To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / q1_5.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (27.1 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:30 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 200 FP additions, 170 FP multiplications,
|
| 32 |
* (or, 70 additions, 40 multiplications, 130 fused multiply/add),
|
| 33 |
* 75 stack variables, 4 constants, and 100 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/q.h" |
| 36 |
|
| 37 |
static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 42 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 43 |
{
|
| 44 |
INT m; |
| 45 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
| 46 |
E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr, TV, T15, T1G; |
| 47 |
E T1q, T12, T14, T1h, T1d, T1B, T1m, T1k, T1l, T1P, T1Z, T2A, T2k, T1W, T1Y; |
| 48 |
E T2b, T27, T2v, T2g, T2e, T2f, T3Z, T3V, T4j, T44, T42, T43, T3D, T3N, T4o; |
| 49 |
E T48, T3K, T3M, T2J, T2T, T3u, T3e, T2Q, T2S, T35, T31, T3p, T3a, T38, T39; |
| 50 |
{
|
| 51 |
E T7, Tv, T4, Tu; |
| 52 |
T1 = rio[0];
|
| 53 |
{
|
| 54 |
E T5, T6, T2, T3; |
| 55 |
T5 = rio[WS(rs, 2)];
|
| 56 |
T6 = rio[WS(rs, 3)];
|
| 57 |
T7 = T5 + T6; |
| 58 |
Tv = T5 - T6; |
| 59 |
T2 = rio[WS(rs, 1)];
|
| 60 |
T3 = rio[WS(rs, 4)];
|
| 61 |
T4 = T2 + T3; |
| 62 |
Tu = T2 - T3; |
| 63 |
} |
| 64 |
Tb = T4 - T7; |
| 65 |
TM = FNMS(KP618033988, Tu, Tv); |
| 66 |
Tw = FMA(KP618033988, Tv, Tu); |
| 67 |
T8 = T4 + T7; |
| 68 |
Ta = FNMS(KP250000000, T8, T1); |
| 69 |
} |
| 70 |
{
|
| 71 |
E Ti, Tp, Tf, To; |
| 72 |
Tn = iio[0];
|
| 73 |
{
|
| 74 |
E Tg, Th, Td, Te; |
| 75 |
Tg = iio[WS(rs, 2)];
|
| 76 |
Th = iio[WS(rs, 3)];
|
| 77 |
Ti = Tg - Th; |
| 78 |
Tp = Tg + Th; |
| 79 |
Td = iio[WS(rs, 1)];
|
| 80 |
Te = iio[WS(rs, 4)];
|
| 81 |
Tf = Td - Te; |
| 82 |
To = Td + Te; |
| 83 |
} |
| 84 |
Tj = FMA(KP618033988, Ti, Tf); |
| 85 |
TH = FNMS(KP618033988, Tf, Ti); |
| 86 |
Ts = To - Tp; |
| 87 |
Tq = To + Tp; |
| 88 |
Tr = FNMS(KP250000000, Tq, Tn); |
| 89 |
} |
| 90 |
{
|
| 91 |
E T11, T1p, TY, T1o; |
| 92 |
TV = rio[WS(vs, 1)];
|
| 93 |
{
|
| 94 |
E TZ, T10, TW, TX; |
| 95 |
TZ = rio[WS(vs, 1) + WS(rs, 2)]; |
| 96 |
T10 = rio[WS(vs, 1) + WS(rs, 3)]; |
| 97 |
T11 = TZ + T10; |
| 98 |
T1p = TZ - T10; |
| 99 |
TW = rio[WS(vs, 1) + WS(rs, 1)]; |
| 100 |
TX = rio[WS(vs, 1) + WS(rs, 4)]; |
| 101 |
TY = TW + TX; |
| 102 |
T1o = TW - TX; |
| 103 |
} |
| 104 |
T15 = TY - T11; |
| 105 |
T1G = FNMS(KP618033988, T1o, T1p); |
| 106 |
T1q = FMA(KP618033988, T1p, T1o); |
| 107 |
T12 = TY + T11; |
| 108 |
T14 = FNMS(KP250000000, T12, TV); |
| 109 |
} |
| 110 |
{
|
| 111 |
E T1c, T1j, T19, T1i; |
| 112 |
T1h = iio[WS(vs, 1)];
|
| 113 |
{
|
| 114 |
E T1a, T1b, T17, T18; |
| 115 |
T1a = iio[WS(vs, 1) + WS(rs, 2)]; |
| 116 |
T1b = iio[WS(vs, 1) + WS(rs, 3)]; |
| 117 |
T1c = T1a - T1b; |
| 118 |
T1j = T1a + T1b; |
| 119 |
T17 = iio[WS(vs, 1) + WS(rs, 1)]; |
| 120 |
T18 = iio[WS(vs, 1) + WS(rs, 4)]; |
| 121 |
T19 = T17 - T18; |
| 122 |
T1i = T17 + T18; |
| 123 |
} |
| 124 |
T1d = FMA(KP618033988, T1c, T19); |
| 125 |
T1B = FNMS(KP618033988, T19, T1c); |
| 126 |
T1m = T1i - T1j; |
| 127 |
T1k = T1i + T1j; |
| 128 |
T1l = FNMS(KP250000000, T1k, T1h); |
| 129 |
} |
| 130 |
{
|
| 131 |
E T1V, T2j, T1S, T2i; |
| 132 |
T1P = rio[WS(vs, 2)];
|
| 133 |
{
|
| 134 |
E T1T, T1U, T1Q, T1R; |
| 135 |
T1T = rio[WS(vs, 2) + WS(rs, 2)]; |
| 136 |
T1U = rio[WS(vs, 2) + WS(rs, 3)]; |
| 137 |
T1V = T1T + T1U; |
| 138 |
T2j = T1T - T1U; |
| 139 |
T1Q = rio[WS(vs, 2) + WS(rs, 1)]; |
| 140 |
T1R = rio[WS(vs, 2) + WS(rs, 4)]; |
| 141 |
T1S = T1Q + T1R; |
| 142 |
T2i = T1Q - T1R; |
| 143 |
} |
| 144 |
T1Z = T1S - T1V; |
| 145 |
T2A = FNMS(KP618033988, T2i, T2j); |
| 146 |
T2k = FMA(KP618033988, T2j, T2i); |
| 147 |
T1W = T1S + T1V; |
| 148 |
T1Y = FNMS(KP250000000, T1W, T1P); |
| 149 |
} |
| 150 |
{
|
| 151 |
E T26, T2d, T23, T2c; |
| 152 |
T2b = iio[WS(vs, 2)];
|
| 153 |
{
|
| 154 |
E T24, T25, T21, T22; |
| 155 |
T24 = iio[WS(vs, 2) + WS(rs, 2)]; |
| 156 |
T25 = iio[WS(vs, 2) + WS(rs, 3)]; |
| 157 |
T26 = T24 - T25; |
| 158 |
T2d = T24 + T25; |
| 159 |
T21 = iio[WS(vs, 2) + WS(rs, 1)]; |
| 160 |
T22 = iio[WS(vs, 2) + WS(rs, 4)]; |
| 161 |
T23 = T21 - T22; |
| 162 |
T2c = T21 + T22; |
| 163 |
} |
| 164 |
T27 = FMA(KP618033988, T26, T23); |
| 165 |
T2v = FNMS(KP618033988, T23, T26); |
| 166 |
T2g = T2c - T2d; |
| 167 |
T2e = T2c + T2d; |
| 168 |
T2f = FNMS(KP250000000, T2e, T2b); |
| 169 |
} |
| 170 |
{
|
| 171 |
E T3U, T41, T3R, T40; |
| 172 |
T3Z = iio[WS(vs, 4)];
|
| 173 |
{
|
| 174 |
E T3S, T3T, T3P, T3Q; |
| 175 |
T3S = iio[WS(vs, 4) + WS(rs, 2)]; |
| 176 |
T3T = iio[WS(vs, 4) + WS(rs, 3)]; |
| 177 |
T3U = T3S - T3T; |
| 178 |
T41 = T3S + T3T; |
| 179 |
T3P = iio[WS(vs, 4) + WS(rs, 1)]; |
| 180 |
T3Q = iio[WS(vs, 4) + WS(rs, 4)]; |
| 181 |
T3R = T3P - T3Q; |
| 182 |
T40 = T3P + T3Q; |
| 183 |
} |
| 184 |
T3V = FMA(KP618033988, T3U, T3R); |
| 185 |
T4j = FNMS(KP618033988, T3R, T3U); |
| 186 |
T44 = T40 - T41; |
| 187 |
T42 = T40 + T41; |
| 188 |
T43 = FNMS(KP250000000, T42, T3Z); |
| 189 |
} |
| 190 |
{
|
| 191 |
E T3J, T47, T3G, T46; |
| 192 |
T3D = rio[WS(vs, 4)];
|
| 193 |
{
|
| 194 |
E T3H, T3I, T3E, T3F; |
| 195 |
T3H = rio[WS(vs, 4) + WS(rs, 2)]; |
| 196 |
T3I = rio[WS(vs, 4) + WS(rs, 3)]; |
| 197 |
T3J = T3H + T3I; |
| 198 |
T47 = T3H - T3I; |
| 199 |
T3E = rio[WS(vs, 4) + WS(rs, 1)]; |
| 200 |
T3F = rio[WS(vs, 4) + WS(rs, 4)]; |
| 201 |
T3G = T3E + T3F; |
| 202 |
T46 = T3E - T3F; |
| 203 |
} |
| 204 |
T3N = T3G - T3J; |
| 205 |
T4o = FNMS(KP618033988, T46, T47); |
| 206 |
T48 = FMA(KP618033988, T47, T46); |
| 207 |
T3K = T3G + T3J; |
| 208 |
T3M = FNMS(KP250000000, T3K, T3D); |
| 209 |
} |
| 210 |
{
|
| 211 |
E T2P, T3d, T2M, T3c; |
| 212 |
T2J = rio[WS(vs, 3)];
|
| 213 |
{
|
| 214 |
E T2N, T2O, T2K, T2L; |
| 215 |
T2N = rio[WS(vs, 3) + WS(rs, 2)]; |
| 216 |
T2O = rio[WS(vs, 3) + WS(rs, 3)]; |
| 217 |
T2P = T2N + T2O; |
| 218 |
T3d = T2N - T2O; |
| 219 |
T2K = rio[WS(vs, 3) + WS(rs, 1)]; |
| 220 |
T2L = rio[WS(vs, 3) + WS(rs, 4)]; |
| 221 |
T2M = T2K + T2L; |
| 222 |
T3c = T2K - T2L; |
| 223 |
} |
| 224 |
T2T = T2M - T2P; |
| 225 |
T3u = FNMS(KP618033988, T3c, T3d); |
| 226 |
T3e = FMA(KP618033988, T3d, T3c); |
| 227 |
T2Q = T2M + T2P; |
| 228 |
T2S = FNMS(KP250000000, T2Q, T2J); |
| 229 |
} |
| 230 |
{
|
| 231 |
E T30, T37, T2X, T36; |
| 232 |
T35 = iio[WS(vs, 3)];
|
| 233 |
{
|
| 234 |
E T2Y, T2Z, T2V, T2W; |
| 235 |
T2Y = iio[WS(vs, 3) + WS(rs, 2)]; |
| 236 |
T2Z = iio[WS(vs, 3) + WS(rs, 3)]; |
| 237 |
T30 = T2Y - T2Z; |
| 238 |
T37 = T2Y + T2Z; |
| 239 |
T2V = iio[WS(vs, 3) + WS(rs, 1)]; |
| 240 |
T2W = iio[WS(vs, 3) + WS(rs, 4)]; |
| 241 |
T2X = T2V - T2W; |
| 242 |
T36 = T2V + T2W; |
| 243 |
} |
| 244 |
T31 = FMA(KP618033988, T30, T2X); |
| 245 |
T3p = FNMS(KP618033988, T2X, T30); |
| 246 |
T3a = T36 - T37; |
| 247 |
T38 = T36 + T37; |
| 248 |
T39 = FNMS(KP250000000, T38, T35); |
| 249 |
} |
| 250 |
rio[0] = T1 + T8;
|
| 251 |
iio[0] = Tn + Tq;
|
| 252 |
rio[WS(rs, 1)] = TV + T12;
|
| 253 |
iio[WS(rs, 1)] = T1h + T1k;
|
| 254 |
rio[WS(rs, 2)] = T1P + T1W;
|
| 255 |
iio[WS(rs, 2)] = T2b + T2e;
|
| 256 |
iio[WS(rs, 4)] = T3Z + T42;
|
| 257 |
rio[WS(rs, 4)] = T3D + T3K;
|
| 258 |
rio[WS(rs, 3)] = T2J + T2Q;
|
| 259 |
iio[WS(rs, 3)] = T35 + T38;
|
| 260 |
{
|
| 261 |
E Tk, TA, Tx, TD, Tc, Tt; |
| 262 |
Tc = FMA(KP559016994, Tb, Ta); |
| 263 |
Tk = FMA(KP951056516, Tj, Tc); |
| 264 |
TA = FNMS(KP951056516, Tj, Tc); |
| 265 |
Tt = FMA(KP559016994, Ts, Tr); |
| 266 |
Tx = FNMS(KP951056516, Tw, Tt); |
| 267 |
TD = FMA(KP951056516, Tw, Tt); |
| 268 |
{
|
| 269 |
E Tl, Ty, T9, Tm; |
| 270 |
T9 = W[0];
|
| 271 |
Tl = T9 * Tk; |
| 272 |
Ty = T9 * Tx; |
| 273 |
Tm = W[1];
|
| 274 |
rio[WS(vs, 1)] = FMA(Tm, Tx, Tl);
|
| 275 |
iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty);
|
| 276 |
} |
| 277 |
{
|
| 278 |
E TB, TE, Tz, TC; |
| 279 |
Tz = W[6];
|
| 280 |
TB = Tz * TA; |
| 281 |
TE = Tz * TD; |
| 282 |
TC = W[7];
|
| 283 |
rio[WS(vs, 4)] = FMA(TC, TD, TB);
|
| 284 |
iio[WS(vs, 4)] = FNMS(TC, TA, TE);
|
| 285 |
} |
| 286 |
} |
| 287 |
{
|
| 288 |
E TI, TQ, TN, TT, TG, TL; |
| 289 |
TG = FNMS(KP559016994, Tb, Ta); |
| 290 |
TI = FNMS(KP951056516, TH, TG); |
| 291 |
TQ = FMA(KP951056516, TH, TG); |
| 292 |
TL = FNMS(KP559016994, Ts, Tr); |
| 293 |
TN = FMA(KP951056516, TM, TL); |
| 294 |
TT = FNMS(KP951056516, TM, TL); |
| 295 |
{
|
| 296 |
E TJ, TO, TF, TK; |
| 297 |
TF = W[2];
|
| 298 |
TJ = TF * TI; |
| 299 |
TO = TF * TN; |
| 300 |
TK = W[3];
|
| 301 |
rio[WS(vs, 2)] = FMA(TK, TN, TJ);
|
| 302 |
iio[WS(vs, 2)] = FNMS(TK, TI, TO);
|
| 303 |
} |
| 304 |
{
|
| 305 |
E TR, TU, TP, TS; |
| 306 |
TP = W[4];
|
| 307 |
TR = TP * TQ; |
| 308 |
TU = TP * TT; |
| 309 |
TS = W[5];
|
| 310 |
rio[WS(vs, 3)] = FMA(TS, TT, TR);
|
| 311 |
iio[WS(vs, 3)] = FNMS(TS, TQ, TU);
|
| 312 |
} |
| 313 |
} |
| 314 |
{
|
| 315 |
E T2w, T2E, T2B, T2H, T2u, T2z; |
| 316 |
T2u = FNMS(KP559016994, T1Z, T1Y); |
| 317 |
T2w = FNMS(KP951056516, T2v, T2u); |
| 318 |
T2E = FMA(KP951056516, T2v, T2u); |
| 319 |
T2z = FNMS(KP559016994, T2g, T2f); |
| 320 |
T2B = FMA(KP951056516, T2A, T2z); |
| 321 |
T2H = FNMS(KP951056516, T2A, T2z); |
| 322 |
{
|
| 323 |
E T2x, T2C, T2t, T2y; |
| 324 |
T2t = W[2];
|
| 325 |
T2x = T2t * T2w; |
| 326 |
T2C = T2t * T2B; |
| 327 |
T2y = W[3];
|
| 328 |
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x); |
| 329 |
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C); |
| 330 |
} |
| 331 |
{
|
| 332 |
E T2F, T2I, T2D, T2G; |
| 333 |
T2D = W[4];
|
| 334 |
T2F = T2D * T2E; |
| 335 |
T2I = T2D * T2H; |
| 336 |
T2G = W[5];
|
| 337 |
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F); |
| 338 |
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I); |
| 339 |
} |
| 340 |
} |
| 341 |
{
|
| 342 |
E T4k, T4s, T4p, T4v, T4i, T4n; |
| 343 |
T4i = FNMS(KP559016994, T3N, T3M); |
| 344 |
T4k = FNMS(KP951056516, T4j, T4i); |
| 345 |
T4s = FMA(KP951056516, T4j, T4i); |
| 346 |
T4n = FNMS(KP559016994, T44, T43); |
| 347 |
T4p = FMA(KP951056516, T4o, T4n); |
| 348 |
T4v = FNMS(KP951056516, T4o, T4n); |
| 349 |
{
|
| 350 |
E T4l, T4q, T4h, T4m; |
| 351 |
T4h = W[2];
|
| 352 |
T4l = T4h * T4k; |
| 353 |
T4q = T4h * T4p; |
| 354 |
T4m = W[3];
|
| 355 |
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l); |
| 356 |
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q); |
| 357 |
} |
| 358 |
{
|
| 359 |
E T4t, T4w, T4r, T4u; |
| 360 |
T4r = W[4];
|
| 361 |
T4t = T4r * T4s; |
| 362 |
T4w = T4r * T4v; |
| 363 |
T4u = W[5];
|
| 364 |
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t); |
| 365 |
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w); |
| 366 |
} |
| 367 |
} |
| 368 |
{
|
| 369 |
E T28, T2o, T2l, T2r, T20, T2h; |
| 370 |
T20 = FMA(KP559016994, T1Z, T1Y); |
| 371 |
T28 = FMA(KP951056516, T27, T20); |
| 372 |
T2o = FNMS(KP951056516, T27, T20); |
| 373 |
T2h = FMA(KP559016994, T2g, T2f); |
| 374 |
T2l = FNMS(KP951056516, T2k, T2h); |
| 375 |
T2r = FMA(KP951056516, T2k, T2h); |
| 376 |
{
|
| 377 |
E T29, T2m, T1X, T2a; |
| 378 |
T1X = W[0];
|
| 379 |
T29 = T1X * T28; |
| 380 |
T2m = T1X * T2l; |
| 381 |
T2a = W[1];
|
| 382 |
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29); |
| 383 |
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m); |
| 384 |
} |
| 385 |
{
|
| 386 |
E T2p, T2s, T2n, T2q; |
| 387 |
T2n = W[6];
|
| 388 |
T2p = T2n * T2o; |
| 389 |
T2s = T2n * T2r; |
| 390 |
T2q = W[7];
|
| 391 |
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p); |
| 392 |
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s); |
| 393 |
} |
| 394 |
} |
| 395 |
{
|
| 396 |
E T32, T3i, T3f, T3l, T2U, T3b; |
| 397 |
T2U = FMA(KP559016994, T2T, T2S); |
| 398 |
T32 = FMA(KP951056516, T31, T2U); |
| 399 |
T3i = FNMS(KP951056516, T31, T2U); |
| 400 |
T3b = FMA(KP559016994, T3a, T39); |
| 401 |
T3f = FNMS(KP951056516, T3e, T3b); |
| 402 |
T3l = FMA(KP951056516, T3e, T3b); |
| 403 |
{
|
| 404 |
E T33, T3g, T2R, T34; |
| 405 |
T2R = W[0];
|
| 406 |
T33 = T2R * T32; |
| 407 |
T3g = T2R * T3f; |
| 408 |
T34 = W[1];
|
| 409 |
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33); |
| 410 |
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g); |
| 411 |
} |
| 412 |
{
|
| 413 |
E T3j, T3m, T3h, T3k; |
| 414 |
T3h = W[6];
|
| 415 |
T3j = T3h * T3i; |
| 416 |
T3m = T3h * T3l; |
| 417 |
T3k = W[7];
|
| 418 |
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j); |
| 419 |
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m); |
| 420 |
} |
| 421 |
} |
| 422 |
{
|
| 423 |
E T3q, T3y, T3v, T3B, T3o, T3t; |
| 424 |
T3o = FNMS(KP559016994, T2T, T2S); |
| 425 |
T3q = FNMS(KP951056516, T3p, T3o); |
| 426 |
T3y = FMA(KP951056516, T3p, T3o); |
| 427 |
T3t = FNMS(KP559016994, T3a, T39); |
| 428 |
T3v = FMA(KP951056516, T3u, T3t); |
| 429 |
T3B = FNMS(KP951056516, T3u, T3t); |
| 430 |
{
|
| 431 |
E T3r, T3w, T3n, T3s; |
| 432 |
T3n = W[2];
|
| 433 |
T3r = T3n * T3q; |
| 434 |
T3w = T3n * T3v; |
| 435 |
T3s = W[3];
|
| 436 |
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r); |
| 437 |
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w); |
| 438 |
} |
| 439 |
{
|
| 440 |
E T3z, T3C, T3x, T3A; |
| 441 |
T3x = W[4];
|
| 442 |
T3z = T3x * T3y; |
| 443 |
T3C = T3x * T3B; |
| 444 |
T3A = W[5];
|
| 445 |
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z); |
| 446 |
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C); |
| 447 |
} |
| 448 |
} |
| 449 |
{
|
| 450 |
E T3W, T4c, T49, T4f, T3O, T45; |
| 451 |
T3O = FMA(KP559016994, T3N, T3M); |
| 452 |
T3W = FMA(KP951056516, T3V, T3O); |
| 453 |
T4c = FNMS(KP951056516, T3V, T3O); |
| 454 |
T45 = FMA(KP559016994, T44, T43); |
| 455 |
T49 = FNMS(KP951056516, T48, T45); |
| 456 |
T4f = FMA(KP951056516, T48, T45); |
| 457 |
{
|
| 458 |
E T3X, T4a, T3L, T3Y; |
| 459 |
T3L = W[0];
|
| 460 |
T3X = T3L * T3W; |
| 461 |
T4a = T3L * T49; |
| 462 |
T3Y = W[1];
|
| 463 |
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X); |
| 464 |
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a); |
| 465 |
} |
| 466 |
{
|
| 467 |
E T4d, T4g, T4b, T4e; |
| 468 |
T4b = W[6];
|
| 469 |
T4d = T4b * T4c; |
| 470 |
T4g = T4b * T4f; |
| 471 |
T4e = W[7];
|
| 472 |
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d); |
| 473 |
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g); |
| 474 |
} |
| 475 |
} |
| 476 |
{
|
| 477 |
E T1C, T1K, T1H, T1N, T1A, T1F; |
| 478 |
T1A = FNMS(KP559016994, T15, T14); |
| 479 |
T1C = FNMS(KP951056516, T1B, T1A); |
| 480 |
T1K = FMA(KP951056516, T1B, T1A); |
| 481 |
T1F = FNMS(KP559016994, T1m, T1l); |
| 482 |
T1H = FMA(KP951056516, T1G, T1F); |
| 483 |
T1N = FNMS(KP951056516, T1G, T1F); |
| 484 |
{
|
| 485 |
E T1D, T1I, T1z, T1E; |
| 486 |
T1z = W[2];
|
| 487 |
T1D = T1z * T1C; |
| 488 |
T1I = T1z * T1H; |
| 489 |
T1E = W[3];
|
| 490 |
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D); |
| 491 |
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I); |
| 492 |
} |
| 493 |
{
|
| 494 |
E T1L, T1O, T1J, T1M; |
| 495 |
T1J = W[4];
|
| 496 |
T1L = T1J * T1K; |
| 497 |
T1O = T1J * T1N; |
| 498 |
T1M = W[5];
|
| 499 |
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); |
| 500 |
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); |
| 501 |
} |
| 502 |
} |
| 503 |
{
|
| 504 |
E T1e, T1u, T1r, T1x, T16, T1n; |
| 505 |
T16 = FMA(KP559016994, T15, T14); |
| 506 |
T1e = FMA(KP951056516, T1d, T16); |
| 507 |
T1u = FNMS(KP951056516, T1d, T16); |
| 508 |
T1n = FMA(KP559016994, T1m, T1l); |
| 509 |
T1r = FNMS(KP951056516, T1q, T1n); |
| 510 |
T1x = FMA(KP951056516, T1q, T1n); |
| 511 |
{
|
| 512 |
E T1f, T1s, T13, T1g; |
| 513 |
T13 = W[0];
|
| 514 |
T1f = T13 * T1e; |
| 515 |
T1s = T13 * T1r; |
| 516 |
T1g = W[1];
|
| 517 |
rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f); |
| 518 |
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s); |
| 519 |
} |
| 520 |
{
|
| 521 |
E T1v, T1y, T1t, T1w; |
| 522 |
T1t = W[6];
|
| 523 |
T1v = T1t * T1u; |
| 524 |
T1y = T1t * T1x; |
| 525 |
T1w = W[7];
|
| 526 |
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v); |
| 527 |
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y); |
| 528 |
} |
| 529 |
} |
| 530 |
} |
| 531 |
} |
| 532 |
} |
| 533 |
|
| 534 |
static const tw_instr twinstr[] = { |
| 535 |
{TW_FULL, 0, 5},
|
| 536 |
{TW_NEXT, 1, 0}
|
| 537 |
}; |
| 538 |
|
| 539 |
static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {70, 40, 130, 0}, 0, 0, 0 }; |
| 540 |
|
| 541 |
void X(codelet_q1_5) (planner *p) {
|
| 542 |
X(kdft_difsq_register) (p, q1_5, &desc); |
| 543 |
} |
| 544 |
#else
|
| 545 |
|
| 546 |
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */
|
| 547 |
|
| 548 |
/*
|
| 549 |
* This function contains 200 FP additions, 140 FP multiplications,
|
| 550 |
* (or, 130 additions, 70 multiplications, 70 fused multiply/add),
|
| 551 |
* 75 stack variables, 4 constants, and 100 memory accesses
|
| 552 |
*/
|
| 553 |
#include "dft/scalar/q.h" |
| 554 |
|
| 555 |
static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
| 556 |
{
|
| 557 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 558 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 559 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 560 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 561 |
{
|
| 562 |
INT m; |
| 563 |
for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
| 564 |
E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s; |
| 565 |
E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J; |
| 566 |
E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M; |
| 567 |
E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L; |
| 568 |
{
|
| 569 |
E T7, Tu, T4, Tt; |
| 570 |
T1 = rio[0];
|
| 571 |
{
|
| 572 |
E T5, T6, T2, T3; |
| 573 |
T5 = rio[WS(rs, 2)];
|
| 574 |
T6 = rio[WS(rs, 3)];
|
| 575 |
T7 = T5 + T6; |
| 576 |
Tu = T5 - T6; |
| 577 |
T2 = rio[WS(rs, 1)];
|
| 578 |
T3 = rio[WS(rs, 4)];
|
| 579 |
T4 = T2 + T3; |
| 580 |
Tt = T2 - T3; |
| 581 |
} |
| 582 |
Ta = KP559016994 * (T4 - T7); |
| 583 |
TG = FNMS(KP587785252, Tt, KP951056516 * Tu); |
| 584 |
Tv = FMA(KP951056516, Tt, KP587785252 * Tu); |
| 585 |
T8 = T4 + T7; |
| 586 |
Tb = FNMS(KP250000000, T8, T1); |
| 587 |
} |
| 588 |
{
|
| 589 |
E Ti, Tn, Tf, Tm; |
| 590 |
Tp = iio[0];
|
| 591 |
{
|
| 592 |
E Tg, Th, Td, Te; |
| 593 |
Tg = iio[WS(rs, 2)];
|
| 594 |
Th = iio[WS(rs, 3)];
|
| 595 |
Ti = Tg - Th; |
| 596 |
Tn = Tg + Th; |
| 597 |
Td = iio[WS(rs, 1)];
|
| 598 |
Te = iio[WS(rs, 4)];
|
| 599 |
Tf = Td - Te; |
| 600 |
Tm = Td + Te; |
| 601 |
} |
| 602 |
Tj = FMA(KP951056516, Tf, KP587785252 * Ti); |
| 603 |
TD = FNMS(KP587785252, Tf, KP951056516 * Ti); |
| 604 |
To = KP559016994 * (Tm - Tn); |
| 605 |
Tq = Tm + Tn; |
| 606 |
Tr = FNMS(KP250000000, Tq, Tp); |
| 607 |
} |
| 608 |
{
|
| 609 |
E TT, T1g, TQ, T1f; |
| 610 |
TN = rio[WS(vs, 1)];
|
| 611 |
{
|
| 612 |
E TR, TS, TO, TP; |
| 613 |
TR = rio[WS(vs, 1) + WS(rs, 2)]; |
| 614 |
TS = rio[WS(vs, 1) + WS(rs, 3)]; |
| 615 |
TT = TR + TS; |
| 616 |
T1g = TR - TS; |
| 617 |
TO = rio[WS(vs, 1) + WS(rs, 1)]; |
| 618 |
TP = rio[WS(vs, 1) + WS(rs, 4)]; |
| 619 |
TQ = TO + TP; |
| 620 |
T1f = TO - TP; |
| 621 |
} |
| 622 |
TW = KP559016994 * (TQ - TT); |
| 623 |
T1s = FNMS(KP587785252, T1f, KP951056516 * T1g); |
| 624 |
T1h = FMA(KP951056516, T1f, KP587785252 * T1g); |
| 625 |
TU = TQ + TT; |
| 626 |
TX = FNMS(KP250000000, TU, TN); |
| 627 |
} |
| 628 |
{
|
| 629 |
E T14, T19, T11, T18; |
| 630 |
T1b = iio[WS(vs, 1)];
|
| 631 |
{
|
| 632 |
E T12, T13, TZ, T10; |
| 633 |
T12 = iio[WS(vs, 1) + WS(rs, 2)]; |
| 634 |
T13 = iio[WS(vs, 1) + WS(rs, 3)]; |
| 635 |
T14 = T12 - T13; |
| 636 |
T19 = T12 + T13; |
| 637 |
TZ = iio[WS(vs, 1) + WS(rs, 1)]; |
| 638 |
T10 = iio[WS(vs, 1) + WS(rs, 4)]; |
| 639 |
T11 = TZ - T10; |
| 640 |
T18 = TZ + T10; |
| 641 |
} |
| 642 |
T15 = FMA(KP951056516, T11, KP587785252 * T14); |
| 643 |
T1p = FNMS(KP587785252, T11, KP951056516 * T14); |
| 644 |
T1a = KP559016994 * (T18 - T19); |
| 645 |
T1c = T18 + T19; |
| 646 |
T1d = FNMS(KP250000000, T1c, T1b); |
| 647 |
} |
| 648 |
{
|
| 649 |
E T1F, T22, T1C, T21; |
| 650 |
T1z = rio[WS(vs, 2)];
|
| 651 |
{
|
| 652 |
E T1D, T1E, T1A, T1B; |
| 653 |
T1D = rio[WS(vs, 2) + WS(rs, 2)]; |
| 654 |
T1E = rio[WS(vs, 2) + WS(rs, 3)]; |
| 655 |
T1F = T1D + T1E; |
| 656 |
T22 = T1D - T1E; |
| 657 |
T1A = rio[WS(vs, 2) + WS(rs, 1)]; |
| 658 |
T1B = rio[WS(vs, 2) + WS(rs, 4)]; |
| 659 |
T1C = T1A + T1B; |
| 660 |
T21 = T1A - T1B; |
| 661 |
} |
| 662 |
T1I = KP559016994 * (T1C - T1F); |
| 663 |
T2e = FNMS(KP587785252, T21, KP951056516 * T22); |
| 664 |
T23 = FMA(KP951056516, T21, KP587785252 * T22); |
| 665 |
T1G = T1C + T1F; |
| 666 |
T1J = FNMS(KP250000000, T1G, T1z); |
| 667 |
} |
| 668 |
{
|
| 669 |
E T1Q, T1V, T1N, T1U; |
| 670 |
T1X = iio[WS(vs, 2)];
|
| 671 |
{
|
| 672 |
E T1O, T1P, T1L, T1M; |
| 673 |
T1O = iio[WS(vs, 2) + WS(rs, 2)]; |
| 674 |
T1P = iio[WS(vs, 2) + WS(rs, 3)]; |
| 675 |
T1Q = T1O - T1P; |
| 676 |
T1V = T1O + T1P; |
| 677 |
T1L = iio[WS(vs, 2) + WS(rs, 1)]; |
| 678 |
T1M = iio[WS(vs, 2) + WS(rs, 4)]; |
| 679 |
T1N = T1L - T1M; |
| 680 |
T1U = T1L + T1M; |
| 681 |
} |
| 682 |
T1R = FMA(KP951056516, T1N, KP587785252 * T1Q); |
| 683 |
T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q); |
| 684 |
T1W = KP559016994 * (T1U - T1V); |
| 685 |
T1Y = T1U + T1V; |
| 686 |
T1Z = FNMS(KP250000000, T1Y, T1X); |
| 687 |
} |
| 688 |
{
|
| 689 |
E T3o, T3t, T3l, T3s; |
| 690 |
T3v = iio[WS(vs, 4)];
|
| 691 |
{
|
| 692 |
E T3m, T3n, T3j, T3k; |
| 693 |
T3m = iio[WS(vs, 4) + WS(rs, 2)]; |
| 694 |
T3n = iio[WS(vs, 4) + WS(rs, 3)]; |
| 695 |
T3o = T3m - T3n; |
| 696 |
T3t = T3m + T3n; |
| 697 |
T3j = iio[WS(vs, 4) + WS(rs, 1)]; |
| 698 |
T3k = iio[WS(vs, 4) + WS(rs, 4)]; |
| 699 |
T3l = T3j - T3k; |
| 700 |
T3s = T3j + T3k; |
| 701 |
} |
| 702 |
T3p = FMA(KP951056516, T3l, KP587785252 * T3o); |
| 703 |
T3J = FNMS(KP587785252, T3l, KP951056516 * T3o); |
| 704 |
T3u = KP559016994 * (T3s - T3t); |
| 705 |
T3w = T3s + T3t; |
| 706 |
T3x = FNMS(KP250000000, T3w, T3v); |
| 707 |
} |
| 708 |
{
|
| 709 |
E T3d, T3A, T3a, T3z; |
| 710 |
T37 = rio[WS(vs, 4)];
|
| 711 |
{
|
| 712 |
E T3b, T3c, T38, T39; |
| 713 |
T3b = rio[WS(vs, 4) + WS(rs, 2)]; |
| 714 |
T3c = rio[WS(vs, 4) + WS(rs, 3)]; |
| 715 |
T3d = T3b + T3c; |
| 716 |
T3A = T3b - T3c; |
| 717 |
T38 = rio[WS(vs, 4) + WS(rs, 1)]; |
| 718 |
T39 = rio[WS(vs, 4) + WS(rs, 4)]; |
| 719 |
T3a = T38 + T39; |
| 720 |
T3z = T38 - T39; |
| 721 |
} |
| 722 |
T3g = KP559016994 * (T3a - T3d); |
| 723 |
T3M = FNMS(KP587785252, T3z, KP951056516 * T3A); |
| 724 |
T3B = FMA(KP951056516, T3z, KP587785252 * T3A); |
| 725 |
T3e = T3a + T3d; |
| 726 |
T3h = FNMS(KP250000000, T3e, T37); |
| 727 |
} |
| 728 |
{
|
| 729 |
E T2r, T2O, T2o, T2N; |
| 730 |
T2l = rio[WS(vs, 3)];
|
| 731 |
{
|
| 732 |
E T2p, T2q, T2m, T2n; |
| 733 |
T2p = rio[WS(vs, 3) + WS(rs, 2)]; |
| 734 |
T2q = rio[WS(vs, 3) + WS(rs, 3)]; |
| 735 |
T2r = T2p + T2q; |
| 736 |
T2O = T2p - T2q; |
| 737 |
T2m = rio[WS(vs, 3) + WS(rs, 1)]; |
| 738 |
T2n = rio[WS(vs, 3) + WS(rs, 4)]; |
| 739 |
T2o = T2m + T2n; |
| 740 |
T2N = T2m - T2n; |
| 741 |
} |
| 742 |
T2u = KP559016994 * (T2o - T2r); |
| 743 |
T30 = FNMS(KP587785252, T2N, KP951056516 * T2O); |
| 744 |
T2P = FMA(KP951056516, T2N, KP587785252 * T2O); |
| 745 |
T2s = T2o + T2r; |
| 746 |
T2v = FNMS(KP250000000, T2s, T2l); |
| 747 |
} |
| 748 |
{
|
| 749 |
E T2C, T2H, T2z, T2G; |
| 750 |
T2J = iio[WS(vs, 3)];
|
| 751 |
{
|
| 752 |
E T2A, T2B, T2x, T2y; |
| 753 |
T2A = iio[WS(vs, 3) + WS(rs, 2)]; |
| 754 |
T2B = iio[WS(vs, 3) + WS(rs, 3)]; |
| 755 |
T2C = T2A - T2B; |
| 756 |
T2H = T2A + T2B; |
| 757 |
T2x = iio[WS(vs, 3) + WS(rs, 1)]; |
| 758 |
T2y = iio[WS(vs, 3) + WS(rs, 4)]; |
| 759 |
T2z = T2x - T2y; |
| 760 |
T2G = T2x + T2y; |
| 761 |
} |
| 762 |
T2D = FMA(KP951056516, T2z, KP587785252 * T2C); |
| 763 |
T2X = FNMS(KP587785252, T2z, KP951056516 * T2C); |
| 764 |
T2I = KP559016994 * (T2G - T2H); |
| 765 |
T2K = T2G + T2H; |
| 766 |
T2L = FNMS(KP250000000, T2K, T2J); |
| 767 |
} |
| 768 |
rio[0] = T1 + T8;
|
| 769 |
iio[0] = Tp + Tq;
|
| 770 |
rio[WS(rs, 1)] = TN + TU;
|
| 771 |
iio[WS(rs, 1)] = T1b + T1c;
|
| 772 |
rio[WS(rs, 2)] = T1z + T1G;
|
| 773 |
iio[WS(rs, 2)] = T1X + T1Y;
|
| 774 |
iio[WS(rs, 4)] = T3v + T3w;
|
| 775 |
rio[WS(rs, 4)] = T37 + T3e;
|
| 776 |
rio[WS(rs, 3)] = T2l + T2s;
|
| 777 |
iio[WS(rs, 3)] = T2J + T2K;
|
| 778 |
{
|
| 779 |
E Tk, Ty, Tw, TA, Tc, Ts; |
| 780 |
Tc = Ta + Tb; |
| 781 |
Tk = Tc + Tj; |
| 782 |
Ty = Tc - Tj; |
| 783 |
Ts = To + Tr; |
| 784 |
Tw = Ts - Tv; |
| 785 |
TA = Tv + Ts; |
| 786 |
{
|
| 787 |
E T9, Tl, Tx, Tz; |
| 788 |
T9 = W[0];
|
| 789 |
Tl = W[1];
|
| 790 |
rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw);
|
| 791 |
iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw);
|
| 792 |
Tx = W[6];
|
| 793 |
Tz = W[7];
|
| 794 |
rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA);
|
| 795 |
iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA);
|
| 796 |
} |
| 797 |
} |
| 798 |
{
|
| 799 |
E TE, TK, TI, TM, TC, TH; |
| 800 |
TC = Tb - Ta; |
| 801 |
TE = TC - TD; |
| 802 |
TK = TC + TD; |
| 803 |
TH = Tr - To; |
| 804 |
TI = TG + TH; |
| 805 |
TM = TH - TG; |
| 806 |
{
|
| 807 |
E TB, TF, TJ, TL; |
| 808 |
TB = W[2];
|
| 809 |
TF = W[3];
|
| 810 |
rio[WS(vs, 2)] = FMA(TB, TE, TF * TI);
|
| 811 |
iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI);
|
| 812 |
TJ = W[4];
|
| 813 |
TL = W[5];
|
| 814 |
rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM);
|
| 815 |
iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM);
|
| 816 |
} |
| 817 |
} |
| 818 |
{
|
| 819 |
E T2c, T2i, T2g, T2k, T2a, T2f; |
| 820 |
T2a = T1J - T1I; |
| 821 |
T2c = T2a - T2b; |
| 822 |
T2i = T2a + T2b; |
| 823 |
T2f = T1Z - T1W; |
| 824 |
T2g = T2e + T2f; |
| 825 |
T2k = T2f - T2e; |
| 826 |
{
|
| 827 |
E T29, T2d, T2h, T2j; |
| 828 |
T29 = W[2];
|
| 829 |
T2d = W[3];
|
| 830 |
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g); |
| 831 |
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g); |
| 832 |
T2h = W[4];
|
| 833 |
T2j = W[5];
|
| 834 |
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k); |
| 835 |
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k); |
| 836 |
} |
| 837 |
} |
| 838 |
{
|
| 839 |
E T3K, T3Q, T3O, T3S, T3I, T3N; |
| 840 |
T3I = T3h - T3g; |
| 841 |
T3K = T3I - T3J; |
| 842 |
T3Q = T3I + T3J; |
| 843 |
T3N = T3x - T3u; |
| 844 |
T3O = T3M + T3N; |
| 845 |
T3S = T3N - T3M; |
| 846 |
{
|
| 847 |
E T3H, T3L, T3P, T3R; |
| 848 |
T3H = W[2];
|
| 849 |
T3L = W[3];
|
| 850 |
rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O); |
| 851 |
iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O); |
| 852 |
T3P = W[4];
|
| 853 |
T3R = W[5];
|
| 854 |
rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S); |
| 855 |
iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S); |
| 856 |
} |
| 857 |
} |
| 858 |
{
|
| 859 |
E T1S, T26, T24, T28, T1K, T20; |
| 860 |
T1K = T1I + T1J; |
| 861 |
T1S = T1K + T1R; |
| 862 |
T26 = T1K - T1R; |
| 863 |
T20 = T1W + T1Z; |
| 864 |
T24 = T20 - T23; |
| 865 |
T28 = T23 + T20; |
| 866 |
{
|
| 867 |
E T1H, T1T, T25, T27; |
| 868 |
T1H = W[0];
|
| 869 |
T1T = W[1];
|
| 870 |
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24); |
| 871 |
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24); |
| 872 |
T25 = W[6];
|
| 873 |
T27 = W[7];
|
| 874 |
rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28); |
| 875 |
iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28); |
| 876 |
} |
| 877 |
} |
| 878 |
{
|
| 879 |
E T2E, T2S, T2Q, T2U, T2w, T2M; |
| 880 |
T2w = T2u + T2v; |
| 881 |
T2E = T2w + T2D; |
| 882 |
T2S = T2w - T2D; |
| 883 |
T2M = T2I + T2L; |
| 884 |
T2Q = T2M - T2P; |
| 885 |
T2U = T2P + T2M; |
| 886 |
{
|
| 887 |
E T2t, T2F, T2R, T2T; |
| 888 |
T2t = W[0];
|
| 889 |
T2F = W[1];
|
| 890 |
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q); |
| 891 |
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q); |
| 892 |
T2R = W[6];
|
| 893 |
T2T = W[7];
|
| 894 |
rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U); |
| 895 |
iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U); |
| 896 |
} |
| 897 |
} |
| 898 |
{
|
| 899 |
E T2Y, T34, T32, T36, T2W, T31; |
| 900 |
T2W = T2v - T2u; |
| 901 |
T2Y = T2W - T2X; |
| 902 |
T34 = T2W + T2X; |
| 903 |
T31 = T2L - T2I; |
| 904 |
T32 = T30 + T31; |
| 905 |
T36 = T31 - T30; |
| 906 |
{
|
| 907 |
E T2V, T2Z, T33, T35; |
| 908 |
T2V = W[2];
|
| 909 |
T2Z = W[3];
|
| 910 |
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32); |
| 911 |
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32); |
| 912 |
T33 = W[4];
|
| 913 |
T35 = W[5];
|
| 914 |
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36); |
| 915 |
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36); |
| 916 |
} |
| 917 |
} |
| 918 |
{
|
| 919 |
E T3q, T3E, T3C, T3G, T3i, T3y; |
| 920 |
T3i = T3g + T3h; |
| 921 |
T3q = T3i + T3p; |
| 922 |
T3E = T3i - T3p; |
| 923 |
T3y = T3u + T3x; |
| 924 |
T3C = T3y - T3B; |
| 925 |
T3G = T3B + T3y; |
| 926 |
{
|
| 927 |
E T3f, T3r, T3D, T3F; |
| 928 |
T3f = W[0];
|
| 929 |
T3r = W[1];
|
| 930 |
rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C); |
| 931 |
iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C); |
| 932 |
T3D = W[6];
|
| 933 |
T3F = W[7];
|
| 934 |
rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G); |
| 935 |
iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G); |
| 936 |
} |
| 937 |
} |
| 938 |
{
|
| 939 |
E T1q, T1w, T1u, T1y, T1o, T1t; |
| 940 |
T1o = TX - TW; |
| 941 |
T1q = T1o - T1p; |
| 942 |
T1w = T1o + T1p; |
| 943 |
T1t = T1d - T1a; |
| 944 |
T1u = T1s + T1t; |
| 945 |
T1y = T1t - T1s; |
| 946 |
{
|
| 947 |
E T1n, T1r, T1v, T1x; |
| 948 |
T1n = W[2];
|
| 949 |
T1r = W[3];
|
| 950 |
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u); |
| 951 |
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u); |
| 952 |
T1v = W[4];
|
| 953 |
T1x = W[5];
|
| 954 |
rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); |
| 955 |
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); |
| 956 |
} |
| 957 |
} |
| 958 |
{
|
| 959 |
E T16, T1k, T1i, T1m, TY, T1e; |
| 960 |
TY = TW + TX; |
| 961 |
T16 = TY + T15; |
| 962 |
T1k = TY - T15; |
| 963 |
T1e = T1a + T1d; |
| 964 |
T1i = T1e - T1h; |
| 965 |
T1m = T1h + T1e; |
| 966 |
{
|
| 967 |
E TV, T17, T1j, T1l; |
| 968 |
TV = W[0];
|
| 969 |
T17 = W[1];
|
| 970 |
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i); |
| 971 |
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i); |
| 972 |
T1j = W[6];
|
| 973 |
T1l = W[7];
|
| 974 |
rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m); |
| 975 |
iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m); |
| 976 |
} |
| 977 |
} |
| 978 |
} |
| 979 |
} |
| 980 |
} |
| 981 |
|
| 982 |
static const tw_instr twinstr[] = { |
| 983 |
{TW_FULL, 0, 5},
|
| 984 |
{TW_NEXT, 1, 0}
|
| 985 |
}; |
| 986 |
|
| 987 |
static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, {130, 70, 70, 0}, 0, 0, 0 }; |
| 988 |
|
| 989 |
void X(codelet_q1_5) (planner *p) {
|
| 990 |
X(kdft_difsq_register) (p, q1_5, &desc); |
| 991 |
} |
| 992 |
#endif
|