 662 |
T2w = T28 - T25; |
| 663 |
{
|
| 664 |
E T20, T23, T1x, T1A; |
| 665 |
T20 = KP866025403 * (Ts - Tn); |
| 666 |
T23 = FNMS(KP500000000, T22, T21); |
| 667 |
T24 = T20 + T23; |
| 668 |
T2v = T23 - T20; |
| 669 |
T1x = FNMS(KP500000000, TK, Tz); |
| 670 |
T1A = KP866025403 * (T1y - T1z); |
| 671 |
T1B = T1x - T1A; |
| 672 |
T1R = T1x + T1A; |
| 673 |
} |
| 674 |
} |
| 675 |
} |
| 676 |
{
|
| 677 |
E T2C, T1m, T2B, T2K, T2M, T2G, T2J, T2L, T2D; |
| 678 |
T2C = KP559016994 * (TM - T1l); |
| 679 |
T1m = TM + T1l; |
| 680 |
T2B = FNMS(KP250000000, T1m, Td); |
| 681 |
T2G = T2E - T2F; |
| 682 |
T2J = T2H - T2I; |
| 683 |
T2K = FNMS(KP587785252, T2J, KP951056516 * T2G); |
| 684 |
T2M = FMA(KP951056516, T2J, KP587785252 * T2G); |
| 685 |
ri[0] = Td + T1m;
|
| 686 |
T2L = T2C + T2B; |
| 687 |
ri[WS(rs, 9)] = T2L - T2M;
|
| 688 |
ri[WS(rs, 6)] = T2L + T2M;
|
| 689 |
T2D = T2B - T2C; |
| 690 |
ri[WS(rs, 12)] = T2D - T2K;
|
| 691 |
ri[WS(rs, 3)] = T2D + T2K;
|
| 692 |
} |
| 693 |
{
|
| 694 |
E T2U, T2P, T2T, T2Y, T30, T2W, T2X, T2Z, T2V; |
| 695 |
T2U = KP559016994 * (T2N - T2O); |
| 696 |
T2P = T2N + T2O; |
| 697 |
T2T = FNMS(KP250000000, T2P, T2S); |
| 698 |
T2W = T13 - T1k; |
| 699 |
T2X = Tu - TL; |
| 700 |
T2Y = FNMS(KP587785252, T2X, KP951056516 * T2W); |
| 701 |
T30 = FMA(KP951056516, T2X, KP587785252 * T2W); |
| 702 |
ii[0] = T2P + T2S;
|
| 703 |
T2Z = T2U + T2T; |
| 704 |
ii[WS(rs, 6)] = T2Z - T30;
|
| 705 |
ii[WS(rs, 9)] = T30 + T2Z;
|
| 706 |
T2V = T2T - T2U; |
| 707 |
ii[WS(rs, 3)] = T2V - T2Y;
|
| 708 |
ii[WS(rs, 12)] = T2Y + T2V;
|
| 709 |
} |
| 710 |
{
|
| 711 |
E T2y, T2A, T1r, T1O, T2p, T2q, T2z, T2r; |
| 712 |
{
|
| 713 |
E T2u, T2x, T1C, T1N; |
| 714 |
T2u = T2s - T2t; |
| 715 |
T2x = T2v - T2w; |
| 716 |
T2y = FNMS(KP587785252, T2x, KP951056516 * T2u); |
| 717 |
T2A = FMA(KP951056516, T2x, KP587785252 * T2u); |
| 718 |
T1r = T1n - T1q; |
| 719 |
T1C = T1w + T1B; |
| 720 |
T1N = T1H + T1M; |
| 721 |
T1O = T1C + T1N; |
| 722 |
T2p = FNMS(KP250000000, T1O, T1r); |
| 723 |
T2q = KP559016994 * (T1C - T1N); |
| 724 |
} |
| 725 |
ri[WS(rs, 5)] = T1r + T1O;
|
| 726 |
T2z = T2q + T2p; |
| 727 |
ri[WS(rs, 14)] = T2z - T2A;
|
| 728 |
ri[WS(rs, 11)] = T2z + T2A;
|
| 729 |
T2r = T2p - T2q; |
| 730 |
ri[WS(rs, 2)] = T2r - T2y;
|
| 731 |
ri[WS(rs, 8)] = T2r + T2y;
|
| 732 |
} |
| 733 |
{
|
| 734 |
E T3h, T3q, T3i, T3l, T3m, T3n, T3p, T3o; |
| 735 |
{
|
| 736 |
E T3f, T3g, T3j, T3k; |
| 737 |
T3f = T1H - T1M; |
| 738 |
T3g = T1w - T1B; |
| 739 |
T3h = FNMS(KP587785252, T3g, KP951056516 * T3f); |
| 740 |
T3q = FMA(KP951056516, T3g, KP587785252 * T3f); |
| 741 |
T3i = T35 - T34; |
| 742 |
T3j = T2v + T2w; |
| 743 |
T3k = T2s + T2t; |
| 744 |
T3l = T3j + T3k; |
| 745 |
T3m = FNMS(KP250000000, T3l, T3i); |
| 746 |
T3n = KP559016994 * (T3j - T3k); |
| 747 |
} |
| 748 |
ii[WS(rs, 5)] = T3l + T3i;
|
| 749 |
T3p = T3n + T3m; |
| 750 |
ii[WS(rs, 11)] = T3p - T3q;
|
| 751 |
ii[WS(rs, 14)] = T3q + T3p;
|
| 752 |
T3o = T3m - T3n; |
| 753 |
ii[WS(rs, 2)] = T3h + T3o;
|
| 754 |
ii[WS(rs, 8)] = T3o - T3h;
|
| 755 |
} |
| 756 |
{
|
| 757 |
E T3c, T3d, T36, T37, T33, T38, T3e, T39; |
| 758 |
{
|
| 759 |
E T3a, T3b, T31, T32; |
| 760 |
T3a = T1Q - T1R; |
| 761 |
T3b = T1T - T1U; |
| 762 |
T3c = FMA(KP951056516, T3a, KP587785252 * T3b); |
| 763 |
T3d = FNMS(KP587785252, T3a, KP951056516 * T3b); |
| 764 |
T36 = T34 + T35; |
| 765 |
T31 = T24 + T29; |
| 766 |
T32 = T2f + T2k; |
| 767 |
T37 = T31 + T32; |
| 768 |
T33 = KP559016994 * (T31 - T32); |
| 769 |
T38 = FNMS(KP250000000, T37, T36); |
| 770 |
} |
| 771 |
ii[WS(rs, 10)] = T37 + T36;
|
| 772 |
T3e = T38 - T33; |
| 773 |
ii[WS(rs, 7)] = T3d + T3e;
|
| 774 |
ii[WS(rs, 13)] = T3e - T3d;
|
| 775 |
T39 = T33 + T38; |
| 776 |
ii[WS(rs, 1)] = T39 - T3c;
|
| 777 |
ii[WS(rs, 4)] = T3c + T39;
|
| 778 |
} |
| 779 |
{
|
| 780 |
E T2m, T2o, T1P, T1W, T1X, T1Y, T2n, T1Z; |
| 781 |
{
|
| 782 |
E T2a, T2l, T1S, T1V; |
| 783 |
T2a = T24 - T29; |
| 784 |
T2l = T2f - T2k; |
| 785 |
T2m = FMA(KP951056516, T2a, KP587785252 * T2l); |
| 786 |
T2o = FNMS(KP587785252, T2a, KP951056516 * T2l); |
| 787 |
T1P = T1n + T1q; |
| 788 |
T1S = T1Q + T1R; |
| 789 |
T1V = T1T + T1U; |
| 790 |
T1W = T1S + T1V; |
| 791 |
T1X = KP559016994 * (T1S - T1V); |
| 792 |
T1Y = FNMS(KP250000000, T1W, T1P); |
| 793 |
} |
| 794 |
ri[WS(rs, 10)] = T1P + T1W;
|
| 795 |
T2n = T1Y - T1X; |
| 796 |
ri[WS(rs, 7)] = T2n - T2o;
|
| 797 |
ri[WS(rs, 13)] = T2n + T2o;
|
| 798 |
T1Z = T1X + T1Y; |
| 799 |
ri[WS(rs, 4)] = T1Z - T2m;
|
| 800 |
ri[WS(rs, 1)] = T1Z + T2m;
|
| 801 |
} |
| 802 |
} |
| 803 |
} |
| 804 |
} |
| 805 |
|
| 806 |
static const tw_instr twinstr[] = { |
| 807 |
{TW_FULL, 0, 15},
|
| 808 |
{TW_NEXT, 1, 0}
|
| 809 |
}; |
| 810 |
|
| 811 |
static const ct_desc desc = { 15, "t1_15", twinstr, &GENUS, {128, 56, 56, 0}, 0, 0, 0 }; |
| 812 |
|
| 813 |
void X(codelet_t1_15) (planner *p) {
|
| 814 |
X(kdft_dit_register) (p, t1_15, &desc); |
| 815 |
} |
| 816 |
#endif
|