To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / t1_10.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (13.1 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:14 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 102 FP additions, 72 FP multiplications,
|
| 32 |
* (or, 48 additions, 18 multiplications, 54 fused multiply/add),
|
| 33 |
* 47 stack variables, 4 constants, and 40 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/t.h" |
| 36 |
|
| 37 |
static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 42 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 43 |
{
|
| 44 |
INT m; |
| 45 |
for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { |
| 46 |
E T8, T23, T12, T1U, TM, TZ, T10, T1F, T1G, T1P, T16, T17, T18, T1s, T1x; |
| 47 |
E T25, Tl, Ty, Tz, T1I, T1J, T1O, T13, T14, T15, T1h, T1m, T24; |
| 48 |
{
|
| 49 |
E T1, T1T, T3, T6, T4, T1R, T2, T7, T1S, T5; |
| 50 |
T1 = ri[0];
|
| 51 |
T1T = ii[0];
|
| 52 |
T3 = ri[WS(rs, 5)];
|
| 53 |
T6 = ii[WS(rs, 5)];
|
| 54 |
T2 = W[8];
|
| 55 |
T4 = T2 * T3; |
| 56 |
T1R = T2 * T6; |
| 57 |
T5 = W[9];
|
| 58 |
T7 = FMA(T5, T6, T4); |
| 59 |
T1S = FNMS(T5, T3, T1R); |
| 60 |
T8 = T1 - T7; |
| 61 |
T23 = T1T - T1S; |
| 62 |
T12 = T1 + T7; |
| 63 |
T1U = T1S + T1T; |
| 64 |
} |
| 65 |
{
|
| 66 |
E TF, T1p, TY, T1w, TL, T1r, TS, T1u; |
| 67 |
{
|
| 68 |
E TB, TE, TC, T1o, TA, TD; |
| 69 |
TB = ri[WS(rs, 4)];
|
| 70 |
TE = ii[WS(rs, 4)];
|
| 71 |
TA = W[6];
|
| 72 |
TC = TA * TB; |
| 73 |
T1o = TA * TE; |
| 74 |
TD = W[7];
|
| 75 |
TF = FMA(TD, TE, TC); |
| 76 |
T1p = FNMS(TD, TB, T1o); |
| 77 |
} |
| 78 |
{
|
| 79 |
E TU, TX, TV, T1v, TT, TW; |
| 80 |
TU = ri[WS(rs, 1)];
|
| 81 |
TX = ii[WS(rs, 1)];
|
| 82 |
TT = W[0];
|
| 83 |
TV = TT * TU; |
| 84 |
T1v = TT * TX; |
| 85 |
TW = W[1];
|
| 86 |
TY = FMA(TW, TX, TV); |
| 87 |
T1w = FNMS(TW, TU, T1v); |
| 88 |
} |
| 89 |
{
|
| 90 |
E TH, TK, TI, T1q, TG, TJ; |
| 91 |
TH = ri[WS(rs, 9)];
|
| 92 |
TK = ii[WS(rs, 9)];
|
| 93 |
TG = W[16];
|
| 94 |
TI = TG * TH; |
| 95 |
T1q = TG * TK; |
| 96 |
TJ = W[17];
|
| 97 |
TL = FMA(TJ, TK, TI); |
| 98 |
T1r = FNMS(TJ, TH, T1q); |
| 99 |
} |
| 100 |
{
|
| 101 |
E TO, TR, TP, T1t, TN, TQ; |
| 102 |
TO = ri[WS(rs, 6)];
|
| 103 |
TR = ii[WS(rs, 6)];
|
| 104 |
TN = W[10];
|
| 105 |
TP = TN * TO; |
| 106 |
T1t = TN * TR; |
| 107 |
TQ = W[11];
|
| 108 |
TS = FMA(TQ, TR, TP); |
| 109 |
T1u = FNMS(TQ, TO, T1t); |
| 110 |
} |
| 111 |
TM = TF - TL; |
| 112 |
TZ = TS - TY; |
| 113 |
T10 = TM + TZ; |
| 114 |
T1F = T1p + T1r; |
| 115 |
T1G = T1u + T1w; |
| 116 |
T1P = T1F + T1G; |
| 117 |
T16 = TF + TL; |
| 118 |
T17 = TS + TY; |
| 119 |
T18 = T16 + T17; |
| 120 |
T1s = T1p - T1r; |
| 121 |
T1x = T1u - T1w; |
| 122 |
T25 = T1s + T1x; |
| 123 |
} |
| 124 |
{
|
| 125 |
E Te, T1e, Tx, T1l, Tk, T1g, Tr, T1j; |
| 126 |
{
|
| 127 |
E Ta, Td, Tb, T1d, T9, Tc; |
| 128 |
Ta = ri[WS(rs, 2)];
|
| 129 |
Td = ii[WS(rs, 2)];
|
| 130 |
T9 = W[2];
|
| 131 |
Tb = T9 * Ta; |
| 132 |
T1d = T9 * Td; |
| 133 |
Tc = W[3];
|
| 134 |
Te = FMA(Tc, Td, Tb); |
| 135 |
T1e = FNMS(Tc, Ta, T1d); |
| 136 |
} |
| 137 |
{
|
| 138 |
E Tt, Tw, Tu, T1k, Ts, Tv; |
| 139 |
Tt = ri[WS(rs, 3)];
|
| 140 |
Tw = ii[WS(rs, 3)];
|
| 141 |
Ts = W[4];
|
| 142 |
Tu = Ts * Tt; |
| 143 |
T1k = Ts * Tw; |
| 144 |
Tv = W[5];
|
| 145 |
Tx = FMA(Tv, Tw, Tu); |
| 146 |
T1l = FNMS(Tv, Tt, T1k); |
| 147 |
} |
| 148 |
{
|
| 149 |
E Tg, Tj, Th, T1f, Tf, Ti; |
| 150 |
Tg = ri[WS(rs, 7)];
|
| 151 |
Tj = ii[WS(rs, 7)];
|
| 152 |
Tf = W[12];
|
| 153 |
Th = Tf * Tg; |
| 154 |
T1f = Tf * Tj; |
| 155 |
Ti = W[13];
|
| 156 |
Tk = FMA(Ti, Tj, Th); |
| 157 |
T1g = FNMS(Ti, Tg, T1f); |
| 158 |
} |
| 159 |
{
|
| 160 |
E Tn, Tq, To, T1i, Tm, Tp; |
| 161 |
Tn = ri[WS(rs, 8)];
|
| 162 |
Tq = ii[WS(rs, 8)];
|
| 163 |
Tm = W[14];
|
| 164 |
To = Tm * Tn; |
| 165 |
T1i = Tm * Tq; |
| 166 |
Tp = W[15];
|
| 167 |
Tr = FMA(Tp, Tq, To); |
| 168 |
T1j = FNMS(Tp, Tn, T1i); |
| 169 |
} |
| 170 |
Tl = Te - Tk; |
| 171 |
Ty = Tr - Tx; |
| 172 |
Tz = Tl + Ty; |
| 173 |
T1I = T1e + T1g; |
| 174 |
T1J = T1j + T1l; |
| 175 |
T1O = T1I + T1J; |
| 176 |
T13 = Te + Tk; |
| 177 |
T14 = Tr + Tx; |
| 178 |
T15 = T13 + T14; |
| 179 |
T1h = T1e - T1g; |
| 180 |
T1m = T1j - T1l; |
| 181 |
T24 = T1h + T1m; |
| 182 |
} |
| 183 |
{
|
| 184 |
E T1b, T11, T1a, T1z, T1B, T1n, T1y, T1A, T1c; |
| 185 |
T1b = Tz - T10; |
| 186 |
T11 = Tz + T10; |
| 187 |
T1a = FNMS(KP250000000, T11, T8); |
| 188 |
T1n = T1h - T1m; |
| 189 |
T1y = T1s - T1x; |
| 190 |
T1z = FMA(KP618033988, T1y, T1n); |
| 191 |
T1B = FNMS(KP618033988, T1n, T1y); |
| 192 |
ri[WS(rs, 5)] = T8 + T11;
|
| 193 |
T1A = FNMS(KP559016994, T1b, T1a); |
| 194 |
ri[WS(rs, 7)] = FNMS(KP951056516, T1B, T1A);
|
| 195 |
ri[WS(rs, 3)] = FMA(KP951056516, T1B, T1A);
|
| 196 |
T1c = FMA(KP559016994, T1b, T1a); |
| 197 |
ri[WS(rs, 9)] = FNMS(KP951056516, T1z, T1c);
|
| 198 |
ri[WS(rs, 1)] = FMA(KP951056516, T1z, T1c);
|
| 199 |
} |
| 200 |
{
|
| 201 |
E T28, T26, T27, T2c, T2e, T2a, T2b, T2d, T29; |
| 202 |
T28 = T24 - T25; |
| 203 |
T26 = T24 + T25; |
| 204 |
T27 = FNMS(KP250000000, T26, T23); |
| 205 |
T2a = Tl - Ty; |
| 206 |
T2b = TM - TZ; |
| 207 |
T2c = FMA(KP618033988, T2b, T2a); |
| 208 |
T2e = FNMS(KP618033988, T2a, T2b); |
| 209 |
ii[WS(rs, 5)] = T26 + T23;
|
| 210 |
T2d = FNMS(KP559016994, T28, T27); |
| 211 |
ii[WS(rs, 3)] = FNMS(KP951056516, T2e, T2d);
|
| 212 |
ii[WS(rs, 7)] = FMA(KP951056516, T2e, T2d);
|
| 213 |
T29 = FMA(KP559016994, T28, T27); |
| 214 |
ii[WS(rs, 1)] = FNMS(KP951056516, T2c, T29);
|
| 215 |
ii[WS(rs, 9)] = FMA(KP951056516, T2c, T29);
|
| 216 |
} |
| 217 |
{
|
| 218 |
E T1D, T19, T1C, T1L, T1N, T1H, T1K, T1M, T1E; |
| 219 |
T1D = T15 - T18; |
| 220 |
T19 = T15 + T18; |
| 221 |
T1C = FNMS(KP250000000, T19, T12); |
| 222 |
T1H = T1F - T1G; |
| 223 |
T1K = T1I - T1J; |
| 224 |
T1L = FNMS(KP618033988, T1K, T1H); |
| 225 |
T1N = FMA(KP618033988, T1H, T1K); |
| 226 |
ri[0] = T12 + T19;
|
| 227 |
T1M = FMA(KP559016994, T1D, T1C); |
| 228 |
ri[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M);
|
| 229 |
ri[WS(rs, 6)] = FMA(KP951056516, T1N, T1M);
|
| 230 |
T1E = FNMS(KP559016994, T1D, T1C); |
| 231 |
ri[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E);
|
| 232 |
ri[WS(rs, 8)] = FMA(KP951056516, T1L, T1E);
|
| 233 |
} |
| 234 |
{
|
| 235 |
E T1W, T1Q, T1V, T20, T22, T1Y, T1Z, T21, T1X; |
| 236 |
T1W = T1O - T1P; |
| 237 |
T1Q = T1O + T1P; |
| 238 |
T1V = FNMS(KP250000000, T1Q, T1U); |
| 239 |
T1Y = T16 - T17; |
| 240 |
T1Z = T13 - T14; |
| 241 |
T20 = FNMS(KP618033988, T1Z, T1Y); |
| 242 |
T22 = FMA(KP618033988, T1Y, T1Z); |
| 243 |
ii[0] = T1Q + T1U;
|
| 244 |
T21 = FMA(KP559016994, T1W, T1V); |
| 245 |
ii[WS(rs, 4)] = FMA(KP951056516, T22, T21);
|
| 246 |
ii[WS(rs, 6)] = FNMS(KP951056516, T22, T21);
|
| 247 |
T1X = FNMS(KP559016994, T1W, T1V); |
| 248 |
ii[WS(rs, 2)] = FMA(KP951056516, T20, T1X);
|
| 249 |
ii[WS(rs, 8)] = FNMS(KP951056516, T20, T1X);
|
| 250 |
} |
| 251 |
} |
| 252 |
} |
| 253 |
} |
| 254 |
|
| 255 |
static const tw_instr twinstr[] = { |
| 256 |
{TW_FULL, 0, 10},
|
| 257 |
{TW_NEXT, 1, 0}
|
| 258 |
}; |
| 259 |
|
| 260 |
static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {48, 18, 54, 0}, 0, 0, 0 }; |
| 261 |
|
| 262 |
void X(codelet_t1_10) (planner *p) {
|
| 263 |
X(kdft_dit_register) (p, t1_10, &desc); |
| 264 |
} |
| 265 |
#else
|
| 266 |
|
| 267 |
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 10 -name t1_10 -include dft/scalar/t.h */
|
| 268 |
|
| 269 |
/*
|
| 270 |
* This function contains 102 FP additions, 60 FP multiplications,
|
| 271 |
* (or, 72 additions, 30 multiplications, 30 fused multiply/add),
|
| 272 |
* 45 stack variables, 4 constants, and 40 memory accesses
|
| 273 |
*/
|
| 274 |
#include "dft/scalar/t.h" |
| 275 |
|
| 276 |
static void t1_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
| 277 |
{
|
| 278 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 279 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 280 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 281 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 282 |
{
|
| 283 |
INT m; |
| 284 |
for (m = mb, W = W + (mb * 18); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { |
| 285 |
E T7, T1O, TT, T1C, TF, TQ, TR, T1o, T1p, T1y, TX, TY, TZ, T1d, T1g; |
| 286 |
E T1M, Ti, Tt, Tu, T1r, T1s, T1x, TU, TV, TW, T16, T19, T1L; |
| 287 |
{
|
| 288 |
E T1, T1B, T6, T1A; |
| 289 |
T1 = ri[0];
|
| 290 |
T1B = ii[0];
|
| 291 |
{
|
| 292 |
E T3, T5, T2, T4; |
| 293 |
T3 = ri[WS(rs, 5)];
|
| 294 |
T5 = ii[WS(rs, 5)];
|
| 295 |
T2 = W[8];
|
| 296 |
T4 = W[9];
|
| 297 |
T6 = FMA(T2, T3, T4 * T5); |
| 298 |
T1A = FNMS(T4, T3, T2 * T5); |
| 299 |
} |
| 300 |
T7 = T1 - T6; |
| 301 |
T1O = T1B - T1A; |
| 302 |
TT = T1 + T6; |
| 303 |
T1C = T1A + T1B; |
| 304 |
} |
| 305 |
{
|
| 306 |
E Tz, T1b, TP, T1f, TE, T1c, TK, T1e; |
| 307 |
{
|
| 308 |
E Tw, Ty, Tv, Tx; |
| 309 |
Tw = ri[WS(rs, 4)];
|
| 310 |
Ty = ii[WS(rs, 4)];
|
| 311 |
Tv = W[6];
|
| 312 |
Tx = W[7];
|
| 313 |
Tz = FMA(Tv, Tw, Tx * Ty); |
| 314 |
T1b = FNMS(Tx, Tw, Tv * Ty); |
| 315 |
} |
| 316 |
{
|
| 317 |
E TM, TO, TL, TN; |
| 318 |
TM = ri[WS(rs, 1)];
|
| 319 |
TO = ii[WS(rs, 1)];
|
| 320 |
TL = W[0];
|
| 321 |
TN = W[1];
|
| 322 |
TP = FMA(TL, TM, TN * TO); |
| 323 |
T1f = FNMS(TN, TM, TL * TO); |
| 324 |
} |
| 325 |
{
|
| 326 |
E TB, TD, TA, TC; |
| 327 |
TB = ri[WS(rs, 9)];
|
| 328 |
TD = ii[WS(rs, 9)];
|
| 329 |
TA = W[16];
|
| 330 |
TC = W[17];
|
| 331 |
TE = FMA(TA, TB, TC * TD); |
| 332 |
T1c = FNMS(TC, TB, TA * TD); |
| 333 |
} |
| 334 |
{
|
| 335 |
E TH, TJ, TG, TI; |
| 336 |
TH = ri[WS(rs, 6)];
|
| 337 |
TJ = ii[WS(rs, 6)];
|
| 338 |
TG = W[10];
|
| 339 |
TI = W[11];
|
| 340 |
TK = FMA(TG, TH, TI * TJ); |
| 341 |
T1e = FNMS(TI, TH, TG * TJ); |
| 342 |
} |
| 343 |
TF = Tz - TE; |
| 344 |
TQ = TK - TP; |
| 345 |
TR = TF + TQ; |
| 346 |
T1o = T1b + T1c; |
| 347 |
T1p = T1e + T1f; |
| 348 |
T1y = T1o + T1p; |
| 349 |
TX = Tz + TE; |
| 350 |
TY = TK + TP; |
| 351 |
TZ = TX + TY; |
| 352 |
T1d = T1b - T1c; |
| 353 |
T1g = T1e - T1f; |
| 354 |
T1M = T1d + T1g; |
| 355 |
} |
| 356 |
{
|
| 357 |
E Tc, T14, Ts, T18, Th, T15, Tn, T17; |
| 358 |
{
|
| 359 |
E T9, Tb, T8, Ta; |
| 360 |
T9 = ri[WS(rs, 2)];
|
| 361 |
Tb = ii[WS(rs, 2)];
|
| 362 |
T8 = W[2];
|
| 363 |
Ta = W[3];
|
| 364 |
Tc = FMA(T8, T9, Ta * Tb); |
| 365 |
T14 = FNMS(Ta, T9, T8 * Tb); |
| 366 |
} |
| 367 |
{
|
| 368 |
E Tp, Tr, To, Tq; |
| 369 |
Tp = ri[WS(rs, 3)];
|
| 370 |
Tr = ii[WS(rs, 3)];
|
| 371 |
To = W[4];
|
| 372 |
Tq = W[5];
|
| 373 |
Ts = FMA(To, Tp, Tq * Tr); |
| 374 |
T18 = FNMS(Tq, Tp, To * Tr); |
| 375 |
} |
| 376 |
{
|
| 377 |
E Te, Tg, Td, Tf; |
| 378 |
Te = ri[WS(rs, 7)];
|
| 379 |
Tg = ii[WS(rs, 7)];
|
| 380 |
Td = W[12];
|
| 381 |
Tf = W[13];
|
| 382 |
Th = FMA(Td, Te, Tf * Tg); |
| 383 |
T15 = FNMS(Tf, Te, Td * Tg); |
| 384 |
} |
| 385 |
{
|
| 386 |
E Tk, Tm, Tj, Tl; |
| 387 |
Tk = ri[WS(rs, 8)];
|
| 388 |
Tm = ii[WS(rs, 8)];
|
| 389 |
Tj = W[14];
|
| 390 |
Tl = W[15];
|
| 391 |
Tn = FMA(Tj, Tk, Tl * Tm); |
| 392 |
T17 = FNMS(Tl, Tk, Tj * Tm); |
| 393 |
} |
| 394 |
Ti = Tc - Th; |
| 395 |
Tt = Tn - Ts; |
| 396 |
Tu = Ti + Tt; |
| 397 |
T1r = T14 + T15; |
| 398 |
T1s = T17 + T18; |
| 399 |
T1x = T1r + T1s; |
| 400 |
TU = Tc + Th; |
| 401 |
TV = Tn + Ts; |
| 402 |
TW = TU + TV; |
| 403 |
T16 = T14 - T15; |
| 404 |
T19 = T17 - T18; |
| 405 |
T1L = T16 + T19; |
| 406 |
} |
| 407 |
{
|
| 408 |
E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13; |
| 409 |
T11 = KP559016994 * (Tu - TR); |
| 410 |
TS = Tu + TR; |
| 411 |
T12 = FNMS(KP250000000, TS, T7); |
| 412 |
T1a = T16 - T19; |
| 413 |
T1h = T1d - T1g; |
| 414 |
T1i = FMA(KP951056516, T1a, KP587785252 * T1h); |
| 415 |
T1k = FNMS(KP587785252, T1a, KP951056516 * T1h); |
| 416 |
ri[WS(rs, 5)] = T7 + TS;
|
| 417 |
T1j = T12 - T11; |
| 418 |
ri[WS(rs, 7)] = T1j - T1k;
|
| 419 |
ri[WS(rs, 3)] = T1j + T1k;
|
| 420 |
T13 = T11 + T12; |
| 421 |
ri[WS(rs, 9)] = T13 - T1i;
|
| 422 |
ri[WS(rs, 1)] = T13 + T1i;
|
| 423 |
} |
| 424 |
{
|
| 425 |
E T1N, T1P, T1Q, T1U, T1W, T1S, T1T, T1V, T1R; |
| 426 |
T1N = KP559016994 * (T1L - T1M); |
| 427 |
T1P = T1L + T1M; |
| 428 |
T1Q = FNMS(KP250000000, T1P, T1O); |
| 429 |
T1S = Ti - Tt; |
| 430 |
T1T = TF - TQ; |
| 431 |
T1U = FMA(KP951056516, T1S, KP587785252 * T1T); |
| 432 |
T1W = FNMS(KP587785252, T1S, KP951056516 * T1T); |
| 433 |
ii[WS(rs, 5)] = T1P + T1O;
|
| 434 |
T1V = T1Q - T1N; |
| 435 |
ii[WS(rs, 3)] = T1V - T1W;
|
| 436 |
ii[WS(rs, 7)] = T1W + T1V;
|
| 437 |
T1R = T1N + T1Q; |
| 438 |
ii[WS(rs, 1)] = T1R - T1U;
|
| 439 |
ii[WS(rs, 9)] = T1U + T1R;
|
| 440 |
} |
| 441 |
{
|
| 442 |
E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n; |
| 443 |
T1m = KP559016994 * (TW - TZ); |
| 444 |
T10 = TW + TZ; |
| 445 |
T1l = FNMS(KP250000000, T10, TT); |
| 446 |
T1q = T1o - T1p; |
| 447 |
T1t = T1r - T1s; |
| 448 |
T1u = FNMS(KP587785252, T1t, KP951056516 * T1q); |
| 449 |
T1w = FMA(KP951056516, T1t, KP587785252 * T1q); |
| 450 |
ri[0] = TT + T10;
|
| 451 |
T1v = T1m + T1l; |
| 452 |
ri[WS(rs, 4)] = T1v - T1w;
|
| 453 |
ri[WS(rs, 6)] = T1v + T1w;
|
| 454 |
T1n = T1l - T1m; |
| 455 |
ri[WS(rs, 2)] = T1n - T1u;
|
| 456 |
ri[WS(rs, 8)] = T1n + T1u;
|
| 457 |
} |
| 458 |
{
|
| 459 |
E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; |
| 460 |
T1H = KP559016994 * (T1x - T1y); |
| 461 |
T1z = T1x + T1y; |
| 462 |
T1G = FNMS(KP250000000, T1z, T1C); |
| 463 |
T1D = TX - TY; |
| 464 |
T1E = TU - TV; |
| 465 |
T1F = FNMS(KP587785252, T1E, KP951056516 * T1D); |
| 466 |
T1J = FMA(KP951056516, T1E, KP587785252 * T1D); |
| 467 |
ii[0] = T1z + T1C;
|
| 468 |
T1K = T1H + T1G; |
| 469 |
ii[WS(rs, 4)] = T1J + T1K;
|
| 470 |
ii[WS(rs, 6)] = T1K - T1J;
|
| 471 |
T1I = T1G - T1H; |
| 472 |
ii[WS(rs, 2)] = T1F + T1I;
|
| 473 |
ii[WS(rs, 8)] = T1I - T1F;
|
| 474 |
} |
| 475 |
} |
| 476 |
} |
| 477 |
} |
| 478 |
|
| 479 |
static const tw_instr twinstr[] = { |
| 480 |
{TW_FULL, 0, 10},
|
| 481 |
{TW_NEXT, 1, 0}
|
| 482 |
}; |
| 483 |
|
| 484 |
static const ct_desc desc = { 10, "t1_10", twinstr, &GENUS, {72, 30, 30, 0}, 0, 0, 0 }; |
| 485 |
|
| 486 |
void X(codelet_t1_10) (planner *p) {
|
| 487 |
X(kdft_dit_register) (p, t1_10, &desc); |
| 488 |
} |
| 489 |
#endif
|