To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_12.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (14.2 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:14 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 118 FP additions, 68 FP multiplications,
|
| 32 |
* (or, 72 additions, 22 multiplications, 46 fused multiply/add),
|
| 33 |
* 47 stack variables, 2 constants, and 48 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 40 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 41 |
{
|
| 42 |
INT m; |
| 43 |
for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { |
| 44 |
E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2r, T1s, T2f, T1d, T21, T1H; |
| 45 |
E T1Z, Te, T2o, T1l, T2h, TT, T1V, T1A, T1T; |
| 46 |
T1 = ri[0];
|
| 47 |
T2i = ii[0];
|
| 48 |
{
|
| 49 |
E Th, Tk, Ti, T2d, Tg, Tj; |
| 50 |
Th = ri[WS(rs, 6)];
|
| 51 |
Tk = ii[WS(rs, 6)];
|
| 52 |
Tg = W[10];
|
| 53 |
Ti = Tg * Th; |
| 54 |
T2d = Tg * Tk; |
| 55 |
Tj = W[11];
|
| 56 |
Tl = FMA(Tj, Tk, Ti); |
| 57 |
T2e = FNMS(Tj, Th, T2d); |
| 58 |
} |
| 59 |
{
|
| 60 |
E TW, TZ, TX, T1X, TV, TY; |
| 61 |
TW = ri[WS(rs, 9)];
|
| 62 |
TZ = ii[WS(rs, 9)];
|
| 63 |
TV = W[16];
|
| 64 |
TX = TV * TW; |
| 65 |
T1X = TV * TZ; |
| 66 |
TY = W[17];
|
| 67 |
T10 = FMA(TY, TZ, TX); |
| 68 |
T1Y = FNMS(TY, TW, T1X); |
| 69 |
} |
| 70 |
{
|
| 71 |
E TC, TF, TD, T1R, TB, TE; |
| 72 |
TC = ri[WS(rs, 3)];
|
| 73 |
TF = ii[WS(rs, 3)];
|
| 74 |
TB = W[4];
|
| 75 |
TD = TB * TC; |
| 76 |
T1R = TB * TF; |
| 77 |
TE = W[5];
|
| 78 |
TG = FMA(TE, TF, TD); |
| 79 |
T1S = FNMS(TE, TC, T1R); |
| 80 |
} |
| 81 |
{
|
| 82 |
E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts; |
| 83 |
Tn = ri[WS(rs, 10)];
|
| 84 |
Tq = ii[WS(rs, 10)];
|
| 85 |
Tm = W[18];
|
| 86 |
To = Tm * Tn; |
| 87 |
T1o = Tm * Tq; |
| 88 |
Tt = ri[WS(rs, 2)];
|
| 89 |
Tw = ii[WS(rs, 2)];
|
| 90 |
Ts = W[2];
|
| 91 |
Tu = Ts * Tt; |
| 92 |
T1q = Ts * Tw; |
| 93 |
{
|
| 94 |
E Tr, T1p, Tx, T1r, Tp, Tv; |
| 95 |
Tp = W[19];
|
| 96 |
Tr = FMA(Tp, Tq, To); |
| 97 |
T1p = FNMS(Tp, Tn, T1o); |
| 98 |
Tv = W[3];
|
| 99 |
Tx = FMA(Tv, Tw, Tu); |
| 100 |
T1r = FNMS(Tv, Tt, T1q); |
| 101 |
Ty = Tr + Tx; |
| 102 |
T2r = Tx - Tr; |
| 103 |
T1s = T1p - T1r; |
| 104 |
T2f = T1p + T1r; |
| 105 |
} |
| 106 |
} |
| 107 |
{
|
| 108 |
E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17; |
| 109 |
T12 = ri[WS(rs, 1)];
|
| 110 |
T15 = ii[WS(rs, 1)];
|
| 111 |
T11 = W[0];
|
| 112 |
T13 = T11 * T12; |
| 113 |
T1D = T11 * T15; |
| 114 |
T18 = ri[WS(rs, 5)];
|
| 115 |
T1b = ii[WS(rs, 5)];
|
| 116 |
T17 = W[8];
|
| 117 |
T19 = T17 * T18; |
| 118 |
T1F = T17 * T1b; |
| 119 |
{
|
| 120 |
E T16, T1E, T1c, T1G, T14, T1a; |
| 121 |
T14 = W[1];
|
| 122 |
T16 = FMA(T14, T15, T13); |
| 123 |
T1E = FNMS(T14, T12, T1D); |
| 124 |
T1a = W[9];
|
| 125 |
T1c = FMA(T1a, T1b, T19); |
| 126 |
T1G = FNMS(T1a, T18, T1F); |
| 127 |
T1d = T16 + T1c; |
| 128 |
T21 = T1c - T16; |
| 129 |
T1H = T1E - T1G; |
| 130 |
T1Z = T1E + T1G; |
| 131 |
} |
| 132 |
} |
| 133 |
{
|
| 134 |
E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8; |
| 135 |
T3 = ri[WS(rs, 4)];
|
| 136 |
T6 = ii[WS(rs, 4)];
|
| 137 |
T2 = W[6];
|
| 138 |
T4 = T2 * T3; |
| 139 |
T1h = T2 * T6; |
| 140 |
T9 = ri[WS(rs, 8)];
|
| 141 |
Tc = ii[WS(rs, 8)];
|
| 142 |
T8 = W[14];
|
| 143 |
Ta = T8 * T9; |
| 144 |
T1j = T8 * Tc; |
| 145 |
{
|
| 146 |
E T7, T1i, Td, T1k, T5, Tb; |
| 147 |
T5 = W[7];
|
| 148 |
T7 = FMA(T5, T6, T4); |
| 149 |
T1i = FNMS(T5, T3, T1h); |
| 150 |
Tb = W[15];
|
| 151 |
Td = FMA(Tb, Tc, Ta); |
| 152 |
T1k = FNMS(Tb, T9, T1j); |
| 153 |
Te = T7 + Td; |
| 154 |
T2o = Td - T7; |
| 155 |
T1l = T1i - T1k; |
| 156 |
T2h = T1i + T1k; |
| 157 |
} |
| 158 |
} |
| 159 |
{
|
| 160 |
E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN; |
| 161 |
TI = ri[WS(rs, 7)];
|
| 162 |
TL = ii[WS(rs, 7)];
|
| 163 |
TH = W[12];
|
| 164 |
TJ = TH * TI; |
| 165 |
T1w = TH * TL; |
| 166 |
TO = ri[WS(rs, 11)];
|
| 167 |
TR = ii[WS(rs, 11)];
|
| 168 |
TN = W[20];
|
| 169 |
TP = TN * TO; |
| 170 |
T1y = TN * TR; |
| 171 |
{
|
| 172 |
E TM, T1x, TS, T1z, TK, TQ; |
| 173 |
TK = W[13];
|
| 174 |
TM = FMA(TK, TL, TJ); |
| 175 |
T1x = FNMS(TK, TI, T1w); |
| 176 |
TQ = W[21];
|
| 177 |
TS = FMA(TQ, TR, TP); |
| 178 |
T1z = FNMS(TQ, TO, T1y); |
| 179 |
TT = TM + TS; |
| 180 |
T1V = TS - TM; |
| 181 |
T1A = T1x - T1z; |
| 182 |
T1T = T1x + T1z; |
| 183 |
} |
| 184 |
} |
| 185 |
{
|
| 186 |
E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c; |
| 187 |
{
|
| 188 |
E Tf, Tz, T2g, T2j; |
| 189 |
Tf = T1 + Te; |
| 190 |
Tz = Tl + Ty; |
| 191 |
TA = Tf + Tz; |
| 192 |
T28 = Tf - Tz; |
| 193 |
T2g = T2e + T2f; |
| 194 |
T2j = T2h + T2i; |
| 195 |
T2k = T2g + T2j; |
| 196 |
T2m = T2j - T2g; |
| 197 |
} |
| 198 |
{
|
| 199 |
E TU, T1e, T29, T2a; |
| 200 |
TU = TG + TT; |
| 201 |
T1e = T10 + T1d; |
| 202 |
T1f = TU + T1e; |
| 203 |
T2l = TU - T1e; |
| 204 |
T29 = T1S + T1T; |
| 205 |
T2a = T1Y + T1Z; |
| 206 |
T2b = T29 - T2a; |
| 207 |
T2c = T29 + T2a; |
| 208 |
} |
| 209 |
ri[WS(rs, 6)] = TA - T1f;
|
| 210 |
ii[WS(rs, 6)] = T2k - T2c;
|
| 211 |
ri[0] = TA + T1f;
|
| 212 |
ii[0] = T2c + T2k;
|
| 213 |
ri[WS(rs, 3)] = T28 - T2b;
|
| 214 |
ii[WS(rs, 3)] = T2l + T2m;
|
| 215 |
ri[WS(rs, 9)] = T28 + T2b;
|
| 216 |
ii[WS(rs, 9)] = T2m - T2l;
|
| 217 |
} |
| 218 |
{
|
| 219 |
E T1m, T1K, T2p, T2y, T2s, T2x, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I; |
| 220 |
E T1O; |
| 221 |
{
|
| 222 |
E T1g, T2n, T2q, T1n; |
| 223 |
T1g = FNMS(KP500000000, Te, T1); |
| 224 |
T1m = FNMS(KP866025403, T1l, T1g); |
| 225 |
T1K = FMA(KP866025403, T1l, T1g); |
| 226 |
T2n = FNMS(KP500000000, T2h, T2i); |
| 227 |
T2p = FMA(KP866025403, T2o, T2n); |
| 228 |
T2y = FNMS(KP866025403, T2o, T2n); |
| 229 |
T2q = FNMS(KP500000000, T2f, T2e); |
| 230 |
T2s = FMA(KP866025403, T2r, T2q); |
| 231 |
T2x = FNMS(KP866025403, T2r, T2q); |
| 232 |
T1n = FNMS(KP500000000, Ty, Tl); |
| 233 |
T1t = FNMS(KP866025403, T1s, T1n); |
| 234 |
T1L = FMA(KP866025403, T1s, T1n); |
| 235 |
} |
| 236 |
{
|
| 237 |
E T1v, T1U, T20, T1C; |
| 238 |
T1v = FNMS(KP500000000, TT, TG); |
| 239 |
T1B = FNMS(KP866025403, T1A, T1v); |
| 240 |
T1N = FMA(KP866025403, T1A, T1v); |
| 241 |
T1U = FNMS(KP500000000, T1T, T1S); |
| 242 |
T1W = FMA(KP866025403, T1V, T1U); |
| 243 |
T25 = FNMS(KP866025403, T1V, T1U); |
| 244 |
T20 = FNMS(KP500000000, T1Z, T1Y); |
| 245 |
T22 = FMA(KP866025403, T21, T20); |
| 246 |
T26 = FNMS(KP866025403, T21, T20); |
| 247 |
T1C = FNMS(KP500000000, T1d, T10); |
| 248 |
T1I = FNMS(KP866025403, T1H, T1C); |
| 249 |
T1O = FMA(KP866025403, T1H, T1C); |
| 250 |
} |
| 251 |
{
|
| 252 |
E T1u, T1J, T2z, T2A; |
| 253 |
T1u = T1m + T1t; |
| 254 |
T1J = T1B + T1I; |
| 255 |
ri[WS(rs, 2)] = T1u - T1J;
|
| 256 |
ri[WS(rs, 8)] = T1u + T1J;
|
| 257 |
T2z = T2x + T2y; |
| 258 |
T2A = T25 + T26; |
| 259 |
ii[WS(rs, 2)] = T2z - T2A;
|
| 260 |
ii[WS(rs, 8)] = T2A + T2z;
|
| 261 |
} |
| 262 |
{
|
| 263 |
E T1M, T1P, T2v, T2w; |
| 264 |
T1M = T1K + T1L; |
| 265 |
T1P = T1N + T1O; |
| 266 |
ri[WS(rs, 10)] = T1M - T1P;
|
| 267 |
ri[WS(rs, 4)] = T1M + T1P;
|
| 268 |
T2v = T1W + T22; |
| 269 |
T2w = T2s + T2p; |
| 270 |
ii[WS(rs, 4)] = T2v + T2w;
|
| 271 |
ii[WS(rs, 10)] = T2w - T2v;
|
| 272 |
} |
| 273 |
{
|
| 274 |
E T1Q, T23, T2t, T2u; |
| 275 |
T1Q = T1K - T1L; |
| 276 |
T23 = T1W - T22; |
| 277 |
ri[WS(rs, 7)] = T1Q - T23;
|
| 278 |
ri[WS(rs, 1)] = T1Q + T23;
|
| 279 |
T2t = T2p - T2s; |
| 280 |
T2u = T1N - T1O; |
| 281 |
ii[WS(rs, 1)] = T2t - T2u;
|
| 282 |
ii[WS(rs, 7)] = T2u + T2t;
|
| 283 |
} |
| 284 |
{
|
| 285 |
E T24, T27, T2B, T2C; |
| 286 |
T24 = T1m - T1t; |
| 287 |
T27 = T25 - T26; |
| 288 |
ri[WS(rs, 11)] = T24 - T27;
|
| 289 |
ri[WS(rs, 5)] = T24 + T27;
|
| 290 |
T2B = T2y - T2x; |
| 291 |
T2C = T1B - T1I; |
| 292 |
ii[WS(rs, 5)] = T2B - T2C;
|
| 293 |
ii[WS(rs, 11)] = T2C + T2B;
|
| 294 |
} |
| 295 |
} |
| 296 |
} |
| 297 |
} |
| 298 |
} |
| 299 |
|
| 300 |
static const tw_instr twinstr[] = { |
| 301 |
{TW_FULL, 0, 12},
|
| 302 |
{TW_NEXT, 1, 0}
|
| 303 |
}; |
| 304 |
|
| 305 |
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {72, 22, 46, 0}, 0, 0, 0 }; |
| 306 |
|
| 307 |
void X(codelet_t1_12) (planner *p) {
|
| 308 |
X(kdft_dit_register) (p, t1_12, &desc); |
| 309 |
} |
| 310 |
#else
|
| 311 |
|
| 312 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
|
| 313 |
|
| 314 |
/*
|
| 315 |
* This function contains 118 FP additions, 60 FP multiplications,
|
| 316 |
* (or, 88 additions, 30 multiplications, 30 fused multiply/add),
|
| 317 |
* 47 stack variables, 2 constants, and 48 memory accesses
|
| 318 |
*/
|
| 319 |
#include "dft/scalar/t.h" |
| 320 |
|
| 321 |
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 322 |
{
|
| 323 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 324 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 325 |
{
|
| 326 |
INT m; |
| 327 |
for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) { |
| 328 |
E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F; |
| 329 |
E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g; |
| 330 |
E T1A, T1B; |
| 331 |
{
|
| 332 |
E T6, T16, Tb, T17; |
| 333 |
T1 = ri[0];
|
| 334 |
T1W = ii[0];
|
| 335 |
{
|
| 336 |
E T3, T5, T2, T4; |
| 337 |
T3 = ri[WS(rs, 4)];
|
| 338 |
T5 = ii[WS(rs, 4)];
|
| 339 |
T2 = W[6];
|
| 340 |
T4 = W[7];
|
| 341 |
T6 = FMA(T2, T3, T4 * T5); |
| 342 |
T16 = FNMS(T4, T3, T2 * T5); |
| 343 |
} |
| 344 |
{
|
| 345 |
E T8, Ta, T7, T9; |
| 346 |
T8 = ri[WS(rs, 8)];
|
| 347 |
Ta = ii[WS(rs, 8)];
|
| 348 |
T7 = W[14];
|
| 349 |
T9 = W[15];
|
| 350 |
Tb = FMA(T7, T8, T9 * Ta); |
| 351 |
T17 = FNMS(T9, T8, T7 * Ta); |
| 352 |
} |
| 353 |
T18 = KP866025403 * (T16 - T17); |
| 354 |
T21 = KP866025403 * (Tb - T6); |
| 355 |
Tc = T6 + Tb; |
| 356 |
T15 = FNMS(KP500000000, Tc, T1); |
| 357 |
T1V = T16 + T17; |
| 358 |
T22 = FNMS(KP500000000, T1V, T1W); |
| 359 |
} |
| 360 |
{
|
| 361 |
E T11, T1n, TW, T1m; |
| 362 |
{
|
| 363 |
E TO, TQ, TN, TP; |
| 364 |
TO = ri[WS(rs, 9)];
|
| 365 |
TQ = ii[WS(rs, 9)];
|
| 366 |
TN = W[16];
|
| 367 |
TP = W[17];
|
| 368 |
TR = FMA(TN, TO, TP * TQ); |
| 369 |
T1E = FNMS(TP, TO, TN * TQ); |
| 370 |
} |
| 371 |
{
|
| 372 |
E TY, T10, TX, TZ; |
| 373 |
TY = ri[WS(rs, 5)];
|
| 374 |
T10 = ii[WS(rs, 5)];
|
| 375 |
TX = W[8];
|
| 376 |
TZ = W[9];
|
| 377 |
T11 = FMA(TX, TY, TZ * T10); |
| 378 |
T1n = FNMS(TZ, TY, TX * T10); |
| 379 |
} |
| 380 |
{
|
| 381 |
E TT, TV, TS, TU; |
| 382 |
TT = ri[WS(rs, 1)];
|
| 383 |
TV = ii[WS(rs, 1)];
|
| 384 |
TS = W[0];
|
| 385 |
TU = W[1];
|
| 386 |
TW = FMA(TS, TT, TU * TV); |
| 387 |
T1m = FNMS(TU, TT, TS * TV); |
| 388 |
} |
| 389 |
T1o = KP866025403 * (T1m - T1n); |
| 390 |
T1D = KP866025403 * (T11 - TW); |
| 391 |
T12 = TW + T11; |
| 392 |
T1l = FNMS(KP500000000, T12, TR); |
| 393 |
T1F = T1m + T1n; |
| 394 |
T1G = FNMS(KP500000000, T1F, T1E); |
| 395 |
} |
| 396 |
{
|
| 397 |
E Ts, T1c, Tn, T1b; |
| 398 |
{
|
| 399 |
E Tf, Th, Te, Tg; |
| 400 |
Tf = ri[WS(rs, 6)];
|
| 401 |
Th = ii[WS(rs, 6)];
|
| 402 |
Te = W[10];
|
| 403 |
Tg = W[11];
|
| 404 |
Ti = FMA(Te, Tf, Tg * Th); |
| 405 |
T1S = FNMS(Tg, Tf, Te * Th); |
| 406 |
} |
| 407 |
{
|
| 408 |
E Tp, Tr, To, Tq; |
| 409 |
Tp = ri[WS(rs, 2)];
|
| 410 |
Tr = ii[WS(rs, 2)];
|
| 411 |
To = W[2];
|
| 412 |
Tq = W[3];
|
| 413 |
Ts = FMA(To, Tp, Tq * Tr); |
| 414 |
T1c = FNMS(Tq, Tp, To * Tr); |
| 415 |
} |
| 416 |
{
|
| 417 |
E Tk, Tm, Tj, Tl; |
| 418 |
Tk = ri[WS(rs, 10)];
|
| 419 |
Tm = ii[WS(rs, 10)];
|
| 420 |
Tj = W[18];
|
| 421 |
Tl = W[19];
|
| 422 |
Tn = FMA(Tj, Tk, Tl * Tm); |
| 423 |
T1b = FNMS(Tl, Tk, Tj * Tm); |
| 424 |
} |
| 425 |
T1d = KP866025403 * (T1b - T1c); |
| 426 |
T24 = KP866025403 * (Ts - Tn); |
| 427 |
Tt = Tn + Ts; |
| 428 |
T1a = FNMS(KP500000000, Tt, Ti); |
| 429 |
T1T = T1b + T1c; |
| 430 |
T25 = FNMS(KP500000000, T1T, T1S); |
| 431 |
} |
| 432 |
{
|
| 433 |
E TK, T1i, TF, T1h; |
| 434 |
{
|
| 435 |
E Tx, Tz, Tw, Ty; |
| 436 |
Tx = ri[WS(rs, 3)];
|
| 437 |
Tz = ii[WS(rs, 3)];
|
| 438 |
Tw = W[4];
|
| 439 |
Ty = W[5];
|
| 440 |
TA = FMA(Tw, Tx, Ty * Tz); |
| 441 |
T1z = FNMS(Ty, Tx, Tw * Tz); |
| 442 |
} |
| 443 |
{
|
| 444 |
E TH, TJ, TG, TI; |
| 445 |
TH = ri[WS(rs, 11)];
|
| 446 |
TJ = ii[WS(rs, 11)];
|
| 447 |
TG = W[20];
|
| 448 |
TI = W[21];
|
| 449 |
TK = FMA(TG, TH, TI * TJ); |
| 450 |
T1i = FNMS(TI, TH, TG * TJ); |
| 451 |
} |
| 452 |
{
|
| 453 |
E TC, TE, TB, TD; |
| 454 |
TC = ri[WS(rs, 7)];
|
| 455 |
TE = ii[WS(rs, 7)];
|
| 456 |
TB = W[12];
|
| 457 |
TD = W[13];
|
| 458 |
TF = FMA(TB, TC, TD * TE); |
| 459 |
T1h = FNMS(TD, TC, TB * TE); |
| 460 |
} |
| 461 |
T1j = KP866025403 * (T1h - T1i); |
| 462 |
T1y = KP866025403 * (TK - TF); |
| 463 |
TL = TF + TK; |
| 464 |
T1g = FNMS(KP500000000, TL, TA); |
| 465 |
T1A = T1h + T1i; |
| 466 |
T1B = FNMS(KP500000000, T1A, T1z); |
| 467 |
} |
| 468 |
{
|
| 469 |
E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R; |
| 470 |
{
|
| 471 |
E Td, Tu, T1U, T1X; |
| 472 |
Td = T1 + Tc; |
| 473 |
Tu = Ti + Tt; |
| 474 |
Tv = Td + Tu; |
| 475 |
T1N = Td - Tu; |
| 476 |
T1U = T1S + T1T; |
| 477 |
T1X = T1V + T1W; |
| 478 |
T1Y = T1U + T1X; |
| 479 |
T20 = T1X - T1U; |
| 480 |
} |
| 481 |
{
|
| 482 |
E TM, T13, T1O, T1P; |
| 483 |
TM = TA + TL; |
| 484 |
T13 = TR + T12; |
| 485 |
T14 = TM + T13; |
| 486 |
T1Z = TM - T13; |
| 487 |
T1O = T1z + T1A; |
| 488 |
T1P = T1E + T1F; |
| 489 |
T1Q = T1O - T1P; |
| 490 |
T1R = T1O + T1P; |
| 491 |
} |
| 492 |
ri[WS(rs, 6)] = Tv - T14;
|
| 493 |
ii[WS(rs, 6)] = T1Y - T1R;
|
| 494 |
ri[0] = Tv + T14;
|
| 495 |
ii[0] = T1R + T1Y;
|
| 496 |
ri[WS(rs, 3)] = T1N - T1Q;
|
| 497 |
ii[WS(rs, 3)] = T1Z + T20;
|
| 498 |
ri[WS(rs, 9)] = T1N + T1Q;
|
| 499 |
ii[WS(rs, 9)] = T20 - T1Z;
|
| 500 |
} |
| 501 |
{
|
| 502 |
E T1t, T1x, T27, T2a, T1w, T28, T1I, T29; |
| 503 |
{
|
| 504 |
E T1r, T1s, T23, T26; |
| 505 |
T1r = T15 + T18; |
| 506 |
T1s = T1a + T1d; |
| 507 |
T1t = T1r + T1s; |
| 508 |
T1x = T1r - T1s; |
| 509 |
T23 = T21 + T22; |
| 510 |
T26 = T24 + T25; |
| 511 |
T27 = T23 - T26; |
| 512 |
T2a = T26 + T23; |
| 513 |
} |
| 514 |
{
|
| 515 |
E T1u, T1v, T1C, T1H; |
| 516 |
T1u = T1g + T1j; |
| 517 |
T1v = T1l + T1o; |
| 518 |
T1w = T1u + T1v; |
| 519 |
T28 = T1u - T1v; |
| 520 |
T1C = T1y + T1B; |
| 521 |
T1H = T1D + T1G; |
| 522 |
T1I = T1C - T1H; |
| 523 |
T29 = T1C + T1H; |
| 524 |
} |
| 525 |
ri[WS(rs, 10)] = T1t - T1w;
|
| 526 |
ii[WS(rs, 10)] = T2a - T29;
|
| 527 |
ri[WS(rs, 4)] = T1t + T1w;
|
| 528 |
ii[WS(rs, 4)] = T29 + T2a;
|
| 529 |
ri[WS(rs, 7)] = T1x - T1I;
|
| 530 |
ii[WS(rs, 7)] = T28 + T27;
|
| 531 |
ri[WS(rs, 1)] = T1x + T1I;
|
| 532 |
ii[WS(rs, 1)] = T27 - T28;
|
| 533 |
} |
| 534 |
{
|
| 535 |
E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e; |
| 536 |
{
|
| 537 |
E T19, T1e, T2b, T2c; |
| 538 |
T19 = T15 - T18; |
| 539 |
T1e = T1a - T1d; |
| 540 |
T1f = T19 + T1e; |
| 541 |
T1J = T19 - T1e; |
| 542 |
T2b = T25 - T24; |
| 543 |
T2c = T22 - T21; |
| 544 |
T2d = T2b + T2c; |
| 545 |
T2f = T2c - T2b; |
| 546 |
} |
| 547 |
{
|
| 548 |
E T1k, T1p, T1K, T1L; |
| 549 |
T1k = T1g - T1j; |
| 550 |
T1p = T1l - T1o; |
| 551 |
T1q = T1k + T1p; |
| 552 |
T2g = T1k - T1p; |
| 553 |
T1K = T1B - T1y; |
| 554 |
T1L = T1G - T1D; |
| 555 |
T1M = T1K - T1L; |
| 556 |
T2e = T1K + T1L; |
| 557 |
} |
| 558 |
ri[WS(rs, 2)] = T1f - T1q;
|
| 559 |
ii[WS(rs, 2)] = T2d - T2e;
|
| 560 |
ri[WS(rs, 8)] = T1f + T1q;
|
| 561 |
ii[WS(rs, 8)] = T2e + T2d;
|
| 562 |
ri[WS(rs, 11)] = T1J - T1M;
|
| 563 |
ii[WS(rs, 11)] = T2g + T2f;
|
| 564 |
ri[WS(rs, 5)] = T1J + T1M;
|
| 565 |
ii[WS(rs, 5)] = T2f - T2g;
|
| 566 |
} |
| 567 |
} |
| 568 |
} |
| 569 |
} |
| 570 |
|
| 571 |
static const tw_instr twinstr[] = { |
| 572 |
{TW_FULL, 0, 12},
|
| 573 |
{TW_NEXT, 1, 0}
|
| 574 |
}; |
| 575 |
|
| 576 |
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, {88, 30, 30, 0}, 0, 0, 0 }; |
| 577 |
|
| 578 |
void X(codelet_t1_12) (planner *p) {
|
| 579 |
X(kdft_dit_register) (p, t1_12, &desc); |
| 580 |
} |
| 581 |
#endif
|