To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / q1_4.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (13.8 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:29 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 88 FP additions, 48 FP multiplications,
|
| 32 |
* (or, 64 additions, 24 multiplications, 24 fused multiply/add),
|
| 33 |
* 51 stack variables, 0 constants, and 64 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/q.h" |
| 36 |
|
| 37 |
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
| 38 |
{
|
| 39 |
{
|
| 40 |
INT m; |
| 41 |
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
| 42 |
E T3, Tv, Tw, T6, Tc, Tf, Tx, Ts, Tm, Ti, T1H, T29, T2a, T1K, T1Q; |
| 43 |
E T1T, T2b, T26, T20, T1W, TB, T13, T14, TE, TK, TN, T15, T10, TU, TQ; |
| 44 |
E T19, T1B, T1C, T1c, T1i, T1l, T1D, T1y, T1s, T1o; |
| 45 |
{
|
| 46 |
E T1, T2, Tb, Tg, Th, T8; |
| 47 |
{
|
| 48 |
E T9, Ta, T4, T5; |
| 49 |
T1 = rio[0];
|
| 50 |
T2 = rio[WS(rs, 2)];
|
| 51 |
T3 = T1 + T2; |
| 52 |
T9 = iio[0];
|
| 53 |
Ta = iio[WS(rs, 2)];
|
| 54 |
Tb = T9 - Ta; |
| 55 |
Tv = T9 + Ta; |
| 56 |
Tg = iio[WS(rs, 1)];
|
| 57 |
Th = iio[WS(rs, 3)];
|
| 58 |
Tw = Tg + Th; |
| 59 |
T4 = rio[WS(rs, 1)];
|
| 60 |
T5 = rio[WS(rs, 3)];
|
| 61 |
T6 = T4 + T5; |
| 62 |
T8 = T4 - T5; |
| 63 |
} |
| 64 |
Tc = T8 + Tb; |
| 65 |
Tf = T1 - T2; |
| 66 |
Tx = Tv - Tw; |
| 67 |
Ts = T3 - T6; |
| 68 |
Tm = Tb - T8; |
| 69 |
Ti = Tg - Th; |
| 70 |
} |
| 71 |
{
|
| 72 |
E T1F, T1G, T1P, T1U, T1V, T1M; |
| 73 |
{
|
| 74 |
E T1N, T1O, T1I, T1J; |
| 75 |
T1F = rio[WS(vs, 3)];
|
| 76 |
T1G = rio[WS(vs, 3) + WS(rs, 2)]; |
| 77 |
T1H = T1F + T1G; |
| 78 |
T1N = iio[WS(vs, 3)];
|
| 79 |
T1O = iio[WS(vs, 3) + WS(rs, 2)]; |
| 80 |
T1P = T1N - T1O; |
| 81 |
T29 = T1N + T1O; |
| 82 |
T1U = iio[WS(vs, 3) + WS(rs, 1)]; |
| 83 |
T1V = iio[WS(vs, 3) + WS(rs, 3)]; |
| 84 |
T2a = T1U + T1V; |
| 85 |
T1I = rio[WS(vs, 3) + WS(rs, 1)]; |
| 86 |
T1J = rio[WS(vs, 3) + WS(rs, 3)]; |
| 87 |
T1K = T1I + T1J; |
| 88 |
T1M = T1I - T1J; |
| 89 |
} |
| 90 |
T1Q = T1M + T1P; |
| 91 |
T1T = T1F - T1G; |
| 92 |
T2b = T29 - T2a; |
| 93 |
T26 = T1H - T1K; |
| 94 |
T20 = T1P - T1M; |
| 95 |
T1W = T1U - T1V; |
| 96 |
} |
| 97 |
{
|
| 98 |
E Tz, TA, TJ, TO, TP, TG; |
| 99 |
{
|
| 100 |
E TH, TI, TC, TD; |
| 101 |
Tz = rio[WS(vs, 1)];
|
| 102 |
TA = rio[WS(vs, 1) + WS(rs, 2)]; |
| 103 |
TB = Tz + TA; |
| 104 |
TH = iio[WS(vs, 1)];
|
| 105 |
TI = iio[WS(vs, 1) + WS(rs, 2)]; |
| 106 |
TJ = TH - TI; |
| 107 |
T13 = TH + TI; |
| 108 |
TO = iio[WS(vs, 1) + WS(rs, 1)]; |
| 109 |
TP = iio[WS(vs, 1) + WS(rs, 3)]; |
| 110 |
T14 = TO + TP; |
| 111 |
TC = rio[WS(vs, 1) + WS(rs, 1)]; |
| 112 |
TD = rio[WS(vs, 1) + WS(rs, 3)]; |
| 113 |
TE = TC + TD; |
| 114 |
TG = TC - TD; |
| 115 |
} |
| 116 |
TK = TG + TJ; |
| 117 |
TN = Tz - TA; |
| 118 |
T15 = T13 - T14; |
| 119 |
T10 = TB - TE; |
| 120 |
TU = TJ - TG; |
| 121 |
TQ = TO - TP; |
| 122 |
} |
| 123 |
{
|
| 124 |
E T17, T18, T1h, T1m, T1n, T1e; |
| 125 |
{
|
| 126 |
E T1f, T1g, T1a, T1b; |
| 127 |
T17 = rio[WS(vs, 2)];
|
| 128 |
T18 = rio[WS(vs, 2) + WS(rs, 2)]; |
| 129 |
T19 = T17 + T18; |
| 130 |
T1f = iio[WS(vs, 2)];
|
| 131 |
T1g = iio[WS(vs, 2) + WS(rs, 2)]; |
| 132 |
T1h = T1f - T1g; |
| 133 |
T1B = T1f + T1g; |
| 134 |
T1m = iio[WS(vs, 2) + WS(rs, 1)]; |
| 135 |
T1n = iio[WS(vs, 2) + WS(rs, 3)]; |
| 136 |
T1C = T1m + T1n; |
| 137 |
T1a = rio[WS(vs, 2) + WS(rs, 1)]; |
| 138 |
T1b = rio[WS(vs, 2) + WS(rs, 3)]; |
| 139 |
T1c = T1a + T1b; |
| 140 |
T1e = T1a - T1b; |
| 141 |
} |
| 142 |
T1i = T1e + T1h; |
| 143 |
T1l = T17 - T18; |
| 144 |
T1D = T1B - T1C; |
| 145 |
T1y = T19 - T1c; |
| 146 |
T1s = T1h - T1e; |
| 147 |
T1o = T1m - T1n; |
| 148 |
} |
| 149 |
rio[0] = T3 + T6;
|
| 150 |
iio[0] = Tv + Tw;
|
| 151 |
rio[WS(rs, 1)] = TB + TE;
|
| 152 |
iio[WS(rs, 1)] = T13 + T14;
|
| 153 |
rio[WS(rs, 2)] = T19 + T1c;
|
| 154 |
iio[WS(rs, 2)] = T1B + T1C;
|
| 155 |
iio[WS(rs, 3)] = T29 + T2a;
|
| 156 |
rio[WS(rs, 3)] = T1H + T1K;
|
| 157 |
{
|
| 158 |
E Tt, Ty, Tr, Tu; |
| 159 |
Tr = W[2];
|
| 160 |
Tt = Tr * Ts; |
| 161 |
Ty = Tr * Tx; |
| 162 |
Tu = W[3];
|
| 163 |
rio[WS(vs, 2)] = FMA(Tu, Tx, Tt);
|
| 164 |
iio[WS(vs, 2)] = FNMS(Tu, Ts, Ty);
|
| 165 |
} |
| 166 |
{
|
| 167 |
E T27, T2c, T25, T28; |
| 168 |
T25 = W[2];
|
| 169 |
T27 = T25 * T26; |
| 170 |
T2c = T25 * T2b; |
| 171 |
T28 = W[3];
|
| 172 |
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T28, T2b, T27); |
| 173 |
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T28, T26, T2c); |
| 174 |
} |
| 175 |
{
|
| 176 |
E T11, T16, TZ, T12; |
| 177 |
TZ = W[2];
|
| 178 |
T11 = TZ * T10; |
| 179 |
T16 = TZ * T15; |
| 180 |
T12 = W[3];
|
| 181 |
rio[WS(vs, 2) + WS(rs, 1)] = FMA(T12, T15, T11); |
| 182 |
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T12, T10, T16); |
| 183 |
} |
| 184 |
{
|
| 185 |
E T1z, T1E, T1x, T1A; |
| 186 |
T1x = W[2];
|
| 187 |
T1z = T1x * T1y; |
| 188 |
T1E = T1x * T1D; |
| 189 |
T1A = W[3];
|
| 190 |
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1A, T1D, T1z); |
| 191 |
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1A, T1y, T1E); |
| 192 |
} |
| 193 |
{
|
| 194 |
E Tj, Te, Tk, T7, Td; |
| 195 |
Tj = Tf - Ti; |
| 196 |
Te = W[5];
|
| 197 |
Tk = Te * Tc; |
| 198 |
T7 = W[4];
|
| 199 |
Td = T7 * Tc; |
| 200 |
iio[WS(vs, 3)] = FNMS(Te, Tj, Td);
|
| 201 |
rio[WS(vs, 3)] = FMA(T7, Tj, Tk);
|
| 202 |
} |
| 203 |
{
|
| 204 |
E T1p, T1k, T1q, T1d, T1j; |
| 205 |
T1p = T1l - T1o; |
| 206 |
T1k = W[5];
|
| 207 |
T1q = T1k * T1i; |
| 208 |
T1d = W[4];
|
| 209 |
T1j = T1d * T1i; |
| 210 |
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T1k, T1p, T1j); |
| 211 |
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T1d, T1p, T1q); |
| 212 |
} |
| 213 |
{
|
| 214 |
E T23, T22, T24, T1Z, T21; |
| 215 |
T23 = T1T + T1W; |
| 216 |
T22 = W[1];
|
| 217 |
T24 = T22 * T20; |
| 218 |
T1Z = W[0];
|
| 219 |
T21 = T1Z * T20; |
| 220 |
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T22, T23, T21); |
| 221 |
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1Z, T23, T24); |
| 222 |
} |
| 223 |
{
|
| 224 |
E TX, TW, TY, TT, TV; |
| 225 |
TX = TN + TQ; |
| 226 |
TW = W[1];
|
| 227 |
TY = TW * TU; |
| 228 |
TT = W[0];
|
| 229 |
TV = TT * TU; |
| 230 |
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TW, TX, TV); |
| 231 |
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TT, TX, TY); |
| 232 |
} |
| 233 |
{
|
| 234 |
E TR, TM, TS, TF, TL; |
| 235 |
TR = TN - TQ; |
| 236 |
TM = W[5];
|
| 237 |
TS = TM * TK; |
| 238 |
TF = W[4];
|
| 239 |
TL = TF * TK; |
| 240 |
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TM, TR, TL); |
| 241 |
rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TR, TS); |
| 242 |
} |
| 243 |
{
|
| 244 |
E Tp, To, Tq, Tl, Tn; |
| 245 |
Tp = Tf + Ti; |
| 246 |
To = W[1];
|
| 247 |
Tq = To * Tm; |
| 248 |
Tl = W[0];
|
| 249 |
Tn = Tl * Tm; |
| 250 |
iio[WS(vs, 1)] = FNMS(To, Tp, Tn);
|
| 251 |
rio[WS(vs, 1)] = FMA(Tl, Tp, Tq);
|
| 252 |
} |
| 253 |
{
|
| 254 |
E T1v, T1u, T1w, T1r, T1t; |
| 255 |
T1v = T1l + T1o; |
| 256 |
T1u = W[1];
|
| 257 |
T1w = T1u * T1s; |
| 258 |
T1r = W[0];
|
| 259 |
T1t = T1r * T1s; |
| 260 |
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1u, T1v, T1t); |
| 261 |
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1r, T1v, T1w); |
| 262 |
} |
| 263 |
{
|
| 264 |
E T1X, T1S, T1Y, T1L, T1R; |
| 265 |
T1X = T1T - T1W; |
| 266 |
T1S = W[5];
|
| 267 |
T1Y = T1S * T1Q; |
| 268 |
T1L = W[4];
|
| 269 |
T1R = T1L * T1Q; |
| 270 |
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1S, T1X, T1R); |
| 271 |
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1L, T1X, T1Y); |
| 272 |
} |
| 273 |
} |
| 274 |
} |
| 275 |
} |
| 276 |
|
| 277 |
static const tw_instr twinstr[] = { |
| 278 |
{TW_FULL, 0, 4},
|
| 279 |
{TW_NEXT, 1, 0}
|
| 280 |
}; |
| 281 |
|
| 282 |
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; |
| 283 |
|
| 284 |
void X(codelet_q1_4) (planner *p) {
|
| 285 |
X(kdft_difsq_register) (p, q1_4, &desc); |
| 286 |
} |
| 287 |
#else
|
| 288 |
|
| 289 |
/* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 4 -name q1_4 -include dft/scalar/q.h */
|
| 290 |
|
| 291 |
/*
|
| 292 |
* This function contains 88 FP additions, 48 FP multiplications,
|
| 293 |
* (or, 64 additions, 24 multiplications, 24 fused multiply/add),
|
| 294 |
* 37 stack variables, 0 constants, and 64 memory accesses
|
| 295 |
*/
|
| 296 |
#include "dft/scalar/q.h" |
| 297 |
|
| 298 |
static void q1_4(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
| 299 |
{
|
| 300 |
{
|
| 301 |
INT m; |
| 302 |
for (m = mb, W = W + (mb * 6); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 6, MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
| 303 |
E T3, Te, Tb, Tq, T6, T8, Th, Tr, Tv, TG, TD, TS, Ty, TA, TJ; |
| 304 |
E TT, TX, T18, T15, T1k, T10, T12, T1b, T1l, T1p, T1A, T1x, T1M, T1s, T1u; |
| 305 |
E T1D, T1N; |
| 306 |
{
|
| 307 |
E T1, T2, T9, Ta; |
| 308 |
T1 = rio[0];
|
| 309 |
T2 = rio[WS(rs, 2)];
|
| 310 |
T3 = T1 + T2; |
| 311 |
Te = T1 - T2; |
| 312 |
T9 = iio[0];
|
| 313 |
Ta = iio[WS(rs, 2)];
|
| 314 |
Tb = T9 - Ta; |
| 315 |
Tq = T9 + Ta; |
| 316 |
} |
| 317 |
{
|
| 318 |
E T4, T5, Tf, Tg; |
| 319 |
T4 = rio[WS(rs, 1)];
|
| 320 |
T5 = rio[WS(rs, 3)];
|
| 321 |
T6 = T4 + T5; |
| 322 |
T8 = T4 - T5; |
| 323 |
Tf = iio[WS(rs, 1)];
|
| 324 |
Tg = iio[WS(rs, 3)];
|
| 325 |
Th = Tf - Tg; |
| 326 |
Tr = Tf + Tg; |
| 327 |
} |
| 328 |
{
|
| 329 |
E Tt, Tu, TB, TC; |
| 330 |
Tt = rio[WS(vs, 1)];
|
| 331 |
Tu = rio[WS(vs, 1) + WS(rs, 2)]; |
| 332 |
Tv = Tt + Tu; |
| 333 |
TG = Tt - Tu; |
| 334 |
TB = iio[WS(vs, 1)];
|
| 335 |
TC = iio[WS(vs, 1) + WS(rs, 2)]; |
| 336 |
TD = TB - TC; |
| 337 |
TS = TB + TC; |
| 338 |
} |
| 339 |
{
|
| 340 |
E Tw, Tx, TH, TI; |
| 341 |
Tw = rio[WS(vs, 1) + WS(rs, 1)]; |
| 342 |
Tx = rio[WS(vs, 1) + WS(rs, 3)]; |
| 343 |
Ty = Tw + Tx; |
| 344 |
TA = Tw - Tx; |
| 345 |
TH = iio[WS(vs, 1) + WS(rs, 1)]; |
| 346 |
TI = iio[WS(vs, 1) + WS(rs, 3)]; |
| 347 |
TJ = TH - TI; |
| 348 |
TT = TH + TI; |
| 349 |
} |
| 350 |
{
|
| 351 |
E TV, TW, T13, T14; |
| 352 |
TV = rio[WS(vs, 2)];
|
| 353 |
TW = rio[WS(vs, 2) + WS(rs, 2)]; |
| 354 |
TX = TV + TW; |
| 355 |
T18 = TV - TW; |
| 356 |
T13 = iio[WS(vs, 2)];
|
| 357 |
T14 = iio[WS(vs, 2) + WS(rs, 2)]; |
| 358 |
T15 = T13 - T14; |
| 359 |
T1k = T13 + T14; |
| 360 |
} |
| 361 |
{
|
| 362 |
E TY, TZ, T19, T1a; |
| 363 |
TY = rio[WS(vs, 2) + WS(rs, 1)]; |
| 364 |
TZ = rio[WS(vs, 2) + WS(rs, 3)]; |
| 365 |
T10 = TY + TZ; |
| 366 |
T12 = TY - TZ; |
| 367 |
T19 = iio[WS(vs, 2) + WS(rs, 1)]; |
| 368 |
T1a = iio[WS(vs, 2) + WS(rs, 3)]; |
| 369 |
T1b = T19 - T1a; |
| 370 |
T1l = T19 + T1a; |
| 371 |
} |
| 372 |
{
|
| 373 |
E T1n, T1o, T1v, T1w; |
| 374 |
T1n = rio[WS(vs, 3)];
|
| 375 |
T1o = rio[WS(vs, 3) + WS(rs, 2)]; |
| 376 |
T1p = T1n + T1o; |
| 377 |
T1A = T1n - T1o; |
| 378 |
T1v = iio[WS(vs, 3)];
|
| 379 |
T1w = iio[WS(vs, 3) + WS(rs, 2)]; |
| 380 |
T1x = T1v - T1w; |
| 381 |
T1M = T1v + T1w; |
| 382 |
} |
| 383 |
{
|
| 384 |
E T1q, T1r, T1B, T1C; |
| 385 |
T1q = rio[WS(vs, 3) + WS(rs, 1)]; |
| 386 |
T1r = rio[WS(vs, 3) + WS(rs, 3)]; |
| 387 |
T1s = T1q + T1r; |
| 388 |
T1u = T1q - T1r; |
| 389 |
T1B = iio[WS(vs, 3) + WS(rs, 1)]; |
| 390 |
T1C = iio[WS(vs, 3) + WS(rs, 3)]; |
| 391 |
T1D = T1B - T1C; |
| 392 |
T1N = T1B + T1C; |
| 393 |
} |
| 394 |
rio[0] = T3 + T6;
|
| 395 |
iio[0] = Tq + Tr;
|
| 396 |
rio[WS(rs, 1)] = Tv + Ty;
|
| 397 |
iio[WS(rs, 1)] = TS + TT;
|
| 398 |
rio[WS(rs, 2)] = TX + T10;
|
| 399 |
iio[WS(rs, 2)] = T1k + T1l;
|
| 400 |
iio[WS(rs, 3)] = T1M + T1N;
|
| 401 |
rio[WS(rs, 3)] = T1p + T1s;
|
| 402 |
{
|
| 403 |
E Tc, Ti, T7, Td; |
| 404 |
Tc = T8 + Tb; |
| 405 |
Ti = Te - Th; |
| 406 |
T7 = W[4];
|
| 407 |
Td = W[5];
|
| 408 |
iio[WS(vs, 3)] = FNMS(Td, Ti, T7 * Tc);
|
| 409 |
rio[WS(vs, 3)] = FMA(Td, Tc, T7 * Ti);
|
| 410 |
} |
| 411 |
{
|
| 412 |
E T1K, T1O, T1J, T1L; |
| 413 |
T1K = T1p - T1s; |
| 414 |
T1O = T1M - T1N; |
| 415 |
T1J = W[2];
|
| 416 |
T1L = W[3];
|
| 417 |
rio[WS(vs, 2) + WS(rs, 3)] = FMA(T1J, T1K, T1L * T1O); |
| 418 |
iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T1L, T1K, T1J * T1O); |
| 419 |
} |
| 420 |
{
|
| 421 |
E Tk, Tm, Tj, Tl; |
| 422 |
Tk = Tb - T8; |
| 423 |
Tm = Te + Th; |
| 424 |
Tj = W[0];
|
| 425 |
Tl = W[1];
|
| 426 |
iio[WS(vs, 1)] = FNMS(Tl, Tm, Tj * Tk);
|
| 427 |
rio[WS(vs, 1)] = FMA(Tl, Tk, Tj * Tm);
|
| 428 |
} |
| 429 |
{
|
| 430 |
E To, Ts, Tn, Tp; |
| 431 |
To = T3 - T6; |
| 432 |
Ts = Tq - Tr; |
| 433 |
Tn = W[2];
|
| 434 |
Tp = W[3];
|
| 435 |
rio[WS(vs, 2)] = FMA(Tn, To, Tp * Ts);
|
| 436 |
iio[WS(vs, 2)] = FNMS(Tp, To, Tn * Ts);
|
| 437 |
} |
| 438 |
{
|
| 439 |
E T16, T1c, T11, T17; |
| 440 |
T16 = T12 + T15; |
| 441 |
T1c = T18 - T1b; |
| 442 |
T11 = W[4];
|
| 443 |
T17 = W[5];
|
| 444 |
iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T17, T1c, T11 * T16); |
| 445 |
rio[WS(vs, 3) + WS(rs, 2)] = FMA(T17, T16, T11 * T1c); |
| 446 |
} |
| 447 |
{
|
| 448 |
E T1G, T1I, T1F, T1H; |
| 449 |
T1G = T1x - T1u; |
| 450 |
T1I = T1A + T1D; |
| 451 |
T1F = W[0];
|
| 452 |
T1H = W[1];
|
| 453 |
iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T1H, T1I, T1F * T1G); |
| 454 |
rio[WS(vs, 1) + WS(rs, 3)] = FMA(T1H, T1G, T1F * T1I); |
| 455 |
} |
| 456 |
{
|
| 457 |
E TQ, TU, TP, TR; |
| 458 |
TQ = Tv - Ty; |
| 459 |
TU = TS - TT; |
| 460 |
TP = W[2];
|
| 461 |
TR = W[3];
|
| 462 |
rio[WS(vs, 2) + WS(rs, 1)] = FMA(TP, TQ, TR * TU); |
| 463 |
iio[WS(vs, 2) + WS(rs, 1)] = FNMS(TR, TQ, TP * TU); |
| 464 |
} |
| 465 |
{
|
| 466 |
E T1e, T1g, T1d, T1f; |
| 467 |
T1e = T15 - T12; |
| 468 |
T1g = T18 + T1b; |
| 469 |
T1d = W[0];
|
| 470 |
T1f = W[1];
|
| 471 |
iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1f, T1g, T1d * T1e); |
| 472 |
rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1f, T1e, T1d * T1g); |
| 473 |
} |
| 474 |
{
|
| 475 |
E T1i, T1m, T1h, T1j; |
| 476 |
T1i = TX - T10; |
| 477 |
T1m = T1k - T1l; |
| 478 |
T1h = W[2];
|
| 479 |
T1j = W[3];
|
| 480 |
rio[WS(vs, 2) + WS(rs, 2)] = FMA(T1h, T1i, T1j * T1m); |
| 481 |
iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T1j, T1i, T1h * T1m); |
| 482 |
} |
| 483 |
{
|
| 484 |
E T1y, T1E, T1t, T1z; |
| 485 |
T1y = T1u + T1x; |
| 486 |
T1E = T1A - T1D; |
| 487 |
T1t = W[4];
|
| 488 |
T1z = W[5];
|
| 489 |
iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T1z, T1E, T1t * T1y); |
| 490 |
rio[WS(vs, 3) + WS(rs, 3)] = FMA(T1z, T1y, T1t * T1E); |
| 491 |
} |
| 492 |
{
|
| 493 |
E TM, TO, TL, TN; |
| 494 |
TM = TD - TA; |
| 495 |
TO = TG + TJ; |
| 496 |
TL = W[0];
|
| 497 |
TN = W[1];
|
| 498 |
iio[WS(vs, 1) + WS(rs, 1)] = FNMS(TN, TO, TL * TM); |
| 499 |
rio[WS(vs, 1) + WS(rs, 1)] = FMA(TN, TM, TL * TO); |
| 500 |
} |
| 501 |
{
|
| 502 |
E TE, TK, Tz, TF; |
| 503 |
TE = TA + TD; |
| 504 |
TK = TG - TJ; |
| 505 |
Tz = W[4];
|
| 506 |
TF = W[5];
|
| 507 |
iio[WS(vs, 3) + WS(rs, 1)] = FNMS(TF, TK, Tz * TE); |
| 508 |
rio[WS(vs, 3) + WS(rs, 1)] = FMA(TF, TE, Tz * TK); |
| 509 |
} |
| 510 |
} |
| 511 |
} |
| 512 |
} |
| 513 |
|
| 514 |
static const tw_instr twinstr[] = { |
| 515 |
{TW_FULL, 0, 4},
|
| 516 |
{TW_NEXT, 1, 0}
|
| 517 |
}; |
| 518 |
|
| 519 |
static const ct_desc desc = { 4, "q1_4", twinstr, &GENUS, {64, 24, 24, 0}, 0, 0, 0 }; |
| 520 |
|
| 521 |
void X(codelet_q1_4) (planner *p) {
|
| 522 |
X(kdft_difsq_register) (p, q1_4, &desc); |
| 523 |
} |
| 524 |
#endif
|