To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_64.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (79.1 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:12 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 912 FP additions, 392 FP multiplications,
|
| 32 |
* (or, 520 additions, 0 multiplications, 392 fused multiply/add),
|
| 33 |
* 172 stack variables, 15 constants, and 256 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 40 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 41 |
DK(KP534511135, +0.534511135950791641089685961295362908582039528); |
| 42 |
DK(KP303346683, +0.303346683607342391675883946941299872384187453); |
| 43 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 44 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 45 |
DK(KP820678790, +0.820678790828660330972281985331011598767386482); |
| 46 |
DK(KP098491403, +0.098491403357164253077197521291327432293052451); |
| 47 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 48 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 49 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 50 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 51 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 52 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 53 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 54 |
{
|
| 55 |
INT i; |
| 56 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { |
| 57 |
E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; |
| 58 |
E T8G, Tu, TdI, Tak, TbC, Tan, TbD, T2x, Tda, T3m, T65, T7G, T8I, T7J, T8J; |
| 59 |
E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; |
| 60 |
E T9l, T3N, T6H, T1L, TdA, Tbs, Tct, Tdx, Teo, T5j, T6Y, T5Q, T6V, T8y, T9z; |
| 61 |
E Tbb, Tcw, T8n, T9C, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; |
| 62 |
E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; |
| 63 |
E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; |
| 64 |
E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, Tdy, Tbv, Tcx, TdD, Tep, T5G, T6W; |
| 65 |
E T5T, T6Z, T8B, T9D, Tbm, Tcu, T8u, T9A; |
| 66 |
{
|
| 67 |
E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; |
| 68 |
E T3c; |
| 69 |
{
|
| 70 |
E T1, T2, T24, T25; |
| 71 |
T1 = ri[0];
|
| 72 |
T2 = ri[WS(is, 32)];
|
| 73 |
T3 = T1 + T2; |
| 74 |
T35 = T1 - T2; |
| 75 |
T24 = ii[0];
|
| 76 |
T25 = ii[WS(is, 32)];
|
| 77 |
T26 = T24 + T25; |
| 78 |
T5Y = T24 - T25; |
| 79 |
} |
| 80 |
{
|
| 81 |
E T4, T5, T27, T28; |
| 82 |
T4 = ri[WS(is, 16)];
|
| 83 |
T5 = ri[WS(is, 48)];
|
| 84 |
T6 = T4 + T5; |
| 85 |
T5X = T4 - T5; |
| 86 |
T27 = ii[WS(is, 16)];
|
| 87 |
T28 = ii[WS(is, 48)];
|
| 88 |
T29 = T27 + T28; |
| 89 |
T36 = T27 - T28; |
| 90 |
} |
| 91 |
{
|
| 92 |
E T8, T9, T2b, T2c; |
| 93 |
T8 = ri[WS(is, 8)];
|
| 94 |
T9 = ri[WS(is, 40)];
|
| 95 |
Ta = T8 + T9; |
| 96 |
T39 = T8 - T9; |
| 97 |
T2b = ii[WS(is, 8)];
|
| 98 |
T2c = ii[WS(is, 40)];
|
| 99 |
T2d = T2b + T2c; |
| 100 |
T38 = T2b - T2c; |
| 101 |
} |
| 102 |
{
|
| 103 |
E Tb, Tc, T2e, T2f; |
| 104 |
Tb = ri[WS(is, 56)];
|
| 105 |
Tc = ri[WS(is, 24)];
|
| 106 |
Td = Tb + Tc; |
| 107 |
T3b = Tb - Tc; |
| 108 |
T2e = ii[WS(is, 56)];
|
| 109 |
T2f = ii[WS(is, 24)];
|
| 110 |
T2g = T2e + T2f; |
| 111 |
T3c = T2e - T2f; |
| 112 |
} |
| 113 |
{
|
| 114 |
E T7, Te, T2a, T2h; |
| 115 |
T37 = T35 - T36; |
| 116 |
T7B = T35 + T36; |
| 117 |
T8F = T5Y - T5X; |
| 118 |
T5Z = T5X + T5Y; |
| 119 |
T7 = T3 + T6; |
| 120 |
Te = Ta + Td; |
| 121 |
Tf = T7 + Te; |
| 122 |
Td9 = T7 - Te; |
| 123 |
{
|
| 124 |
E Tbz, TbA, T60, T61; |
| 125 |
Tbz = Td - Ta; |
| 126 |
TbA = T26 - T29; |
| 127 |
TbB = Tbz + TbA; |
| 128 |
TcB = TbA - Tbz; |
| 129 |
T60 = T3b - T3c; |
| 130 |
T61 = T39 + T38; |
| 131 |
T62 = T60 - T61; |
| 132 |
T7C = T61 + T60; |
| 133 |
} |
| 134 |
T2a = T26 + T29; |
| 135 |
T2h = T2d + T2g; |
| 136 |
T2i = T2a + T2h; |
| 137 |
TdH = T2a - T2h; |
| 138 |
{
|
| 139 |
E Taf, Tag, T3a, T3d; |
| 140 |
Taf = T3 - T6; |
| 141 |
Tag = T2d - T2g; |
| 142 |
Tah = Taf + Tag; |
| 143 |
Tcb = Taf - Tag; |
| 144 |
T3a = T38 - T39; |
| 145 |
T3d = T3b + T3c; |
| 146 |
T3e = T3a - T3d; |
| 147 |
T8G = T3a + T3d; |
| 148 |
} |
| 149 |
} |
| 150 |
} |
| 151 |
{
|
| 152 |
E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; |
| 153 |
E T3r; |
| 154 |
{
|
| 155 |
E Tg, Th, T2j, T2k; |
| 156 |
Tg = ri[WS(is, 4)];
|
| 157 |
Th = ri[WS(is, 36)];
|
| 158 |
Ti = Tg + Th; |
| 159 |
T3j = Tg - Th; |
| 160 |
T2j = ii[WS(is, 4)];
|
| 161 |
T2k = ii[WS(is, 36)];
|
| 162 |
T2l = T2j + T2k; |
| 163 |
T3h = T2j - T2k; |
| 164 |
} |
| 165 |
{
|
| 166 |
E Tj, Tk, T2m, T2n; |
| 167 |
Tj = ri[WS(is, 20)];
|
| 168 |
Tk = ri[WS(is, 52)];
|
| 169 |
Tl = Tj + Tk; |
| 170 |
T3g = Tj - Tk; |
| 171 |
T2m = ii[WS(is, 20)];
|
| 172 |
T2n = ii[WS(is, 52)];
|
| 173 |
T2o = T2m + T2n; |
| 174 |
T3k = T2m - T2n; |
| 175 |
} |
| 176 |
{
|
| 177 |
E Tn, To, T2q, T2r; |
| 178 |
Tn = ri[WS(is, 60)];
|
| 179 |
To = ri[WS(is, 28)];
|
| 180 |
Tp = Tn + To; |
| 181 |
T3q = Tn - To; |
| 182 |
T2q = ii[WS(is, 60)];
|
| 183 |
T2r = ii[WS(is, 28)];
|
| 184 |
T2s = T2q + T2r; |
| 185 |
T3o = T2q - T2r; |
| 186 |
} |
| 187 |
{
|
| 188 |
E Tq, Tr, T2t, T2u; |
| 189 |
Tq = ri[WS(is, 12)];
|
| 190 |
Tr = ri[WS(is, 44)];
|
| 191 |
Ts = Tq + Tr; |
| 192 |
T3n = Tq - Tr; |
| 193 |
T2t = ii[WS(is, 12)];
|
| 194 |
T2u = ii[WS(is, 44)];
|
| 195 |
T2v = T2t + T2u; |
| 196 |
T3r = T2t - T2u; |
| 197 |
} |
| 198 |
{
|
| 199 |
E Tm, Tt, Tai, Taj; |
| 200 |
Tm = Ti + Tl; |
| 201 |
Tt = Tp + Ts; |
| 202 |
Tu = Tm + Tt; |
| 203 |
TdI = Tt - Tm; |
| 204 |
Tai = Ti - Tl; |
| 205 |
Taj = T2l - T2o; |
| 206 |
Tak = Tai + Taj; |
| 207 |
TbC = Taj - Tai; |
| 208 |
} |
| 209 |
{
|
| 210 |
E Tal, Tam, T2p, T2w; |
| 211 |
Tal = Tp - Ts; |
| 212 |
Tam = T2s - T2v; |
| 213 |
Tan = Tal - Tam; |
| 214 |
TbD = Tal + Tam; |
| 215 |
T2p = T2l + T2o; |
| 216 |
T2w = T2s + T2v; |
| 217 |
T2x = T2p + T2w; |
| 218 |
Tda = T2p - T2w; |
| 219 |
} |
| 220 |
{
|
| 221 |
E T3i, T3l, T7E, T7F; |
| 222 |
T3i = T3g + T3h; |
| 223 |
T3l = T3j - T3k; |
| 224 |
T3m = FMA(KP414213562, T3l, T3i); |
| 225 |
T65 = FNMS(KP414213562, T3i, T3l); |
| 226 |
T7E = T3j + T3k; |
| 227 |
T7F = T3h - T3g; |
| 228 |
T7G = FMA(KP414213562, T7F, T7E); |
| 229 |
T8I = FNMS(KP414213562, T7E, T7F); |
| 230 |
} |
| 231 |
{
|
| 232 |
E T7H, T7I, T3p, T3s; |
| 233 |
T7H = T3q + T3r; |
| 234 |
T7I = T3o - T3n; |
| 235 |
T7J = FNMS(KP414213562, T7I, T7H); |
| 236 |
T8J = FMA(KP414213562, T7H, T7I); |
| 237 |
T3p = T3n + T3o; |
| 238 |
T3s = T3q - T3r; |
| 239 |
T3t = FNMS(KP414213562, T3s, T3p); |
| 240 |
T64 = FMA(KP414213562, T3p, T3s); |
| 241 |
} |
| 242 |
} |
| 243 |
{
|
| 244 |
E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3K, T2L, T3E, TF, T3L, T2I; |
| 245 |
E T3B; |
| 246 |
{
|
| 247 |
E Tw, Tx, T2C, T2D; |
| 248 |
Tw = ri[WS(is, 2)];
|
| 249 |
Tx = ri[WS(is, 34)];
|
| 250 |
Ty = Tw + Tx; |
| 251 |
T3H = Tw - Tx; |
| 252 |
{
|
| 253 |
E T2z, T2A, Tz, TA; |
| 254 |
T2z = ii[WS(is, 2)];
|
| 255 |
T2A = ii[WS(is, 34)];
|
| 256 |
T2B = T2z + T2A; |
| 257 |
T3x = T2z - T2A; |
| 258 |
Tz = ri[WS(is, 18)];
|
| 259 |
TA = ri[WS(is, 50)];
|
| 260 |
TB = Tz + TA; |
| 261 |
T3w = Tz - TA; |
| 262 |
} |
| 263 |
T2C = ii[WS(is, 18)];
|
| 264 |
T2D = ii[WS(is, 50)];
|
| 265 |
T2E = T2C + T2D; |
| 266 |
T3I = T2C - T2D; |
| 267 |
{
|
| 268 |
E TG, TH, T3C, T2J, T2K, T3D; |
| 269 |
TG = ri[WS(is, 58)];
|
| 270 |
TH = ri[WS(is, 26)];
|
| 271 |
T3C = TG - TH; |
| 272 |
T2J = ii[WS(is, 58)];
|
| 273 |
T2K = ii[WS(is, 26)];
|
| 274 |
T3D = T2J - T2K; |
| 275 |
TI = TG + TH; |
| 276 |
T3K = T3C + T3D; |
| 277 |
T2L = T2J + T2K; |
| 278 |
T3E = T3C - T3D; |
| 279 |
} |
| 280 |
{
|
| 281 |
E TD, TE, T3z, T2G, T2H, T3A; |
| 282 |
TD = ri[WS(is, 10)];
|
| 283 |
TE = ri[WS(is, 42)];
|
| 284 |
T3z = TD - TE; |
| 285 |
T2G = ii[WS(is, 10)];
|
| 286 |
T2H = ii[WS(is, 42)];
|
| 287 |
T3A = T2G - T2H; |
| 288 |
TF = TD + TE; |
| 289 |
T3L = T3A - T3z; |
| 290 |
T2I = T2G + T2H; |
| 291 |
T3B = T3z + T3A; |
| 292 |
} |
| 293 |
} |
| 294 |
{
|
| 295 |
E TC, TJ, Taq, Tar; |
| 296 |
TC = Ty + TB; |
| 297 |
TJ = TF + TI; |
| 298 |
TK = TC + TJ; |
| 299 |
Tdd = TC - TJ; |
| 300 |
Taq = TI - TF; |
| 301 |
Tar = T2B - T2E; |
| 302 |
Tas = Taq + Tar; |
| 303 |
Tce = Tar - Taq; |
| 304 |
} |
| 305 |
{
|
| 306 |
E Tat, Tau, T2F, T2M; |
| 307 |
Tat = Ty - TB; |
| 308 |
Tau = T2I - T2L; |
| 309 |
Tav = Tat + Tau; |
| 310 |
Tcf = Tat - Tau; |
| 311 |
T2F = T2B + T2E; |
| 312 |
T2M = T2I + T2L; |
| 313 |
T2N = T2F + T2M; |
| 314 |
Tdc = T2F - T2M; |
| 315 |
} |
| 316 |
{
|
| 317 |
E T3y, T3F, T7M, T7N; |
| 318 |
T3y = T3w + T3x; |
| 319 |
T3F = T3B - T3E; |
| 320 |
T3G = FNMS(KP707106781, T3F, T3y); |
| 321 |
T6G = FMA(KP707106781, T3F, T3y); |
| 322 |
T7M = T3x - T3w; |
| 323 |
T7N = T3L + T3K; |
| 324 |
T7O = FMA(KP707106781, T7N, T7M); |
| 325 |
T9k = FNMS(KP707106781, T7N, T7M); |
| 326 |
} |
| 327 |
{
|
| 328 |
E T7P, T7Q, T3J, T3M; |
| 329 |
T7P = T3H + T3I; |
| 330 |
T7Q = T3B + T3E; |
| 331 |
T7R = FMA(KP707106781, T7Q, T7P); |
| 332 |
T9l = FNMS(KP707106781, T7Q, T7P); |
| 333 |
T3J = T3H - T3I; |
| 334 |
T3M = T3K - T3L; |
| 335 |
T3N = FNMS(KP707106781, T3M, T3J); |
| 336 |
T6H = FMA(KP707106781, T3M, T3J); |
| 337 |
} |
| 338 |
} |
| 339 |
{
|
| 340 |
E T1z, T5I, T56, Tb8, T1C, T53, T5L, Tb9, T1J, Tbq, T5h, T5N, T1G, Tbp, T5c; |
| 341 |
E T5O; |
| 342 |
{
|
| 343 |
E T1x, T1y, T5J, T5K; |
| 344 |
T1x = ri[WS(is, 63)];
|
| 345 |
T1y = ri[WS(is, 31)];
|
| 346 |
T1z = T1x + T1y; |
| 347 |
T5I = T1x - T1y; |
| 348 |
{
|
| 349 |
E T54, T55, T1A, T1B; |
| 350 |
T54 = ii[WS(is, 63)];
|
| 351 |
T55 = ii[WS(is, 31)];
|
| 352 |
T56 = T54 - T55; |
| 353 |
Tb8 = T54 + T55; |
| 354 |
T1A = ri[WS(is, 15)];
|
| 355 |
T1B = ri[WS(is, 47)];
|
| 356 |
T1C = T1A + T1B; |
| 357 |
T53 = T1A - T1B; |
| 358 |
} |
| 359 |
T5J = ii[WS(is, 15)];
|
| 360 |
T5K = ii[WS(is, 47)];
|
| 361 |
T5L = T5J - T5K; |
| 362 |
Tb9 = T5J + T5K; |
| 363 |
{
|
| 364 |
E T1H, T1I, T5d, T5e, T5f, T5g; |
| 365 |
T1H = ri[WS(is, 55)];
|
| 366 |
T1I = ri[WS(is, 23)];
|
| 367 |
T5d = T1H - T1I; |
| 368 |
T5e = ii[WS(is, 55)];
|
| 369 |
T5f = ii[WS(is, 23)];
|
| 370 |
T5g = T5e - T5f; |
| 371 |
T1J = T1H + T1I; |
| 372 |
Tbq = T5e + T5f; |
| 373 |
T5h = T5d - T5g; |
| 374 |
T5N = T5d + T5g; |
| 375 |
} |
| 376 |
{
|
| 377 |
E T1E, T1F, T58, T59, T5a, T5b; |
| 378 |
T1E = ri[WS(is, 7)];
|
| 379 |
T1F = ri[WS(is, 39)];
|
| 380 |
T58 = T1E - T1F; |
| 381 |
T59 = ii[WS(is, 7)];
|
| 382 |
T5a = ii[WS(is, 39)];
|
| 383 |
T5b = T59 - T5a; |
| 384 |
T1G = T1E + T1F; |
| 385 |
Tbp = T59 + T5a; |
| 386 |
T5c = T58 + T5b; |
| 387 |
T5O = T5b - T58; |
| 388 |
} |
| 389 |
} |
| 390 |
{
|
| 391 |
E T1D, T1K, Tbo, Tbr; |
| 392 |
T1D = T1z + T1C; |
| 393 |
T1K = T1G + T1J; |
| 394 |
T1L = T1D + T1K; |
| 395 |
TdA = T1D - T1K; |
| 396 |
Tbo = T1z - T1C; |
| 397 |
Tbr = Tbp - Tbq; |
| 398 |
Tbs = Tbo + Tbr; |
| 399 |
Tct = Tbo - Tbr; |
| 400 |
} |
| 401 |
{
|
| 402 |
E Tdv, Tdw, T57, T5i; |
| 403 |
Tdv = Tb8 + Tb9; |
| 404 |
Tdw = Tbp + Tbq; |
| 405 |
Tdx = Tdv - Tdw; |
| 406 |
Teo = Tdv + Tdw; |
| 407 |
T57 = T53 + T56; |
| 408 |
T5i = T5c - T5h; |
| 409 |
T5j = FNMS(KP707106781, T5i, T57); |
| 410 |
T6Y = FMA(KP707106781, T5i, T57); |
| 411 |
} |
| 412 |
{
|
| 413 |
E T5M, T5P, T8w, T8x; |
| 414 |
T5M = T5I - T5L; |
| 415 |
T5P = T5N - T5O; |
| 416 |
T5Q = FNMS(KP707106781, T5P, T5M); |
| 417 |
T6V = FMA(KP707106781, T5P, T5M); |
| 418 |
T8w = T5I + T5L; |
| 419 |
T8x = T5c + T5h; |
| 420 |
T8y = FMA(KP707106781, T8x, T8w); |
| 421 |
T9z = FNMS(KP707106781, T8x, T8w); |
| 422 |
} |
| 423 |
{
|
| 424 |
E Tb7, Tba, T8l, T8m; |
| 425 |
Tb7 = T1J - T1G; |
| 426 |
Tba = Tb8 - Tb9; |
| 427 |
Tbb = Tb7 + Tba; |
| 428 |
Tcw = Tba - Tb7; |
| 429 |
T8l = T56 - T53; |
| 430 |
T8m = T5O + T5N; |
| 431 |
T8n = FMA(KP707106781, T8m, T8l); |
| 432 |
T9C = FNMS(KP707106781, T8m, T8l); |
| 433 |
} |
| 434 |
} |
| 435 |
{
|
| 436 |
E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T43, T30, T3X, TU, T44, T2X; |
| 437 |
E T3U; |
| 438 |
{
|
| 439 |
E TL, TM, T2R, T2S; |
| 440 |
TL = ri[WS(is, 62)];
|
| 441 |
TM = ri[WS(is, 30)];
|
| 442 |
TN = TL + TM; |
| 443 |
T40 = TL - TM; |
| 444 |
{
|
| 445 |
E T2O, T2P, TO, TP; |
| 446 |
T2O = ii[WS(is, 62)];
|
| 447 |
T2P = ii[WS(is, 30)];
|
| 448 |
T2Q = T2O + T2P; |
| 449 |
T3Q = T2O - T2P; |
| 450 |
TO = ri[WS(is, 14)];
|
| 451 |
TP = ri[WS(is, 46)];
|
| 452 |
TQ = TO + TP; |
| 453 |
T3P = TO - TP; |
| 454 |
} |
| 455 |
T2R = ii[WS(is, 14)];
|
| 456 |
T2S = ii[WS(is, 46)];
|
| 457 |
T2T = T2R + T2S; |
| 458 |
T41 = T2R - T2S; |
| 459 |
{
|
| 460 |
E TV, TW, T3V, T2Y, T2Z, T3W; |
| 461 |
TV = ri[WS(is, 54)];
|
| 462 |
TW = ri[WS(is, 22)];
|
| 463 |
T3V = TV - TW; |
| 464 |
T2Y = ii[WS(is, 54)];
|
| 465 |
T2Z = ii[WS(is, 22)];
|
| 466 |
T3W = T2Y - T2Z; |
| 467 |
TX = TV + TW; |
| 468 |
T43 = T3V + T3W; |
| 469 |
T30 = T2Y + T2Z; |
| 470 |
T3X = T3V - T3W; |
| 471 |
} |
| 472 |
{
|
| 473 |
E TS, TT, T3S, T2V, T2W, T3T; |
| 474 |
TS = ri[WS(is, 6)];
|
| 475 |
TT = ri[WS(is, 38)];
|
| 476 |
T3S = TS - TT; |
| 477 |
T2V = ii[WS(is, 6)];
|
| 478 |
T2W = ii[WS(is, 38)];
|
| 479 |
T3T = T2V - T2W; |
| 480 |
TU = TS + TT; |
| 481 |
T44 = T3T - T3S; |
| 482 |
T2X = T2V + T2W; |
| 483 |
T3U = T3S + T3T; |
| 484 |
} |
| 485 |
} |
| 486 |
{
|
| 487 |
E TR, TY, Tax, Tay; |
| 488 |
TR = TN + TQ; |
| 489 |
TY = TU + TX; |
| 490 |
TZ = TR + TY; |
| 491 |
Tdf = TR - TY; |
| 492 |
Tax = TX - TU; |
| 493 |
Tay = T2Q - T2T; |
| 494 |
Taz = Tax + Tay; |
| 495 |
Tch = Tay - Tax; |
| 496 |
} |
| 497 |
{
|
| 498 |
E TaA, TaB, T2U, T31; |
| 499 |
TaA = TN - TQ; |
| 500 |
TaB = T2X - T30; |
| 501 |
TaC = TaA + TaB; |
| 502 |
Tci = TaA - TaB; |
| 503 |
T2U = T2Q + T2T; |
| 504 |
T31 = T2X + T30; |
| 505 |
T32 = T2U + T31; |
| 506 |
Tdg = T2U - T31; |
| 507 |
} |
| 508 |
{
|
| 509 |
E T3R, T3Y, T7T, T7U; |
| 510 |
T3R = T3P + T3Q; |
| 511 |
T3Y = T3U - T3X; |
| 512 |
T3Z = FNMS(KP707106781, T3Y, T3R); |
| 513 |
T6J = FMA(KP707106781, T3Y, T3R); |
| 514 |
T7T = T3Q - T3P; |
| 515 |
T7U = T44 + T43; |
| 516 |
T7V = FMA(KP707106781, T7U, T7T); |
| 517 |
T9n = FNMS(KP707106781, T7U, T7T); |
| 518 |
} |
| 519 |
{
|
| 520 |
E T7W, T7X, T42, T45; |
| 521 |
T7W = T40 + T41; |
| 522 |
T7X = T3U + T3X; |
| 523 |
T7Y = FMA(KP707106781, T7X, T7W); |
| 524 |
T9o = FNMS(KP707106781, T7X, T7W); |
| 525 |
T42 = T40 - T41; |
| 526 |
T45 = T43 - T44; |
| 527 |
T46 = FNMS(KP707106781, T45, T42); |
| 528 |
T6K = FMA(KP707106781, T45, T42); |
| 529 |
} |
| 530 |
} |
| 531 |
{
|
| 532 |
E T14, T4P, T4d, TaH, T17, T4a, T4S, TaI, T1e, TaZ, T4o, T4U, T1b, TaY, T4j; |
| 533 |
E T4V; |
| 534 |
{
|
| 535 |
E T12, T13, T4Q, T4R; |
| 536 |
T12 = ri[WS(is, 1)];
|
| 537 |
T13 = ri[WS(is, 33)];
|
| 538 |
T14 = T12 + T13; |
| 539 |
T4P = T12 - T13; |
| 540 |
{
|
| 541 |
E T4b, T4c, T15, T16; |
| 542 |
T4b = ii[WS(is, 1)];
|
| 543 |
T4c = ii[WS(is, 33)];
|
| 544 |
T4d = T4b - T4c; |
| 545 |
TaH = T4b + T4c; |
| 546 |
T15 = ri[WS(is, 17)];
|
| 547 |
T16 = ri[WS(is, 49)];
|
| 548 |
T17 = T15 + T16; |
| 549 |
T4a = T15 - T16; |
| 550 |
} |
| 551 |
T4Q = ii[WS(is, 17)];
|
| 552 |
T4R = ii[WS(is, 49)];
|
| 553 |
T4S = T4Q - T4R; |
| 554 |
TaI = T4Q + T4R; |
| 555 |
{
|
| 556 |
E T1c, T1d, T4k, T4l, T4m, T4n; |
| 557 |
T1c = ri[WS(is, 57)];
|
| 558 |
T1d = ri[WS(is, 25)];
|
| 559 |
T4k = T1c - T1d; |
| 560 |
T4l = ii[WS(is, 57)];
|
| 561 |
T4m = ii[WS(is, 25)];
|
| 562 |
T4n = T4l - T4m; |
| 563 |
T1e = T1c + T1d; |
| 564 |
TaZ = T4l + T4m; |
| 565 |
T4o = T4k - T4n; |
| 566 |
T4U = T4k + T4n; |
| 567 |
} |
| 568 |
{
|
| 569 |
E T19, T1a, T4f, T4g, T4h, T4i; |
| 570 |
T19 = ri[WS(is, 9)];
|
| 571 |
T1a = ri[WS(is, 41)];
|
| 572 |
T4f = T19 - T1a; |
| 573 |
T4g = ii[WS(is, 9)];
|
| 574 |
T4h = ii[WS(is, 41)];
|
| 575 |
T4i = T4g - T4h; |
| 576 |
T1b = T19 + T1a; |
| 577 |
TaY = T4g + T4h; |
| 578 |
T4j = T4f + T4i; |
| 579 |
T4V = T4i - T4f; |
| 580 |
} |
| 581 |
} |
| 582 |
{
|
| 583 |
E T18, T1f, TaX, Tb0; |
| 584 |
T18 = T14 + T17; |
| 585 |
T1f = T1b + T1e; |
| 586 |
T1g = T18 + T1f; |
| 587 |
Tdp = T18 - T1f; |
| 588 |
TaX = T14 - T17; |
| 589 |
Tb0 = TaY - TaZ; |
| 590 |
Tb1 = TaX + Tb0; |
| 591 |
Tcm = TaX - Tb0; |
| 592 |
} |
| 593 |
{
|
| 594 |
E Tdk, Tdl, T4e, T4p; |
| 595 |
Tdk = TaH + TaI; |
| 596 |
Tdl = TaY + TaZ; |
| 597 |
Tdm = Tdk - Tdl; |
| 598 |
Tej = Tdk + Tdl; |
| 599 |
T4e = T4a + T4d; |
| 600 |
T4p = T4j - T4o; |
| 601 |
T4q = FNMS(KP707106781, T4p, T4e); |
| 602 |
T6R = FMA(KP707106781, T4p, T4e); |
| 603 |
} |
| 604 |
{
|
| 605 |
E T4T, T4W, T8d, T8e; |
| 606 |
T4T = T4P - T4S; |
| 607 |
T4W = T4U - T4V; |
| 608 |
T4X = FNMS(KP707106781, T4W, T4T); |
| 609 |
T6O = FMA(KP707106781, T4W, T4T); |
| 610 |
T8d = T4P + T4S; |
| 611 |
T8e = T4j + T4o; |
| 612 |
T8f = FMA(KP707106781, T8e, T8d); |
| 613 |
T9s = FNMS(KP707106781, T8e, T8d); |
| 614 |
} |
| 615 |
{
|
| 616 |
E TaG, TaJ, T82, T83; |
| 617 |
TaG = T1e - T1b; |
| 618 |
TaJ = TaH - TaI; |
| 619 |
TaK = TaG + TaJ; |
| 620 |
Tcp = TaJ - TaG; |
| 621 |
T82 = T4d - T4a; |
| 622 |
T83 = T4V + T4U; |
| 623 |
T84 = FMA(KP707106781, T83, T82); |
| 624 |
T9v = FNMS(KP707106781, T83, T82); |
| 625 |
} |
| 626 |
} |
| 627 |
{
|
| 628 |
E T1j, TaL, T1m, TaM, T4G, T4L, TaO, TaN, T86, T85, T1q, TaR, T1t, TaS, T4v; |
| 629 |
E T4A, TaT, TaQ, T89, T88; |
| 630 |
{
|
| 631 |
E T4C, T4K, T4H, T4F; |
| 632 |
{
|
| 633 |
E T1h, T1i, T4I, T4J; |
| 634 |
T1h = ri[WS(is, 5)];
|
| 635 |
T1i = ri[WS(is, 37)];
|
| 636 |
T1j = T1h + T1i; |
| 637 |
T4C = T1h - T1i; |
| 638 |
T4I = ii[WS(is, 5)];
|
| 639 |
T4J = ii[WS(is, 37)];
|
| 640 |
T4K = T4I - T4J; |
| 641 |
TaL = T4I + T4J; |
| 642 |
} |
| 643 |
{
|
| 644 |
E T1k, T1l, T4D, T4E; |
| 645 |
T1k = ri[WS(is, 21)];
|
| 646 |
T1l = ri[WS(is, 53)];
|
| 647 |
T1m = T1k + T1l; |
| 648 |
T4H = T1k - T1l; |
| 649 |
T4D = ii[WS(is, 21)];
|
| 650 |
T4E = ii[WS(is, 53)];
|
| 651 |
T4F = T4D - T4E; |
| 652 |
TaM = T4D + T4E; |
| 653 |
} |
| 654 |
T4G = T4C - T4F; |
| 655 |
T4L = T4H + T4K; |
| 656 |
TaO = T1j - T1m; |
| 657 |
TaN = TaL - TaM; |
| 658 |
T86 = T4C + T4F; |
| 659 |
T85 = T4K - T4H; |
| 660 |
} |
| 661 |
{
|
| 662 |
E T4r, T4z, T4w, T4u; |
| 663 |
{
|
| 664 |
E T1o, T1p, T4x, T4y; |
| 665 |
T1o = ri[WS(is, 61)];
|
| 666 |
T1p = ri[WS(is, 29)];
|
| 667 |
T1q = T1o + T1p; |
| 668 |
T4r = T1o - T1p; |
| 669 |
T4x = ii[WS(is, 61)];
|
| 670 |
T4y = ii[WS(is, 29)];
|
| 671 |
T4z = T4x - T4y; |
| 672 |
TaR = T4x + T4y; |
| 673 |
} |
| 674 |
{
|
| 675 |
E T1r, T1s, T4s, T4t; |
| 676 |
T1r = ri[WS(is, 13)];
|
| 677 |
T1s = ri[WS(is, 45)];
|
| 678 |
T1t = T1r + T1s; |
| 679 |
T4w = T1r - T1s; |
| 680 |
T4s = ii[WS(is, 13)];
|
| 681 |
T4t = ii[WS(is, 45)];
|
| 682 |
T4u = T4s - T4t; |
| 683 |
TaS = T4s + T4t; |
| 684 |
} |
| 685 |
T4v = T4r - T4u; |
| 686 |
T4A = T4w + T4z; |
| 687 |
TaT = TaR - TaS; |
| 688 |
TaQ = T1q - T1t; |
| 689 |
T89 = T4r + T4u; |
| 690 |
T88 = T4z - T4w; |
| 691 |
} |
| 692 |
{
|
| 693 |
E T1n, T1u, Tb2, Tb3; |
| 694 |
T1n = T1j + T1m; |
| 695 |
T1u = T1q + T1t; |
| 696 |
T1v = T1n + T1u; |
| 697 |
Tdn = T1u - T1n; |
| 698 |
Tb2 = TaO + TaN; |
| 699 |
Tb3 = TaQ - TaT; |
| 700 |
Tb4 = Tb2 + Tb3; |
| 701 |
Tcq = Tb2 - Tb3; |
| 702 |
} |
| 703 |
{
|
| 704 |
E Tdq, Tdr, T4B, T4M; |
| 705 |
Tdq = TaL + TaM; |
| 706 |
Tdr = TaR + TaS; |
| 707 |
Tds = Tdq - Tdr; |
| 708 |
Tek = Tdq + Tdr; |
| 709 |
T4B = FMA(KP414213562, T4A, T4v); |
| 710 |
T4M = FNMS(KP414213562, T4L, T4G); |
| 711 |
T4N = T4B - T4M; |
| 712 |
T6P = T4M + T4B; |
| 713 |
} |
| 714 |
{
|
| 715 |
E T4Y, T4Z, T8g, T8h; |
| 716 |
T4Y = FMA(KP414213562, T4G, T4L); |
| 717 |
T4Z = FNMS(KP414213562, T4v, T4A); |
| 718 |
T50 = T4Y - T4Z; |
| 719 |
T6S = T4Y + T4Z; |
| 720 |
T8g = FMA(KP414213562, T85, T86); |
| 721 |
T8h = FNMS(KP414213562, T88, T89); |
| 722 |
T8i = T8g + T8h; |
| 723 |
T9w = T8g - T8h; |
| 724 |
} |
| 725 |
{
|
| 726 |
E TaP, TaU, T87, T8a; |
| 727 |
TaP = TaN - TaO; |
| 728 |
TaU = TaQ + TaT; |
| 729 |
TaV = TaP + TaU; |
| 730 |
Tcn = TaU - TaP; |
| 731 |
T87 = FNMS(KP414213562, T86, T85); |
| 732 |
T8a = FMA(KP414213562, T89, T88); |
| 733 |
T8b = T87 + T8a; |
| 734 |
T9t = T8a - T87; |
| 735 |
} |
| 736 |
} |
| 737 |
{
|
| 738 |
E T1O, Tbc, T1R, Tbd, T5z, T5E, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5o; |
| 739 |
E T5t, Tbk, Tbh, T8s, T8r; |
| 740 |
{
|
| 741 |
E T5v, T5D, T5A, T5y; |
| 742 |
{
|
| 743 |
E T1M, T1N, T5B, T5C; |
| 744 |
T1M = ri[WS(is, 3)];
|
| 745 |
T1N = ri[WS(is, 35)];
|
| 746 |
T1O = T1M + T1N; |
| 747 |
T5v = T1M - T1N; |
| 748 |
T5B = ii[WS(is, 3)];
|
| 749 |
T5C = ii[WS(is, 35)];
|
| 750 |
T5D = T5B - T5C; |
| 751 |
Tbc = T5B + T5C; |
| 752 |
} |
| 753 |
{
|
| 754 |
E T1P, T1Q, T5w, T5x; |
| 755 |
T1P = ri[WS(is, 19)];
|
| 756 |
T1Q = ri[WS(is, 51)];
|
| 757 |
T1R = T1P + T1Q; |
| 758 |
T5A = T1P - T1Q; |
| 759 |
T5w = ii[WS(is, 19)];
|
| 760 |
T5x = ii[WS(is, 51)];
|
| 761 |
T5y = T5w - T5x; |
| 762 |
Tbd = T5w + T5x; |
| 763 |
} |
| 764 |
T5z = T5v - T5y; |
| 765 |
T5E = T5A + T5D; |
| 766 |
Tbf = T1O - T1R; |
| 767 |
Tbe = Tbc - Tbd; |
| 768 |
T8p = T5v + T5y; |
| 769 |
T8o = T5D - T5A; |
| 770 |
} |
| 771 |
{
|
| 772 |
E T5k, T5s, T5p, T5n; |
| 773 |
{
|
| 774 |
E T1T, T1U, T5q, T5r; |
| 775 |
T1T = ri[WS(is, 59)];
|
| 776 |
T1U = ri[WS(is, 27)];
|
| 777 |
T1V = T1T + T1U; |
| 778 |
T5k = T1T - T1U; |
| 779 |
T5q = ii[WS(is, 59)];
|
| 780 |
T5r = ii[WS(is, 27)];
|
| 781 |
T5s = T5q - T5r; |
| 782 |
Tbi = T5q + T5r; |
| 783 |
} |
| 784 |
{
|
| 785 |
E T1W, T1X, T5l, T5m; |
| 786 |
T1W = ri[WS(is, 11)];
|
| 787 |
T1X = ri[WS(is, 43)];
|
| 788 |
T1Y = T1W + T1X; |
| 789 |
T5p = T1W - T1X; |
| 790 |
T5l = ii[WS(is, 11)];
|
| 791 |
T5m = ii[WS(is, 43)];
|
| 792 |
T5n = T5l - T5m; |
| 793 |
Tbj = T5l + T5m; |
| 794 |
} |
| 795 |
T5o = T5k - T5n; |
| 796 |
T5t = T5p + T5s; |
| 797 |
Tbk = Tbi - Tbj; |
| 798 |
Tbh = T1V - T1Y; |
| 799 |
T8s = T5k + T5n; |
| 800 |
T8r = T5s - T5p; |
| 801 |
} |
| 802 |
{
|
| 803 |
E T1S, T1Z, Tbt, Tbu; |
| 804 |
T1S = T1O + T1R; |
| 805 |
T1Z = T1V + T1Y; |
| 806 |
T20 = T1S + T1Z; |
| 807 |
Tdy = T1Z - T1S; |
| 808 |
Tbt = Tbf + Tbe; |
| 809 |
Tbu = Tbh - Tbk; |
| 810 |
Tbv = Tbt + Tbu; |
| 811 |
Tcx = Tbt - Tbu; |
| 812 |
} |
| 813 |
{
|
| 814 |
E TdB, TdC, T5u, T5F; |
| 815 |
TdB = Tbc + Tbd; |
| 816 |
TdC = Tbi + Tbj; |
| 817 |
TdD = TdB - TdC; |
| 818 |
Tep = TdB + TdC; |
| 819 |
T5u = FMA(KP414213562, T5t, T5o); |
| 820 |
T5F = FNMS(KP414213562, T5E, T5z); |
| 821 |
T5G = T5u - T5F; |
| 822 |
T6W = T5F + T5u; |
| 823 |
} |
| 824 |
{
|
| 825 |
E T5R, T5S, T8z, T8A; |
| 826 |
T5R = FMA(KP414213562, T5z, T5E); |
| 827 |
T5S = FNMS(KP414213562, T5o, T5t); |
| 828 |
T5T = T5R - T5S; |
| 829 |
T6Z = T5R + T5S; |
| 830 |
T8z = FMA(KP414213562, T8o, T8p); |
| 831 |
T8A = FNMS(KP414213562, T8r, T8s); |
| 832 |
T8B = T8z + T8A; |
| 833 |
T9D = T8z - T8A; |
| 834 |
} |
| 835 |
{
|
| 836 |
E Tbg, Tbl, T8q, T8t; |
| 837 |
Tbg = Tbe - Tbf; |
| 838 |
Tbl = Tbh + Tbk; |
| 839 |
Tbm = Tbg + Tbl; |
| 840 |
Tcu = Tbl - Tbg; |
| 841 |
T8q = FNMS(KP414213562, T8p, T8o); |
| 842 |
T8t = FMA(KP414213562, T8s, T8r); |
| 843 |
T8u = T8q + T8t; |
| 844 |
T9A = T8t - T8q; |
| 845 |
} |
| 846 |
} |
| 847 |
{
|
| 848 |
E T11, TeD, TeG, TeI, T22, T23, T34, TeH; |
| 849 |
{
|
| 850 |
E Tv, T10, TeE, TeF; |
| 851 |
Tv = Tf + Tu; |
| 852 |
T10 = TK + TZ; |
| 853 |
T11 = Tv + T10; |
| 854 |
TeD = Tv - T10; |
| 855 |
TeE = Tej + Tek; |
| 856 |
TeF = Teo + Tep; |
| 857 |
TeG = TeE - TeF; |
| 858 |
TeI = TeE + TeF; |
| 859 |
} |
| 860 |
{
|
| 861 |
E T1w, T21, T2y, T33; |
| 862 |
T1w = T1g + T1v; |
| 863 |
T21 = T1L + T20; |
| 864 |
T22 = T1w + T21; |
| 865 |
T23 = T21 - T1w; |
| 866 |
T2y = T2i + T2x; |
| 867 |
T33 = T2N + T32; |
| 868 |
T34 = T2y - T33; |
| 869 |
TeH = T2y + T33; |
| 870 |
} |
| 871 |
ro[WS(os, 32)] = T11 - T22;
|
| 872 |
io[WS(os, 32)] = TeH - TeI;
|
| 873 |
ro[0] = T11 + T22;
|
| 874 |
io[0] = TeH + TeI;
|
| 875 |
io[WS(os, 16)] = T23 + T34;
|
| 876 |
ro[WS(os, 16)] = TeD + TeG;
|
| 877 |
io[WS(os, 48)] = T34 - T23;
|
| 878 |
ro[WS(os, 48)] = TeD - TeG;
|
| 879 |
} |
| 880 |
{
|
| 881 |
E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; |
| 882 |
{
|
| 883 |
E Tef, Teg, Tet, Teu; |
| 884 |
Tef = Tf - Tu; |
| 885 |
Teg = T2N - T32; |
| 886 |
Teh = Tef + Teg; |
| 887 |
Tex = Tef - Teg; |
| 888 |
Tet = T2i - T2x; |
| 889 |
Teu = TZ - TK; |
| 890 |
Tev = Tet - Teu; |
| 891 |
TeB = Teu + Tet; |
| 892 |
} |
| 893 |
{
|
| 894 |
E Tei, Tel, Ten, Teq; |
| 895 |
Tei = T1g - T1v; |
| 896 |
Tel = Tej - Tek; |
| 897 |
Tem = Tei + Tel; |
| 898 |
Tey = Tel - Tei; |
| 899 |
Ten = T1L - T20; |
| 900 |
Teq = Teo - Tep; |
| 901 |
Ter = Ten - Teq; |
| 902 |
Tez = Ten + Teq; |
| 903 |
} |
| 904 |
{
|
| 905 |
E Tes, TeC, Tew, TeA; |
| 906 |
Tes = Tem + Ter; |
| 907 |
ro[WS(os, 40)] = FNMS(KP707106781, Tes, Teh);
|
| 908 |
ro[WS(os, 8)] = FMA(KP707106781, Tes, Teh);
|
| 909 |
TeC = Tey + Tez; |
| 910 |
io[WS(os, 40)] = FNMS(KP707106781, TeC, TeB);
|
| 911 |
io[WS(os, 8)] = FMA(KP707106781, TeC, TeB);
|
| 912 |
Tew = Ter - Tem; |
| 913 |
io[WS(os, 56)] = FNMS(KP707106781, Tew, Tev);
|
| 914 |
io[WS(os, 24)] = FMA(KP707106781, Tew, Tev);
|
| 915 |
TeA = Tey - Tez; |
| 916 |
ro[WS(os, 56)] = FNMS(KP707106781, TeA, Tex);
|
| 917 |
ro[WS(os, 24)] = FMA(KP707106781, TeA, Tex);
|
| 918 |
} |
| 919 |
} |
| 920 |
{
|
| 921 |
E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdR, Te0, Tea, TdF; |
| 922 |
E TdQ; |
| 923 |
{
|
| 924 |
E Tde, Tdh, Tdo, Tdt; |
| 925 |
Tdb = Td9 - Tda; |
| 926 |
TdV = Td9 + Tda; |
| 927 |
Te5 = TdI + TdH; |
| 928 |
TdJ = TdH - TdI; |
| 929 |
Tde = Tdc - Tdd; |
| 930 |
Tdh = Tdf + Tdg; |
| 931 |
Tdi = Tde - Tdh; |
| 932 |
Te6 = Tde + Tdh; |
| 933 |
{
|
| 934 |
E Te1, Te2, TdK, TdL; |
| 935 |
Te1 = TdA + TdD; |
| 936 |
Te2 = Tdy + Tdx; |
| 937 |
Te3 = FNMS(KP414213562, Te2, Te1); |
| 938 |
Teb = FMA(KP414213562, Te1, Te2); |
| 939 |
TdK = Tdf - Tdg; |
| 940 |
TdL = Tdd + Tdc; |
| 941 |
TdM = TdK - TdL; |
| 942 |
TdW = TdL + TdK; |
| 943 |
} |
| 944 |
Tdo = Tdm - Tdn; |
| 945 |
Tdt = Tdp - Tds; |
| 946 |
Tdu = FMA(KP414213562, Tdt, Tdo); |
| 947 |
TdR = FNMS(KP414213562, Tdo, Tdt); |
| 948 |
{
|
| 949 |
E TdY, TdZ, Tdz, TdE; |
| 950 |
TdY = Tdp + Tds; |
| 951 |
TdZ = Tdn + Tdm; |
| 952 |
Te0 = FMA(KP414213562, TdZ, TdY); |
| 953 |
Tea = FNMS(KP414213562, TdY, TdZ); |
| 954 |
Tdz = Tdx - Tdy; |
| 955 |
TdE = TdA - TdD; |
| 956 |
TdF = FNMS(KP414213562, TdE, Tdz); |
| 957 |
TdQ = FMA(KP414213562, Tdz, TdE); |
| 958 |
} |
| 959 |
} |
| 960 |
{
|
| 961 |
E Tdj, TdG, TdP, TdS; |
| 962 |
Tdj = FMA(KP707106781, Tdi, Tdb); |
| 963 |
TdG = Tdu - TdF; |
| 964 |
ro[WS(os, 44)] = FNMS(KP923879532, TdG, Tdj);
|
| 965 |
ro[WS(os, 12)] = FMA(KP923879532, TdG, Tdj);
|
| 966 |
TdP = FMA(KP707106781, TdM, TdJ); |
| 967 |
TdS = TdQ - TdR; |
| 968 |
io[WS(os, 44)] = FNMS(KP923879532, TdS, TdP);
|
| 969 |
io[WS(os, 12)] = FMA(KP923879532, TdS, TdP);
|
| 970 |
} |
| 971 |
{
|
| 972 |
E TdN, TdO, TdT, TdU; |
| 973 |
TdN = FNMS(KP707106781, TdM, TdJ); |
| 974 |
TdO = Tdu + TdF; |
| 975 |
io[WS(os, 28)] = FNMS(KP923879532, TdO, TdN);
|
| 976 |
io[WS(os, 60)] = FMA(KP923879532, TdO, TdN);
|
| 977 |
TdT = FNMS(KP707106781, Tdi, Tdb); |
| 978 |
TdU = TdR + TdQ; |
| 979 |
ro[WS(os, 28)] = FNMS(KP923879532, TdU, TdT);
|
| 980 |
ro[WS(os, 60)] = FMA(KP923879532, TdU, TdT);
|
| 981 |
} |
| 982 |
{
|
| 983 |
E TdX, Te4, Ted, Tee; |
| 984 |
TdX = FMA(KP707106781, TdW, TdV); |
| 985 |
Te4 = Te0 + Te3; |
| 986 |
ro[WS(os, 36)] = FNMS(KP923879532, Te4, TdX);
|
| 987 |
ro[WS(os, 4)] = FMA(KP923879532, Te4, TdX);
|
| 988 |
Ted = FMA(KP707106781, Te6, Te5); |
| 989 |
Tee = Tea + Teb; |
| 990 |
io[WS(os, 36)] = FNMS(KP923879532, Tee, Ted);
|
| 991 |
io[WS(os, 4)] = FMA(KP923879532, Tee, Ted);
|
| 992 |
} |
| 993 |
{
|
| 994 |
E Te7, Te8, Te9, Tec; |
| 995 |
Te7 = FNMS(KP707106781, Te6, Te5); |
| 996 |
Te8 = Te3 - Te0; |
| 997 |
io[WS(os, 52)] = FNMS(KP923879532, Te8, Te7);
|
| 998 |
io[WS(os, 20)] = FMA(KP923879532, Te8, Te7);
|
| 999 |
Te9 = FNMS(KP707106781, TdW, TdV); |
| 1000 |
Tec = Tea - Teb; |
| 1001 |
ro[WS(os, 52)] = FNMS(KP923879532, Tec, Te9);
|
| 1002 |
ro[WS(os, 20)] = FMA(KP923879532, Tec, Te9);
|
| 1003 |
} |
| 1004 |
} |
| 1005 |
{
|
| 1006 |
E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td4, Tcs, TcK, TcG, TcQ, TcU, Td5, Tcz; |
| 1007 |
E TcL, Tcc, TcC; |
| 1008 |
Tcc = TbC - TbD; |
| 1009 |
Tcd = FMA(KP707106781, Tcc, Tcb); |
| 1010 |
TcP = FNMS(KP707106781, Tcc, Tcb); |
| 1011 |
TcC = Tan - Tak; |
| 1012 |
TcD = FMA(KP707106781, TcC, TcB); |
| 1013 |
TcZ = FNMS(KP707106781, TcC, TcB); |
| 1014 |
{
|
| 1015 |
E Tcg, Tcj, TcV, TcW; |
| 1016 |
Tcg = FMA(KP414213562, Tcf, Tce); |
| 1017 |
Tcj = FNMS(KP414213562, Tci, Tch); |
| 1018 |
Tck = Tcg - Tcj; |
| 1019 |
Td0 = Tcg + Tcj; |
| 1020 |
TcV = FMA(KP707106781, Tcx, Tcw); |
| 1021 |
TcW = FMA(KP707106781, Tcu, Tct); |
| 1022 |
TcX = FNMS(KP198912367, TcW, TcV); |
| 1023 |
Td4 = FMA(KP198912367, TcV, TcW); |
| 1024 |
} |
| 1025 |
{
|
| 1026 |
E Tco, Tcr, TcE, TcF; |
| 1027 |
Tco = FNMS(KP707106781, Tcn, Tcm); |
| 1028 |
Tcr = FNMS(KP707106781, Tcq, Tcp); |
| 1029 |
Tcs = FMA(KP668178637, Tcr, Tco); |
| 1030 |
TcK = FNMS(KP668178637, Tco, Tcr); |
| 1031 |
TcE = FMA(KP414213562, Tch, Tci); |
| 1032 |
TcF = FNMS(KP414213562, Tce, Tcf); |
| 1033 |
TcG = TcE - TcF; |
| 1034 |
TcQ = TcF + TcE; |
| 1035 |
} |
| 1036 |
{
|
| 1037 |
E TcS, TcT, Tcv, Tcy; |
| 1038 |
TcS = FMA(KP707106781, Tcq, Tcp); |
| 1039 |
TcT = FMA(KP707106781, Tcn, Tcm); |
| 1040 |
TcU = FMA(KP198912367, TcT, TcS); |
| 1041 |
Td5 = FNMS(KP198912367, TcS, TcT); |
| 1042 |
Tcv = FNMS(KP707106781, Tcu, Tct); |
| 1043 |
Tcy = FNMS(KP707106781, Tcx, Tcw); |
| 1044 |
Tcz = FNMS(KP668178637, Tcy, Tcv); |
| 1045 |
TcL = FMA(KP668178637, Tcv, Tcy); |
| 1046 |
} |
| 1047 |
{
|
| 1048 |
E Tcl, TcA, TcN, TcO; |
| 1049 |
Tcl = FMA(KP923879532, Tck, Tcd); |
| 1050 |
TcA = Tcs + Tcz; |
| 1051 |
ro[WS(os, 38)] = FNMS(KP831469612, TcA, Tcl);
|
| 1052 |
ro[WS(os, 6)] = FMA(KP831469612, TcA, Tcl);
|
| 1053 |
TcN = FMA(KP923879532, TcG, TcD); |
| 1054 |
TcO = TcK + TcL; |
| 1055 |
io[WS(os, 38)] = FNMS(KP831469612, TcO, TcN);
|
| 1056 |
io[WS(os, 6)] = FMA(KP831469612, TcO, TcN);
|
| 1057 |
} |
| 1058 |
{
|
| 1059 |
E TcH, TcI, TcJ, TcM; |
| 1060 |
TcH = FNMS(KP923879532, TcG, TcD); |
| 1061 |
TcI = Tcz - Tcs; |
| 1062 |
io[WS(os, 54)] = FNMS(KP831469612, TcI, TcH);
|
| 1063 |
io[WS(os, 22)] = FMA(KP831469612, TcI, TcH);
|
| 1064 |
TcJ = FNMS(KP923879532, Tck, Tcd); |
| 1065 |
TcM = TcK - TcL; |
| 1066 |
ro[WS(os, 54)] = FNMS(KP831469612, TcM, TcJ);
|
| 1067 |
ro[WS(os, 22)] = FMA(KP831469612, TcM, TcJ);
|
| 1068 |
} |
| 1069 |
{
|
| 1070 |
E TcR, TcY, Td3, Td6; |
| 1071 |
TcR = FNMS(KP923879532, TcQ, TcP); |
| 1072 |
TcY = TcU - TcX; |
| 1073 |
ro[WS(os, 46)] = FNMS(KP980785280, TcY, TcR);
|
| 1074 |
ro[WS(os, 14)] = FMA(KP980785280, TcY, TcR);
|
| 1075 |
Td3 = FNMS(KP923879532, Td0, TcZ); |
| 1076 |
Td6 = Td4 - Td5; |
| 1077 |
io[WS(os, 46)] = FNMS(KP980785280, Td6, Td3);
|
| 1078 |
io[WS(os, 14)] = FMA(KP980785280, Td6, Td3);
|
| 1079 |
} |
| 1080 |
{
|
| 1081 |
E Td1, Td2, Td7, Td8; |
| 1082 |
Td1 = FMA(KP923879532, Td0, TcZ); |
| 1083 |
Td2 = TcU + TcX; |
| 1084 |
io[WS(os, 30)] = FNMS(KP980785280, Td2, Td1);
|
| 1085 |
io[WS(os, 62)] = FMA(KP980785280, Td2, Td1);
|
| 1086 |
Td7 = FMA(KP923879532, TcQ, TcP); |
| 1087 |
Td8 = Td5 + Td4; |
| 1088 |
ro[WS(os, 30)] = FNMS(KP980785280, Td8, Td7);
|
| 1089 |
ro[WS(os, 62)] = FMA(KP980785280, Td8, Td7);
|
| 1090 |
} |
| 1091 |
} |
| 1092 |
{
|
| 1093 |
E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbN, TbI, TbS, TbW, Tc6, Tbx; |
| 1094 |
E TbM, Tao, TbE; |
| 1095 |
Tao = Tak + Tan; |
| 1096 |
Tap = FNMS(KP707106781, Tao, Tah); |
| 1097 |
TbR = FMA(KP707106781, Tao, Tah); |
| 1098 |
TbE = TbC + TbD; |
| 1099 |
TbF = FNMS(KP707106781, TbE, TbB); |
| 1100 |
Tc1 = FMA(KP707106781, TbE, TbB); |
| 1101 |
{
|
| 1102 |
E Taw, TaD, TbX, TbY; |
| 1103 |
Taw = FNMS(KP414213562, Tav, Tas); |
| 1104 |
TaD = FMA(KP414213562, TaC, Taz); |
| 1105 |
TaE = Taw - TaD; |
| 1106 |
Tc2 = Taw + TaD; |
| 1107 |
TbX = FMA(KP707106781, Tbv, Tbs); |
| 1108 |
TbY = FMA(KP707106781, Tbm, Tbb); |
| 1109 |
TbZ = FNMS(KP198912367, TbY, TbX); |
| 1110 |
Tc7 = FMA(KP198912367, TbX, TbY); |
| 1111 |
} |
| 1112 |
{
|
| 1113 |
E TaW, Tb5, TbG, TbH; |
| 1114 |
TaW = FNMS(KP707106781, TaV, TaK); |
| 1115 |
Tb5 = FNMS(KP707106781, Tb4, Tb1); |
| 1116 |
Tb6 = FMA(KP668178637, Tb5, TaW); |
| 1117 |
TbN = FNMS(KP668178637, TaW, Tb5); |
| 1118 |
TbG = FNMS(KP414213562, Taz, TaC); |
| 1119 |
TbH = FMA(KP414213562, Tas, Tav); |
| 1120 |
TbI = TbG - TbH; |
| 1121 |
TbS = TbH + TbG; |
| 1122 |
} |
| 1123 |
{
|
| 1124 |
E TbU, TbV, Tbn, Tbw; |
| 1125 |
TbU = FMA(KP707106781, Tb4, Tb1); |
| 1126 |
TbV = FMA(KP707106781, TaV, TaK); |
| 1127 |
TbW = FMA(KP198912367, TbV, TbU); |
| 1128 |
Tc6 = FNMS(KP198912367, TbU, TbV); |
| 1129 |
Tbn = FNMS(KP707106781, Tbm, Tbb); |
| 1130 |
Tbw = FNMS(KP707106781, Tbv, Tbs); |
| 1131 |
Tbx = FNMS(KP668178637, Tbw, Tbn); |
| 1132 |
TbM = FMA(KP668178637, Tbn, Tbw); |
| 1133 |
} |
| 1134 |
{
|
| 1135 |
E TaF, Tby, TbL, TbO; |
| 1136 |
TaF = FMA(KP923879532, TaE, Tap); |
| 1137 |
Tby = Tb6 - Tbx; |
| 1138 |
ro[WS(os, 42)] = FNMS(KP831469612, Tby, TaF);
|
| 1139 |
ro[WS(os, 10)] = FMA(KP831469612, Tby, TaF);
|
| 1140 |
TbL = FMA(KP923879532, TbI, TbF); |
| 1141 |
TbO = TbM - TbN; |
| 1142 |
io[WS(os, 42)] = FNMS(KP831469612, TbO, TbL);
|
| 1143 |
io[WS(os, 10)] = FMA(KP831469612, TbO, TbL);
|
| 1144 |
} |
| 1145 |
{
|
| 1146 |
E TbJ, TbK, TbP, TbQ; |
| 1147 |
TbJ = FNMS(KP923879532, TbI, TbF); |
| 1148 |
TbK = Tb6 + Tbx; |
| 1149 |
io[WS(os, 26)] = FNMS(KP831469612, TbK, TbJ);
|
| 1150 |
io[WS(os, 58)] = FMA(KP831469612, TbK, TbJ);
|
| 1151 |
TbP = FNMS(KP923879532, TaE, Tap); |
| 1152 |
TbQ = TbN + TbM; |
| 1153 |
ro[WS(os, 26)] = FNMS(KP831469612, TbQ, TbP);
|
| 1154 |
ro[WS(os, 58)] = FMA(KP831469612, TbQ, TbP);
|
| 1155 |
} |
| 1156 |
{
|
| 1157 |
E TbT, Tc0, Tc9, Tca; |
| 1158 |
TbT = FMA(KP923879532, TbS, TbR); |
| 1159 |
Tc0 = TbW + TbZ; |
| 1160 |
ro[WS(os, 34)] = FNMS(KP980785280, Tc0, TbT);
|
| 1161 |
ro[WS(os, 2)] = FMA(KP980785280, Tc0, TbT);
|
| 1162 |
Tc9 = FMA(KP923879532, Tc2, Tc1); |
| 1163 |
Tca = Tc6 + Tc7; |
| 1164 |
io[WS(os, 34)] = FNMS(KP980785280, Tca, Tc9);
|
| 1165 |
io[WS(os, 2)] = FMA(KP980785280, Tca, Tc9);
|
| 1166 |
} |
| 1167 |
{
|
| 1168 |
E Tc3, Tc4, Tc5, Tc8; |
| 1169 |
Tc3 = FNMS(KP923879532, Tc2, Tc1); |
| 1170 |
Tc4 = TbZ - TbW; |
| 1171 |
io[WS(os, 50)] = FNMS(KP980785280, Tc4, Tc3);
|
| 1172 |
io[WS(os, 18)] = FMA(KP980785280, Tc4, Tc3);
|
| 1173 |
Tc5 = FNMS(KP923879532, TbS, TbR); |
| 1174 |
Tc8 = Tc6 - Tc7; |
| 1175 |
ro[WS(os, 50)] = FNMS(KP980785280, Tc8, Tc5);
|
| 1176 |
ro[WS(os, 18)] = FMA(KP980785280, Tc8, Tc5);
|
| 1177 |
} |
| 1178 |
} |
| 1179 |
{
|
| 1180 |
E T6F, T7h, T7m, T7x, T7p, T7w, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; |
| 1181 |
E T7d; |
| 1182 |
{
|
| 1183 |
E T6D, T6E, T7k, T7l; |
| 1184 |
T6D = FNMS(KP707106781, T3e, T37); |
| 1185 |
T6E = T65 + T64; |
| 1186 |
T6F = FNMS(KP923879532, T6E, T6D); |
| 1187 |
T7h = FMA(KP923879532, T6E, T6D); |
| 1188 |
T7k = FMA(KP923879532, T6S, T6R); |
| 1189 |
T7l = FMA(KP923879532, T6P, T6O); |
| 1190 |
T7m = FMA(KP098491403, T7l, T7k); |
| 1191 |
T7x = FNMS(KP098491403, T7k, T7l); |
| 1192 |
} |
| 1193 |
{
|
| 1194 |
E T7n, T7o, T6I, T6L; |
| 1195 |
T7n = FMA(KP923879532, T6Z, T6Y); |
| 1196 |
T7o = FMA(KP923879532, T6W, T6V); |
| 1197 |
T7p = FNMS(KP098491403, T7o, T7n); |
| 1198 |
T7w = FMA(KP098491403, T7n, T7o); |
| 1199 |
T6I = FMA(KP198912367, T6H, T6G); |
| 1200 |
T6L = FNMS(KP198912367, T6K, T6J); |
| 1201 |
T6M = T6I - T6L; |
| 1202 |
T7s = T6I + T6L; |
| 1203 |
} |
| 1204 |
{
|
| 1205 |
E T6Q, T6T, T73, T74; |
| 1206 |
T6Q = FNMS(KP923879532, T6P, T6O); |
| 1207 |
T6T = FNMS(KP923879532, T6S, T6R); |
| 1208 |
T6U = FMA(KP820678790, T6T, T6Q); |
| 1209 |
T7c = FNMS(KP820678790, T6Q, T6T); |
| 1210 |
T73 = FNMS(KP707106781, T62, T5Z); |
| 1211 |
T74 = T3m + T3t; |
| 1212 |
T75 = FNMS(KP923879532, T74, T73); |
| 1213 |
T7r = FMA(KP923879532, T74, T73); |
| 1214 |
} |
| 1215 |
{
|
| 1216 |
E T76, T77, T6X, T70; |
| 1217 |
T76 = FMA(KP198912367, T6J, T6K); |
| 1218 |
T77 = FNMS(KP198912367, T6G, T6H); |
| 1219 |
T78 = T76 - T77; |
| 1220 |
T7i = T77 + T76; |
| 1221 |
T6X = FNMS(KP923879532, T6W, T6V); |
| 1222 |
T70 = FNMS(KP923879532, T6Z, T6Y); |
| 1223 |
T71 = FNMS(KP820678790, T70, T6X); |
| 1224 |
T7d = FMA(KP820678790, T6X, T70); |
| 1225 |
} |
| 1226 |
{
|
| 1227 |
E T6N, T72, T7f, T7g; |
| 1228 |
T6N = FMA(KP980785280, T6M, T6F); |
| 1229 |
T72 = T6U + T71; |
| 1230 |
ro[WS(os, 39)] = FNMS(KP773010453, T72, T6N);
|
| 1231 |
ro[WS(os, 7)] = FMA(KP773010453, T72, T6N);
|
| 1232 |
T7f = FMA(KP980785280, T78, T75); |
| 1233 |
T7g = T7c + T7d; |
| 1234 |
io[WS(os, 39)] = FNMS(KP773010453, T7g, T7f);
|
| 1235 |
io[WS(os, 7)] = FMA(KP773010453, T7g, T7f);
|
| 1236 |
} |
| 1237 |
{
|
| 1238 |
E T79, T7a, T7b, T7e; |
| 1239 |
T79 = FNMS(KP980785280, T78, T75); |
| 1240 |
T7a = T71 - T6U; |
| 1241 |
io[WS(os, 55)] = FNMS(KP773010453, T7a, T79);
|
| 1242 |
io[WS(os, 23)] = FMA(KP773010453, T7a, T79);
|
| 1243 |
T7b = FNMS(KP980785280, T6M, T6F); |
| 1244 |
T7e = T7c - T7d; |
| 1245 |
ro[WS(os, 55)] = FNMS(KP773010453, T7e, T7b);
|
| 1246 |
ro[WS(os, 23)] = FMA(KP773010453, T7e, T7b);
|
| 1247 |
} |
| 1248 |
{
|
| 1249 |
E T7j, T7q, T7v, T7y; |
| 1250 |
T7j = FNMS(KP980785280, T7i, T7h); |
| 1251 |
T7q = T7m - T7p; |
| 1252 |
ro[WS(os, 47)] = FNMS(KP995184726, T7q, T7j);
|
| 1253 |
ro[WS(os, 15)] = FMA(KP995184726, T7q, T7j);
|
| 1254 |
T7v = FNMS(KP980785280, T7s, T7r); |
| 1255 |
T7y = T7w - T7x; |
| 1256 |
io[WS(os, 47)] = FNMS(KP995184726, T7y, T7v);
|
| 1257 |
io[WS(os, 15)] = FMA(KP995184726, T7y, T7v);
|
| 1258 |
} |
| 1259 |
{
|
| 1260 |
E T7t, T7u, T7z, T7A; |
| 1261 |
T7t = FMA(KP980785280, T7s, T7r); |
| 1262 |
T7u = T7m + T7p; |
| 1263 |
io[WS(os, 31)] = FNMS(KP995184726, T7u, T7t);
|
| 1264 |
io[WS(os, 63)] = FMA(KP995184726, T7u, T7t);
|
| 1265 |
T7z = FMA(KP980785280, T7i, T7h); |
| 1266 |
T7A = T7x + T7w; |
| 1267 |
ro[WS(os, 31)] = FNMS(KP995184726, T7A, T7z);
|
| 1268 |
ro[WS(os, 63)] = FMA(KP995184726, T7A, T7z);
|
| 1269 |
} |
| 1270 |
} |
| 1271 |
{
|
| 1272 |
E T9j, T9V, Ta0, Tab, Ta3, Taa, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; |
| 1273 |
E T9R; |
| 1274 |
{
|
| 1275 |
E T9h, T9i, T9Y, T9Z; |
| 1276 |
T9h = FNMS(KP707106781, T7C, T7B); |
| 1277 |
T9i = T8I - T8J; |
| 1278 |
T9j = FMA(KP923879532, T9i, T9h); |
| 1279 |
T9V = FNMS(KP923879532, T9i, T9h); |
| 1280 |
T9Y = FMA(KP923879532, T9w, T9v); |
| 1281 |
T9Z = FMA(KP923879532, T9t, T9s); |
| 1282 |
Ta0 = FMA(KP303346683, T9Z, T9Y); |
| 1283 |
Tab = FNMS(KP303346683, T9Y, T9Z); |
| 1284 |
} |
| 1285 |
{
|
| 1286 |
E Ta1, Ta2, T9m, T9p; |
| 1287 |
Ta1 = FMA(KP923879532, T9D, T9C); |
| 1288 |
Ta2 = FMA(KP923879532, T9A, T9z); |
| 1289 |
Ta3 = FNMS(KP303346683, Ta2, Ta1); |
| 1290 |
Taa = FMA(KP303346683, Ta1, Ta2); |
| 1291 |
T9m = FMA(KP668178637, T9l, T9k); |
| 1292 |
T9p = FNMS(KP668178637, T9o, T9n); |
| 1293 |
T9q = T9m - T9p; |
| 1294 |
Ta6 = T9m + T9p; |
| 1295 |
} |
| 1296 |
{
|
| 1297 |
E T9u, T9x, T9H, T9I; |
| 1298 |
T9u = FNMS(KP923879532, T9t, T9s); |
| 1299 |
T9x = FNMS(KP923879532, T9w, T9v); |
| 1300 |
T9y = FMA(KP534511135, T9x, T9u); |
| 1301 |
T9Q = FNMS(KP534511135, T9u, T9x); |
| 1302 |
T9H = FNMS(KP707106781, T8G, T8F); |
| 1303 |
T9I = T7J - T7G; |
| 1304 |
T9J = FMA(KP923879532, T9I, T9H); |
| 1305 |
Ta5 = FNMS(KP923879532, T9I, T9H); |
| 1306 |
} |
| 1307 |
{
|
| 1308 |
E T9K, T9L, T9B, T9E; |
| 1309 |
T9K = FMA(KP668178637, T9n, T9o); |
| 1310 |
T9L = FNMS(KP668178637, T9k, T9l); |
| 1311 |
T9M = T9K - T9L; |
| 1312 |
T9W = T9L + T9K; |
| 1313 |
T9B = FNMS(KP923879532, T9A, T9z); |
| 1314 |
T9E = FNMS(KP923879532, T9D, T9C); |
| 1315 |
T9F = FNMS(KP534511135, T9E, T9B); |
| 1316 |
T9R = FMA(KP534511135, T9B, T9E); |
| 1317 |
} |
| 1318 |
{
|
| 1319 |
E T9r, T9G, T9T, T9U; |
| 1320 |
T9r = FMA(KP831469612, T9q, T9j); |
| 1321 |
T9G = T9y + T9F; |
| 1322 |
ro[WS(os, 37)] = FNMS(KP881921264, T9G, T9r);
|
| 1323 |
ro[WS(os, 5)] = FMA(KP881921264, T9G, T9r);
|
| 1324 |
T9T = FMA(KP831469612, T9M, T9J); |
| 1325 |
T9U = T9Q + T9R; |
| 1326 |
io[WS(os, 37)] = FNMS(KP881921264, T9U, T9T);
|
| 1327 |
io[WS(os, 5)] = FMA(KP881921264, T9U, T9T);
|
| 1328 |
} |
| 1329 |
{
|
| 1330 |
E T9N, T9O, T9P, T9S; |
| 1331 |
T9N = FNMS(KP831469612, T9M, T9J); |
| 1332 |
T9O = T9F - T9y; |
| 1333 |
io[WS(os, 53)] = FNMS(KP881921264, T9O, T9N);
|
| 1334 |
io[WS(os, 21)] = FMA(KP881921264, T9O, T9N);
|
| 1335 |
T9P = FNMS(KP831469612, T9q, T9j); |
| 1336 |
T9S = T9Q - T9R; |
| 1337 |
ro[WS(os, 53)] = FNMS(KP881921264, T9S, T9P);
|
| 1338 |
ro[WS(os, 21)] = FMA(KP881921264, T9S, T9P);
|
| 1339 |
} |
| 1340 |
{
|
| 1341 |
E T9X, Ta4, Ta9, Tac; |
| 1342 |
T9X = FNMS(KP831469612, T9W, T9V); |
| 1343 |
Ta4 = Ta0 - Ta3; |
| 1344 |
ro[WS(os, 45)] = FNMS(KP956940335, Ta4, T9X);
|
| 1345 |
ro[WS(os, 13)] = FMA(KP956940335, Ta4, T9X);
|
| 1346 |
Ta9 = FNMS(KP831469612, Ta6, Ta5); |
| 1347 |
Tac = Taa - Tab; |
| 1348 |
io[WS(os, 45)] = FNMS(KP956940335, Tac, Ta9);
|
| 1349 |
io[WS(os, 13)] = FMA(KP956940335, Tac, Ta9);
|
| 1350 |
} |
| 1351 |
{
|
| 1352 |
E Ta7, Ta8, Tad, Tae; |
| 1353 |
Ta7 = FMA(KP831469612, Ta6, Ta5); |
| 1354 |
Ta8 = Ta0 + Ta3; |
| 1355 |
io[WS(os, 29)] = FNMS(KP956940335, Ta8, Ta7);
|
| 1356 |
io[WS(os, 61)] = FMA(KP956940335, Ta8, Ta7);
|
| 1357 |
Tad = FMA(KP831469612, T9W, T9V); |
| 1358 |
Tae = Tab + Taa; |
| 1359 |
ro[WS(os, 29)] = FNMS(KP956940335, Tae, Tad);
|
| 1360 |
ro[WS(os, 61)] = FMA(KP956940335, Tae, Tad);
|
| 1361 |
} |
| 1362 |
} |
| 1363 |
{
|
| 1364 |
E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6f, T67, T6t, T6a, T6k, T5V; |
| 1365 |
E T6e; |
| 1366 |
{
|
| 1367 |
E T3f, T3u, T6m, T6n; |
| 1368 |
T3f = FMA(KP707106781, T3e, T37); |
| 1369 |
T3u = T3m - T3t; |
| 1370 |
T3v = FNMS(KP923879532, T3u, T3f); |
| 1371 |
T6j = FMA(KP923879532, T3u, T3f); |
| 1372 |
T6m = FMA(KP923879532, T50, T4X); |
| 1373 |
T6n = FMA(KP923879532, T4N, T4q); |
| 1374 |
T6o = FMA(KP303346683, T6n, T6m); |
| 1375 |
T6y = FNMS(KP303346683, T6m, T6n); |
| 1376 |
} |
| 1377 |
{
|
| 1378 |
E T6p, T6q, T3O, T47; |
| 1379 |
T6p = FMA(KP923879532, T5T, T5Q); |
| 1380 |
T6q = FMA(KP923879532, T5G, T5j); |
| 1381 |
T6r = FNMS(KP303346683, T6q, T6p); |
| 1382 |
T6z = FMA(KP303346683, T6p, T6q); |
| 1383 |
T3O = FNMS(KP668178637, T3N, T3G); |
| 1384 |
T47 = FMA(KP668178637, T46, T3Z); |
| 1385 |
T48 = T3O - T47; |
| 1386 |
T6u = T3O + T47; |
| 1387 |
} |
| 1388 |
{
|
| 1389 |
E T4O, T51, T63, T66; |
| 1390 |
T4O = FNMS(KP923879532, T4N, T4q); |
| 1391 |
T51 = FNMS(KP923879532, T50, T4X); |
| 1392 |
T52 = FMA(KP534511135, T51, T4O); |
| 1393 |
T6f = FNMS(KP534511135, T4O, T51); |
| 1394 |
T63 = FMA(KP707106781, T62, T5Z); |
| 1395 |
T66 = T64 - T65; |
| 1396 |
T67 = FNMS(KP923879532, T66, T63); |
| 1397 |
T6t = FMA(KP923879532, T66, T63); |
| 1398 |
} |
| 1399 |
{
|
| 1400 |
E T68, T69, T5H, T5U; |
| 1401 |
T68 = FNMS(KP668178637, T3Z, T46); |
| 1402 |
T69 = FMA(KP668178637, T3G, T3N); |
| 1403 |
T6a = T68 - T69; |
| 1404 |
T6k = T69 + T68; |
| 1405 |
T5H = FNMS(KP923879532, T5G, T5j); |
| 1406 |
T5U = FNMS(KP923879532, T5T, T5Q); |
| 1407 |
T5V = FNMS(KP534511135, T5U, T5H); |
| 1408 |
T6e = FMA(KP534511135, T5H, T5U); |
| 1409 |
} |
| 1410 |
{
|
| 1411 |
E T49, T5W, T6d, T6g; |
| 1412 |
T49 = FMA(KP831469612, T48, T3v); |
| 1413 |
T5W = T52 - T5V; |
| 1414 |
ro[WS(os, 43)] = FNMS(KP881921264, T5W, T49);
|
| 1415 |
ro[WS(os, 11)] = FMA(KP881921264, T5W, T49);
|
| 1416 |
T6d = FMA(KP831469612, T6a, T67); |
| 1417 |
T6g = T6e - T6f; |
| 1418 |
io[WS(os, 43)] = FNMS(KP881921264, T6g, T6d);
|
| 1419 |
io[WS(os, 11)] = FMA(KP881921264, T6g, T6d);
|
| 1420 |
} |
| 1421 |
{
|
| 1422 |
E T6b, T6c, T6h, T6i; |
| 1423 |
T6b = FNMS(KP831469612, T6a, T67); |
| 1424 |
T6c = T52 + T5V; |
| 1425 |
io[WS(os, 27)] = FNMS(KP881921264, T6c, T6b);
|
| 1426 |
io[WS(os, 59)] = FMA(KP881921264, T6c, T6b);
|
| 1427 |
T6h = FNMS(KP831469612, T48, T3v); |
| 1428 |
T6i = T6f + T6e; |
| 1429 |
ro[WS(os, 27)] = FNMS(KP881921264, T6i, T6h);
|
| 1430 |
ro[WS(os, 59)] = FMA(KP881921264, T6i, T6h);
|
| 1431 |
} |
| 1432 |
{
|
| 1433 |
E T6l, T6s, T6B, T6C; |
| 1434 |
T6l = FMA(KP831469612, T6k, T6j); |
| 1435 |
T6s = T6o + T6r; |
| 1436 |
ro[WS(os, 35)] = FNMS(KP956940335, T6s, T6l);
|
| 1437 |
ro[WS(os, 3)] = FMA(KP956940335, T6s, T6l);
|
| 1438 |
T6B = FMA(KP831469612, T6u, T6t); |
| 1439 |
T6C = T6y + T6z; |
| 1440 |
io[WS(os, 35)] = FNMS(KP956940335, T6C, T6B);
|
| 1441 |
io[WS(os, 3)] = FMA(KP956940335, T6C, T6B);
|
| 1442 |
} |
| 1443 |
{
|
| 1444 |
E T6v, T6w, T6x, T6A; |
| 1445 |
T6v = FNMS(KP831469612, T6u, T6t); |
| 1446 |
T6w = T6r - T6o; |
| 1447 |
io[WS(os, 51)] = FNMS(KP956940335, T6w, T6v);
|
| 1448 |
io[WS(os, 19)] = FMA(KP956940335, T6w, T6v);
|
| 1449 |
T6x = FNMS(KP831469612, T6k, T6j); |
| 1450 |
T6A = T6y - T6z; |
| 1451 |
ro[WS(os, 51)] = FNMS(KP956940335, T6A, T6x);
|
| 1452 |
ro[WS(os, 19)] = FMA(KP956940335, T6A, T6x);
|
| 1453 |
} |
| 1454 |
} |
| 1455 |
{
|
| 1456 |
E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8T, T8L, T97, T8O, T8Y, T8D; |
| 1457 |
E T8S; |
| 1458 |
{
|
| 1459 |
E T7D, T7K, T90, T91; |
| 1460 |
T7D = FMA(KP707106781, T7C, T7B); |
| 1461 |
T7K = T7G + T7J; |
| 1462 |
T7L = FNMS(KP923879532, T7K, T7D); |
| 1463 |
T8X = FMA(KP923879532, T7K, T7D); |
| 1464 |
T90 = FMA(KP923879532, T8i, T8f); |
| 1465 |
T91 = FMA(KP923879532, T8b, T84); |
| 1466 |
T92 = FMA(KP098491403, T91, T90); |
| 1467 |
T9c = FNMS(KP098491403, T90, T91); |
| 1468 |
} |
| 1469 |
{
|
| 1470 |
E T93, T94, T7S, T7Z; |
| 1471 |
T93 = FMA(KP923879532, T8B, T8y); |
| 1472 |
T94 = FMA(KP923879532, T8u, T8n); |
| 1473 |
T95 = FNMS(KP098491403, T94, T93); |
| 1474 |
T9d = FMA(KP098491403, T93, T94); |
| 1475 |
T7S = FNMS(KP198912367, T7R, T7O); |
| 1476 |
T7Z = FMA(KP198912367, T7Y, T7V); |
| 1477 |
T80 = T7S - T7Z; |
| 1478 |
T98 = T7S + T7Z; |
| 1479 |
} |
| 1480 |
{
|
| 1481 |
E T8c, T8j, T8H, T8K; |
| 1482 |
T8c = FNMS(KP923879532, T8b, T84); |
| 1483 |
T8j = FNMS(KP923879532, T8i, T8f); |
| 1484 |
T8k = FMA(KP820678790, T8j, T8c); |
| 1485 |
T8T = FNMS(KP820678790, T8c, T8j); |
| 1486 |
T8H = FMA(KP707106781, T8G, T8F); |
| 1487 |
T8K = T8I + T8J; |
| 1488 |
T8L = FNMS(KP923879532, T8K, T8H); |
| 1489 |
T97 = FMA(KP923879532, T8K, T8H); |
| 1490 |
} |
| 1491 |
{
|
| 1492 |
E T8M, T8N, T8v, T8C; |
| 1493 |
T8M = FNMS(KP198912367, T7V, T7Y); |
| 1494 |
T8N = FMA(KP198912367, T7O, T7R); |
| 1495 |
T8O = T8M - T8N; |
| 1496 |
T8Y = T8N + T8M; |
| 1497 |
T8v = FNMS(KP923879532, T8u, T8n); |
| 1498 |
T8C = FNMS(KP923879532, T8B, T8y); |
| 1499 |
T8D = FNMS(KP820678790, T8C, T8v); |
| 1500 |
T8S = FMA(KP820678790, T8v, T8C); |
| 1501 |
} |
| 1502 |
{
|
| 1503 |
E T81, T8E, T8R, T8U; |
| 1504 |
T81 = FMA(KP980785280, T80, T7L); |
| 1505 |
T8E = T8k - T8D; |
| 1506 |
ro[WS(os, 41)] = FNMS(KP773010453, T8E, T81);
|
| 1507 |
ro[WS(os, 9)] = FMA(KP773010453, T8E, T81);
|
| 1508 |
T8R = FMA(KP980785280, T8O, T8L); |
| 1509 |
T8U = T8S - T8T; |
| 1510 |
io[WS(os, 41)] = FNMS(KP773010453, T8U, T8R);
|
| 1511 |
io[WS(os, 9)] = FMA(KP773010453, T8U, T8R);
|
| 1512 |
} |
| 1513 |
{
|
| 1514 |
E T8P, T8Q, T8V, T8W; |
| 1515 |
T8P = FNMS(KP980785280, T8O, T8L); |
| 1516 |
T8Q = T8k + T8D; |
| 1517 |
io[WS(os, 25)] = FNMS(KP773010453, T8Q, T8P);
|
| 1518 |
io[WS(os, 57)] = FMA(KP773010453, T8Q, T8P);
|
| 1519 |
T8V = FNMS(KP980785280, T80, T7L); |
| 1520 |
T8W = T8T + T8S; |
| 1521 |
ro[WS(os, 25)] = FNMS(KP773010453, T8W, T8V);
|
| 1522 |
ro[WS(os, 57)] = FMA(KP773010453, T8W, T8V);
|
| 1523 |
} |
| 1524 |
{
|
| 1525 |
E T8Z, T96, T9f, T9g; |
| 1526 |
T8Z = FMA(KP980785280, T8Y, T8X); |
| 1527 |
T96 = T92 + T95; |
| 1528 |
ro[WS(os, 33)] = FNMS(KP995184726, T96, T8Z);
|
| 1529 |
ro[WS(os, 1)] = FMA(KP995184726, T96, T8Z);
|
| 1530 |
T9f = FMA(KP980785280, T98, T97); |
| 1531 |
T9g = T9c + T9d; |
| 1532 |
io[WS(os, 33)] = FNMS(KP995184726, T9g, T9f);
|
| 1533 |
io[WS(os, 1)] = FMA(KP995184726, T9g, T9f);
|
| 1534 |
} |
| 1535 |
{
|
| 1536 |
E T99, T9a, T9b, T9e; |
| 1537 |
T99 = FNMS(KP980785280, T98, T97); |
| 1538 |
T9a = T95 - T92; |
| 1539 |
io[WS(os, 49)] = FNMS(KP995184726, T9a, T99);
|
| 1540 |
io[WS(os, 17)] = FMA(KP995184726, T9a, T99);
|
| 1541 |
T9b = FNMS(KP980785280, T8Y, T8X); |
| 1542 |
T9e = T9c - T9d; |
| 1543 |
ro[WS(os, 49)] = FNMS(KP995184726, T9e, T9b);
|
| 1544 |
ro[WS(os, 17)] = FMA(KP995184726, T9e, T9b);
|
| 1545 |
} |
| 1546 |
} |
| 1547 |
} |
| 1548 |
} |
| 1549 |
} |
| 1550 |
|
| 1551 |
static const kdft_desc desc = { 64, "n1_64", {520, 0, 392, 0}, &GENUS, 0, 0, 0, 0 }; |
| 1552 |
|
| 1553 |
void X(codelet_n1_64) (planner *p) {
|
| 1554 |
X(kdft_register) (p, n1_64, &desc); |
| 1555 |
} |
| 1556 |
|
| 1557 |
#else
|
| 1558 |
|
| 1559 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 64 -name n1_64 -include dft/scalar/n.h */
|
| 1560 |
|
| 1561 |
/*
|
| 1562 |
* This function contains 912 FP additions, 248 FP multiplications,
|
| 1563 |
* (or, 808 additions, 144 multiplications, 104 fused multiply/add),
|
| 1564 |
* 172 stack variables, 15 constants, and 256 memory accesses
|
| 1565 |
*/
|
| 1566 |
#include "dft/scalar/n.h" |
| 1567 |
|
| 1568 |
static void n1_64(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 1569 |
{
|
| 1570 |
DK(KP773010453, +0.773010453362736960810906609758469800971041293); |
| 1571 |
DK(KP634393284, +0.634393284163645498215171613225493370675687095); |
| 1572 |
DK(KP098017140, +0.098017140329560601994195563888641845861136673); |
| 1573 |
DK(KP995184726, +0.995184726672196886244836953109479921575474869); |
| 1574 |
DK(KP881921264, +0.881921264348355029712756863660388349508442621); |
| 1575 |
DK(KP471396736, +0.471396736825997648556387625905254377657460319); |
| 1576 |
DK(KP290284677, +0.290284677254462367636192375817395274691476278); |
| 1577 |
DK(KP956940335, +0.956940335732208864935797886980269969482849206); |
| 1578 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 1579 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 1580 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 1581 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 1582 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 1583 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 1584 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 1585 |
{
|
| 1586 |
INT i; |
| 1587 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(256, is), MAKE_VOLATILE_STRIDE(256, os)) { |
| 1588 |
E T37, T7B, T8F, T5Z, Tf, Td9, TbB, TcB, T62, T7C, T2i, TdH, Tah, Tcb, T3e; |
| 1589 |
E T8G, Tu, TdI, Tak, TbD, Tan, TbC, T2x, Tda, T3m, T65, T7G, T8J, T7J, T8I; |
| 1590 |
E T3t, T64, TK, Tdd, Tas, Tce, Tav, Tcf, T2N, Tdc, T3G, T6G, T7O, T9k, T7R; |
| 1591 |
E T9l, T3N, T6H, T1L, Tdv, Tbs, Tcw, TdC, Teo, T5j, T6V, T5Q, T6Y, T8y, T9C; |
| 1592 |
E Tbb, Tct, T8n, T9z, TZ, Tdf, Taz, Tch, TaC, Tci, T32, Tdg, T3Z, T6J, T7V; |
| 1593 |
E T9n, T7Y, T9o, T46, T6K, T1g, Tdp, Tb1, Tcm, Tdm, Tej, T4q, T6R, T4X, T6O; |
| 1594 |
E T8f, T9s, TaK, Tcp, T84, T9v, T1v, Tdn, Tb4, Tcq, Tds, Tek, T4N, T6P, T50; |
| 1595 |
E T6S, T8i, T9w, TaV, Tcn, T8b, T9t, T20, TdD, Tbv, Tcu, Tdy, Tep, T5G, T6Z; |
| 1596 |
E T5T, T6W, T8B, T9A, Tbm, Tcx, T8u, T9D; |
| 1597 |
{
|
| 1598 |
E T3, T35, T26, T5Y, T6, T5X, T29, T36, Ta, T39, T2d, T38, Td, T3b, T2g; |
| 1599 |
E T3c; |
| 1600 |
{
|
| 1601 |
E T1, T2, T24, T25; |
| 1602 |
T1 = ri[0];
|
| 1603 |
T2 = ri[WS(is, 32)];
|
| 1604 |
T3 = T1 + T2; |
| 1605 |
T35 = T1 - T2; |
| 1606 |
T24 = ii[0];
|
| 1607 |
T25 = ii[WS(is, 32)];
|
| 1608 |
T26 = T24 + T25; |
| 1609 |
T5Y = T24 - T25; |
| 1610 |
} |
| 1611 |
{
|
| 1612 |
E T4, T5, T27, T28; |
| 1613 |
T4 = ri[WS(is, 16)];
|
| 1614 |
T5 = ri[WS(is, 48)];
|
| 1615 |
T6 = T4 + T5; |
| 1616 |
T5X = T4 - T5; |
| 1617 |
T27 = ii[WS(is, 16)];
|
| 1618 |
T28 = ii[WS(is, 48)];
|
| 1619 |
T29 = T27 + T28; |
| 1620 |
T36 = T27 - T28; |
| 1621 |
} |
| 1622 |
{
|
| 1623 |
E T8, T9, T2b, T2c; |
| 1624 |
T8 = ri[WS(is, 8)];
|
| 1625 |
T9 = ri[WS(is, 40)];
|
| 1626 |
Ta = T8 + T9; |
| 1627 |
T39 = T8 - T9; |
| 1628 |
T2b = ii[WS(is, 8)];
|
| 1629 |
T2c = ii[WS(is, 40)];
|
| 1630 |
T2d = T2b + T2c; |
| 1631 |
T38 = T2b - T2c; |
| 1632 |
} |
| 1633 |
{
|
| 1634 |
E Tb, Tc, T2e, T2f; |
| 1635 |
Tb = ri[WS(is, 56)];
|
| 1636 |
Tc = ri[WS(is, 24)];
|
| 1637 |
Td = Tb + Tc; |
| 1638 |
T3b = Tb - Tc; |
| 1639 |
T2e = ii[WS(is, 56)];
|
| 1640 |
T2f = ii[WS(is, 24)];
|
| 1641 |
T2g = T2e + T2f; |
| 1642 |
T3c = T2e - T2f; |
| 1643 |
} |
| 1644 |
{
|
| 1645 |
E T7, Te, T2a, T2h; |
| 1646 |
T37 = T35 - T36; |
| 1647 |
T7B = T35 + T36; |
| 1648 |
T8F = T5Y - T5X; |
| 1649 |
T5Z = T5X + T5Y; |
| 1650 |
T7 = T3 + T6; |
| 1651 |
Te = Ta + Td; |
| 1652 |
Tf = T7 + Te; |
| 1653 |
Td9 = T7 - Te; |
| 1654 |
{
|
| 1655 |
E Tbz, TbA, T60, T61; |
| 1656 |
Tbz = T26 - T29; |
| 1657 |
TbA = Td - Ta; |
| 1658 |
TbB = Tbz - TbA; |
| 1659 |
TcB = TbA + Tbz; |
| 1660 |
T60 = T3b - T3c; |
| 1661 |
T61 = T39 + T38; |
| 1662 |
T62 = KP707106781 * (T60 - T61); |
| 1663 |
T7C = KP707106781 * (T61 + T60); |
| 1664 |
} |
| 1665 |
T2a = T26 + T29; |
| 1666 |
T2h = T2d + T2g; |
| 1667 |
T2i = T2a + T2h; |
| 1668 |
TdH = T2a - T2h; |
| 1669 |
{
|
| 1670 |
E Taf, Tag, T3a, T3d; |
| 1671 |
Taf = T3 - T6; |
| 1672 |
Tag = T2d - T2g; |
| 1673 |
Tah = Taf - Tag; |
| 1674 |
Tcb = Taf + Tag; |
| 1675 |
T3a = T38 - T39; |
| 1676 |
T3d = T3b + T3c; |
| 1677 |
T3e = KP707106781 * (T3a - T3d); |
| 1678 |
T8G = KP707106781 * (T3a + T3d); |
| 1679 |
} |
| 1680 |
} |
| 1681 |
} |
| 1682 |
{
|
| 1683 |
E Ti, T3j, T2l, T3h, Tl, T3g, T2o, T3k, Tp, T3q, T2s, T3o, Ts, T3n, T2v; |
| 1684 |
E T3r; |
| 1685 |
{
|
| 1686 |
E Tg, Th, T2j, T2k; |
| 1687 |
Tg = ri[WS(is, 4)];
|
| 1688 |
Th = ri[WS(is, 36)];
|
| 1689 |
Ti = Tg + Th; |
| 1690 |
T3j = Tg - Th; |
| 1691 |
T2j = ii[WS(is, 4)];
|
| 1692 |
T2k = ii[WS(is, 36)];
|
| 1693 |
T2l = T2j + T2k; |
| 1694 |
T3h = T2j - T2k; |
| 1695 |
} |
| 1696 |
{
|
| 1697 |
E Tj, Tk, T2m, T2n; |
| 1698 |
Tj = ri[WS(is, 20)];
|
| 1699 |
Tk = ri[WS(is, 52)];
|
| 1700 |
Tl = Tj + Tk; |
| 1701 |
T3g = Tj - Tk; |
| 1702 |
T2m = ii[WS(is, 20)];
|
| 1703 |
T2n = ii[WS(is, 52)];
|
| 1704 |
T2o = T2m + T2n; |
| 1705 |
T3k = T2m - T2n; |
| 1706 |
} |
| 1707 |
{
|
| 1708 |
E Tn, To, T2q, T2r; |
| 1709 |
Tn = ri[WS(is, 60)];
|
| 1710 |
To = ri[WS(is, 28)];
|
| 1711 |
Tp = Tn + To; |
| 1712 |
T3q = Tn - To; |
| 1713 |
T2q = ii[WS(is, 60)];
|
| 1714 |
T2r = ii[WS(is, 28)];
|
| 1715 |
T2s = T2q + T2r; |
| 1716 |
T3o = T2q - T2r; |
| 1717 |
} |
| 1718 |
{
|
| 1719 |
E Tq, Tr, T2t, T2u; |
| 1720 |
Tq = ri[WS(is, 12)];
|
| 1721 |
Tr = ri[WS(is, 44)];
|
| 1722 |
Ts = Tq + Tr; |
| 1723 |
T3n = Tq - Tr; |
| 1724 |
T2t = ii[WS(is, 12)];
|
| 1725 |
T2u = ii[WS(is, 44)];
|
| 1726 |
T2v = T2t + T2u; |
| 1727 |
T3r = T2t - T2u; |
| 1728 |
} |
| 1729 |
{
|
| 1730 |
E Tm, Tt, Tai, Taj; |
| 1731 |
Tm = Ti + Tl; |
| 1732 |
Tt = Tp + Ts; |
| 1733 |
Tu = Tm + Tt; |
| 1734 |
TdI = Tt - Tm; |
| 1735 |
Tai = T2l - T2o; |
| 1736 |
Taj = Ti - Tl; |
| 1737 |
Tak = Tai - Taj; |
| 1738 |
TbD = Taj + Tai; |
| 1739 |
} |
| 1740 |
{
|
| 1741 |
E Tal, Tam, T2p, T2w; |
| 1742 |
Tal = Tp - Ts; |
| 1743 |
Tam = T2s - T2v; |
| 1744 |
Tan = Tal + Tam; |
| 1745 |
TbC = Tal - Tam; |
| 1746 |
T2p = T2l + T2o; |
| 1747 |
T2w = T2s + T2v; |
| 1748 |
T2x = T2p + T2w; |
| 1749 |
Tda = T2p - T2w; |
| 1750 |
} |
| 1751 |
{
|
| 1752 |
E T3i, T3l, T7E, T7F; |
| 1753 |
T3i = T3g + T3h; |
| 1754 |
T3l = T3j - T3k; |
| 1755 |
T3m = FNMS(KP923879532, T3l, KP382683432 * T3i); |
| 1756 |
T65 = FMA(KP923879532, T3i, KP382683432 * T3l); |
| 1757 |
T7E = T3h - T3g; |
| 1758 |
T7F = T3j + T3k; |
| 1759 |
T7G = FNMS(KP382683432, T7F, KP923879532 * T7E); |
| 1760 |
T8J = FMA(KP382683432, T7E, KP923879532 * T7F); |
| 1761 |
} |
| 1762 |
{
|
| 1763 |
E T7H, T7I, T3p, T3s; |
| 1764 |
T7H = T3o - T3n; |
| 1765 |
T7I = T3q + T3r; |
| 1766 |
T7J = FMA(KP923879532, T7H, KP382683432 * T7I); |
| 1767 |
T8I = FNMS(KP382683432, T7H, KP923879532 * T7I); |
| 1768 |
T3p = T3n + T3o; |
| 1769 |
T3s = T3q - T3r; |
| 1770 |
T3t = FMA(KP382683432, T3p, KP923879532 * T3s); |
| 1771 |
T64 = FNMS(KP923879532, T3p, KP382683432 * T3s); |
| 1772 |
} |
| 1773 |
} |
| 1774 |
{
|
| 1775 |
E Ty, T3H, T2B, T3x, TB, T3w, T2E, T3I, TI, T3L, T2L, T3B, TF, T3K, T2I; |
| 1776 |
E T3E; |
| 1777 |
{
|
| 1778 |
E Tw, Tx, T2C, T2D; |
| 1779 |
Tw = ri[WS(is, 2)];
|
| 1780 |
Tx = ri[WS(is, 34)];
|
| 1781 |
Ty = Tw + Tx; |
| 1782 |
T3H = Tw - Tx; |
| 1783 |
{
|
| 1784 |
E T2z, T2A, Tz, TA; |
| 1785 |
T2z = ii[WS(is, 2)];
|
| 1786 |
T2A = ii[WS(is, 34)];
|
| 1787 |
T2B = T2z + T2A; |
| 1788 |
T3x = T2z - T2A; |
| 1789 |
Tz = ri[WS(is, 18)];
|
| 1790 |
TA = ri[WS(is, 50)];
|
| 1791 |
TB = Tz + TA; |
| 1792 |
T3w = Tz - TA; |
| 1793 |
} |
| 1794 |
T2C = ii[WS(is, 18)];
|
| 1795 |
T2D = ii[WS(is, 50)];
|
| 1796 |
T2E = T2C + T2D; |
| 1797 |
T3I = T2C - T2D; |
| 1798 |
{
|
| 1799 |
E TG, TH, T3z, T2J, T2K, T3A; |
| 1800 |
TG = ri[WS(is, 58)];
|
| 1801 |
TH = ri[WS(is, 26)];
|
| 1802 |
T3z = TG - TH; |
| 1803 |
T2J = ii[WS(is, 58)];
|
| 1804 |
T2K = ii[WS(is, 26)];
|
| 1805 |
T3A = T2J - T2K; |
| 1806 |
TI = TG + TH; |
| 1807 |
T3L = T3z + T3A; |
| 1808 |
T2L = T2J + T2K; |
| 1809 |
T3B = T3z - T3A; |
| 1810 |
} |
| 1811 |
{
|
| 1812 |
E TD, TE, T3C, T2G, T2H, T3D; |
| 1813 |
TD = ri[WS(is, 10)];
|
| 1814 |
TE = ri[WS(is, 42)];
|
| 1815 |
T3C = TD - TE; |
| 1816 |
T2G = ii[WS(is, 10)];
|
| 1817 |
T2H = ii[WS(is, 42)];
|
| 1818 |
T3D = T2G - T2H; |
| 1819 |
TF = TD + TE; |
| 1820 |
T3K = T3D - T3C; |
| 1821 |
T2I = T2G + T2H; |
| 1822 |
T3E = T3C + T3D; |
| 1823 |
} |
| 1824 |
} |
| 1825 |
{
|
| 1826 |
E TC, TJ, Taq, Tar; |
| 1827 |
TC = Ty + TB; |
| 1828 |
TJ = TF + TI; |
| 1829 |
TK = TC + TJ; |
| 1830 |
Tdd = TC - TJ; |
| 1831 |
Taq = T2B - T2E; |
| 1832 |
Tar = TI - TF; |
| 1833 |
Tas = Taq - Tar; |
| 1834 |
Tce = Tar + Taq; |
| 1835 |
} |
| 1836 |
{
|
| 1837 |
E Tat, Tau, T2F, T2M; |
| 1838 |
Tat = Ty - TB; |
| 1839 |
Tau = T2I - T2L; |
| 1840 |
Tav = Tat - Tau; |
| 1841 |
Tcf = Tat + Tau; |
| 1842 |
T2F = T2B + T2E; |
| 1843 |
T2M = T2I + T2L; |
| 1844 |
T2N = T2F + T2M; |
| 1845 |
Tdc = T2F - T2M; |
| 1846 |
} |
| 1847 |
{
|
| 1848 |
E T3y, T3F, T7M, T7N; |
| 1849 |
T3y = T3w + T3x; |
| 1850 |
T3F = KP707106781 * (T3B - T3E); |
| 1851 |
T3G = T3y - T3F; |
| 1852 |
T6G = T3y + T3F; |
| 1853 |
T7M = T3x - T3w; |
| 1854 |
T7N = KP707106781 * (T3K + T3L); |
| 1855 |
T7O = T7M - T7N; |
| 1856 |
T9k = T7M + T7N; |
| 1857 |
} |
| 1858 |
{
|
| 1859 |
E T7P, T7Q, T3J, T3M; |
| 1860 |
T7P = T3H + T3I; |
| 1861 |
T7Q = KP707106781 * (T3E + T3B); |
| 1862 |
T7R = T7P - T7Q; |
| 1863 |
T9l = T7P + T7Q; |
| 1864 |
T3J = T3H - T3I; |
| 1865 |
T3M = KP707106781 * (T3K - T3L); |
| 1866 |
T3N = T3J - T3M; |
| 1867 |
T6H = T3J + T3M; |
| 1868 |
} |
| 1869 |
} |
| 1870 |
{
|
| 1871 |
E T1z, T53, T5L, Tbo, T1C, T5I, T56, Tbp, T1J, Tb9, T5h, T5N, T1G, Tb8, T5c; |
| 1872 |
E T5O; |
| 1873 |
{
|
| 1874 |
E T1x, T1y, T54, T55; |
| 1875 |
T1x = ri[WS(is, 63)];
|
| 1876 |
T1y = ri[WS(is, 31)];
|
| 1877 |
T1z = T1x + T1y; |
| 1878 |
T53 = T1x - T1y; |
| 1879 |
{
|
| 1880 |
E T5J, T5K, T1A, T1B; |
| 1881 |
T5J = ii[WS(is, 63)];
|
| 1882 |
T5K = ii[WS(is, 31)];
|
| 1883 |
T5L = T5J - T5K; |
| 1884 |
Tbo = T5J + T5K; |
| 1885 |
T1A = ri[WS(is, 15)];
|
| 1886 |
T1B = ri[WS(is, 47)];
|
| 1887 |
T1C = T1A + T1B; |
| 1888 |
T5I = T1A - T1B; |
| 1889 |
} |
| 1890 |
T54 = ii[WS(is, 15)];
|
| 1891 |
T55 = ii[WS(is, 47)];
|
| 1892 |
T56 = T54 - T55; |
| 1893 |
Tbp = T54 + T55; |
| 1894 |
{
|
| 1895 |
E T1H, T1I, T5d, T5e, T5f, T5g; |
| 1896 |
T1H = ri[WS(is, 55)];
|
| 1897 |
T1I = ri[WS(is, 23)];
|
| 1898 |
T5d = T1H - T1I; |
| 1899 |
T5e = ii[WS(is, 55)];
|
| 1900 |
T5f = ii[WS(is, 23)];
|
| 1901 |
T5g = T5e - T5f; |
| 1902 |
T1J = T1H + T1I; |
| 1903 |
Tb9 = T5e + T5f; |
| 1904 |
T5h = T5d + T5g; |
| 1905 |
T5N = T5d - T5g; |
| 1906 |
} |
| 1907 |
{
|
| 1908 |
E T1E, T1F, T5b, T58, T59, T5a; |
| 1909 |
T1E = ri[WS(is, 7)];
|
| 1910 |
T1F = ri[WS(is, 39)];
|
| 1911 |
T5b = T1E - T1F; |
| 1912 |
T58 = ii[WS(is, 7)];
|
| 1913 |
T59 = ii[WS(is, 39)];
|
| 1914 |
T5a = T58 - T59; |
| 1915 |
T1G = T1E + T1F; |
| 1916 |
Tb8 = T58 + T59; |
| 1917 |
T5c = T5a - T5b; |
| 1918 |
T5O = T5b + T5a; |
| 1919 |
} |
| 1920 |
} |
| 1921 |
{
|
| 1922 |
E T1D, T1K, Tbq, Tbr; |
| 1923 |
T1D = T1z + T1C; |
| 1924 |
T1K = T1G + T1J; |
| 1925 |
T1L = T1D + T1K; |
| 1926 |
Tdv = T1D - T1K; |
| 1927 |
Tbq = Tbo - Tbp; |
| 1928 |
Tbr = T1J - T1G; |
| 1929 |
Tbs = Tbq - Tbr; |
| 1930 |
Tcw = Tbr + Tbq; |
| 1931 |
} |
| 1932 |
{
|
| 1933 |
E TdA, TdB, T57, T5i; |
| 1934 |
TdA = Tbo + Tbp; |
| 1935 |
TdB = Tb8 + Tb9; |
| 1936 |
TdC = TdA - TdB; |
| 1937 |
Teo = TdA + TdB; |
| 1938 |
T57 = T53 - T56; |
| 1939 |
T5i = KP707106781 * (T5c - T5h); |
| 1940 |
T5j = T57 - T5i; |
| 1941 |
T6V = T57 + T5i; |
| 1942 |
} |
| 1943 |
{
|
| 1944 |
E T5M, T5P, T8w, T8x; |
| 1945 |
T5M = T5I + T5L; |
| 1946 |
T5P = KP707106781 * (T5N - T5O); |
| 1947 |
T5Q = T5M - T5P; |
| 1948 |
T6Y = T5M + T5P; |
| 1949 |
T8w = T5L - T5I; |
| 1950 |
T8x = KP707106781 * (T5c + T5h); |
| 1951 |
T8y = T8w - T8x; |
| 1952 |
T9C = T8w + T8x; |
| 1953 |
} |
| 1954 |
{
|
| 1955 |
E Tb7, Tba, T8l, T8m; |
| 1956 |
Tb7 = T1z - T1C; |
| 1957 |
Tba = Tb8 - Tb9; |
| 1958 |
Tbb = Tb7 - Tba; |
| 1959 |
Tct = Tb7 + Tba; |
| 1960 |
T8l = T53 + T56; |
| 1961 |
T8m = KP707106781 * (T5O + T5N); |
| 1962 |
T8n = T8l - T8m; |
| 1963 |
T9z = T8l + T8m; |
| 1964 |
} |
| 1965 |
} |
| 1966 |
{
|
| 1967 |
E TN, T40, T2Q, T3Q, TQ, T3P, T2T, T41, TX, T44, T30, T3U, TU, T43, T2X; |
| 1968 |
E T3X; |
| 1969 |
{
|
| 1970 |
E TL, TM, T2R, T2S; |
| 1971 |
TL = ri[WS(is, 62)];
|
| 1972 |
TM = ri[WS(is, 30)];
|
| 1973 |
TN = TL + TM; |
| 1974 |
T40 = TL - TM; |
| 1975 |
{
|
| 1976 |
E T2O, T2P, TO, TP; |
| 1977 |
T2O = ii[WS(is, 62)];
|
| 1978 |
T2P = ii[WS(is, 30)];
|
| 1979 |
T2Q = T2O + T2P; |
| 1980 |
T3Q = T2O - T2P; |
| 1981 |
TO = ri[WS(is, 14)];
|
| 1982 |
TP = ri[WS(is, 46)];
|
| 1983 |
TQ = TO + TP; |
| 1984 |
T3P = TO - TP; |
| 1985 |
} |
| 1986 |
T2R = ii[WS(is, 14)];
|
| 1987 |
T2S = ii[WS(is, 46)];
|
| 1988 |
T2T = T2R + T2S; |
| 1989 |
T41 = T2R - T2S; |
| 1990 |
{
|
| 1991 |
E TV, TW, T3S, T2Y, T2Z, T3T; |
| 1992 |
TV = ri[WS(is, 54)];
|
| 1993 |
TW = ri[WS(is, 22)];
|
| 1994 |
T3S = TV - TW; |
| 1995 |
T2Y = ii[WS(is, 54)];
|
| 1996 |
T2Z = ii[WS(is, 22)];
|
| 1997 |
T3T = T2Y - T2Z; |
| 1998 |
TX = TV + TW; |
| 1999 |
T44 = T3S + T3T; |
| 2000 |
T30 = T2Y + T2Z; |
| 2001 |
T3U = T3S - T3T; |
| 2002 |
} |
| 2003 |
{
|
| 2004 |
E TS, TT, T3V, T2V, T2W, T3W; |
| 2005 |
TS = ri[WS(is, 6)];
|
| 2006 |
TT = ri[WS(is, 38)];
|
| 2007 |
T3V = TS - TT; |
| 2008 |
T2V = ii[WS(is, 6)];
|
| 2009 |
T2W = ii[WS(is, 38)];
|
| 2010 |
T3W = T2V - T2W; |
| 2011 |
TU = TS + TT; |
| 2012 |
T43 = T3W - T3V; |
| 2013 |
T2X = T2V + T2W; |
| 2014 |
T3X = T3V + T3W; |
| 2015 |
} |
| 2016 |
} |
| 2017 |
{
|
| 2018 |
E TR, TY, Tax, Tay; |
| 2019 |
TR = TN + TQ; |
| 2020 |
TY = TU + TX; |
| 2021 |
TZ = TR + TY; |
| 2022 |
Tdf = TR - TY; |
| 2023 |
Tax = T2Q - T2T; |
| 2024 |
Tay = TX - TU; |
| 2025 |
Taz = Tax - Tay; |
| 2026 |
Tch = Tay + Tax; |
| 2027 |
} |
| 2028 |
{
|
| 2029 |
E TaA, TaB, T2U, T31; |
| 2030 |
TaA = TN - TQ; |
| 2031 |
TaB = T2X - T30; |
| 2032 |
TaC = TaA - TaB; |
| 2033 |
Tci = TaA + TaB; |
| 2034 |
T2U = T2Q + T2T; |
| 2035 |
T31 = T2X + T30; |
| 2036 |
T32 = T2U + T31; |
| 2037 |
Tdg = T2U - T31; |
| 2038 |
} |
| 2039 |
{
|
| 2040 |
E T3R, T3Y, T7T, T7U; |
| 2041 |
T3R = T3P + T3Q; |
| 2042 |
T3Y = KP707106781 * (T3U - T3X); |
| 2043 |
T3Z = T3R - T3Y; |
| 2044 |
T6J = T3R + T3Y; |
| 2045 |
T7T = T40 + T41; |
| 2046 |
T7U = KP707106781 * (T3X + T3U); |
| 2047 |
T7V = T7T - T7U; |
| 2048 |
T9n = T7T + T7U; |
| 2049 |
} |
| 2050 |
{
|
| 2051 |
E T7W, T7X, T42, T45; |
| 2052 |
T7W = T3Q - T3P; |
| 2053 |
T7X = KP707106781 * (T43 + T44); |
| 2054 |
T7Y = T7W - T7X; |
| 2055 |
T9o = T7W + T7X; |
| 2056 |
T42 = T40 - T41; |
| 2057 |
T45 = KP707106781 * (T43 - T44); |
| 2058 |
T46 = T42 - T45; |
| 2059 |
T6K = T42 + T45; |
| 2060 |
} |
| 2061 |
} |
| 2062 |
{
|
| 2063 |
E T14, T4P, T4d, TaG, T17, T4a, T4S, TaH, T1e, TaZ, T4j, T4V, T1b, TaY, T4o; |
| 2064 |
E T4U; |
| 2065 |
{
|
| 2066 |
E T12, T13, T4Q, T4R; |
| 2067 |
T12 = ri[WS(is, 1)];
|
| 2068 |
T13 = ri[WS(is, 33)];
|
| 2069 |
T14 = T12 + T13; |
| 2070 |
T4P = T12 - T13; |
| 2071 |
{
|
| 2072 |
E T4b, T4c, T15, T16; |
| 2073 |
T4b = ii[WS(is, 1)];
|
| 2074 |
T4c = ii[WS(is, 33)];
|
| 2075 |
T4d = T4b - T4c; |
| 2076 |
TaG = T4b + T4c; |
| 2077 |
T15 = ri[WS(is, 17)];
|
| 2078 |
T16 = ri[WS(is, 49)];
|
| 2079 |
T17 = T15 + T16; |
| 2080 |
T4a = T15 - T16; |
| 2081 |
} |
| 2082 |
T4Q = ii[WS(is, 17)];
|
| 2083 |
T4R = ii[WS(is, 49)];
|
| 2084 |
T4S = T4Q - T4R; |
| 2085 |
TaH = T4Q + T4R; |
| 2086 |
{
|
| 2087 |
E T1c, T1d, T4f, T4g, T4h, T4i; |
| 2088 |
T1c = ri[WS(is, 57)];
|
| 2089 |
T1d = ri[WS(is, 25)];
|
| 2090 |
T4f = T1c - T1d; |
| 2091 |
T4g = ii[WS(is, 57)];
|
| 2092 |
T4h = ii[WS(is, 25)];
|
| 2093 |
T4i = T4g - T4h; |
| 2094 |
T1e = T1c + T1d; |
| 2095 |
TaZ = T4g + T4h; |
| 2096 |
T4j = T4f - T4i; |
| 2097 |
T4V = T4f + T4i; |
| 2098 |
} |
| 2099 |
{
|
| 2100 |
E T19, T1a, T4k, T4l, T4m, T4n; |
| 2101 |
T19 = ri[WS(is, 9)];
|
| 2102 |
T1a = ri[WS(is, 41)];
|
| 2103 |
T4k = T19 - T1a; |
| 2104 |
T4l = ii[WS(is, 9)];
|
| 2105 |
T4m = ii[WS(is, 41)];
|
| 2106 |
T4n = T4l - T4m; |
| 2107 |
T1b = T19 + T1a; |
| 2108 |
TaY = T4l + T4m; |
| 2109 |
T4o = T4k + T4n; |
| 2110 |
T4U = T4n - T4k; |
| 2111 |
} |
| 2112 |
} |
| 2113 |
{
|
| 2114 |
E T18, T1f, TaX, Tb0; |
| 2115 |
T18 = T14 + T17; |
| 2116 |
T1f = T1b + T1e; |
| 2117 |
T1g = T18 + T1f; |
| 2118 |
Tdp = T18 - T1f; |
| 2119 |
TaX = T14 - T17; |
| 2120 |
Tb0 = TaY - TaZ; |
| 2121 |
Tb1 = TaX - Tb0; |
| 2122 |
Tcm = TaX + Tb0; |
| 2123 |
} |
| 2124 |
{
|
| 2125 |
E Tdk, Tdl, T4e, T4p; |
| 2126 |
Tdk = TaG + TaH; |
| 2127 |
Tdl = TaY + TaZ; |
| 2128 |
Tdm = Tdk - Tdl; |
| 2129 |
Tej = Tdk + Tdl; |
| 2130 |
T4e = T4a + T4d; |
| 2131 |
T4p = KP707106781 * (T4j - T4o); |
| 2132 |
T4q = T4e - T4p; |
| 2133 |
T6R = T4e + T4p; |
| 2134 |
} |
| 2135 |
{
|
| 2136 |
E T4T, T4W, T8d, T8e; |
| 2137 |
T4T = T4P - T4S; |
| 2138 |
T4W = KP707106781 * (T4U - T4V); |
| 2139 |
T4X = T4T - T4W; |
| 2140 |
T6O = T4T + T4W; |
| 2141 |
T8d = T4P + T4S; |
| 2142 |
T8e = KP707106781 * (T4o + T4j); |
| 2143 |
T8f = T8d - T8e; |
| 2144 |
T9s = T8d + T8e; |
| 2145 |
} |
| 2146 |
{
|
| 2147 |
E TaI, TaJ, T82, T83; |
| 2148 |
TaI = TaG - TaH; |
| 2149 |
TaJ = T1e - T1b; |
| 2150 |
TaK = TaI - TaJ; |
| 2151 |
Tcp = TaJ + TaI; |
| 2152 |
T82 = T4d - T4a; |
| 2153 |
T83 = KP707106781 * (T4U + T4V); |
| 2154 |
T84 = T82 - T83; |
| 2155 |
T9v = T82 + T83; |
| 2156 |
} |
| 2157 |
} |
| 2158 |
{
|
| 2159 |
E T1j, TaR, T1m, TaS, T4G, T4L, TaT, TaQ, T89, T88, T1q, TaM, T1t, TaN, T4v; |
| 2160 |
E T4A, TaO, TaL, T86, T85; |
| 2161 |
{
|
| 2162 |
E T4H, T4F, T4C, T4K; |
| 2163 |
{
|
| 2164 |
E T1h, T1i, T4D, T4E; |
| 2165 |
T1h = ri[WS(is, 5)];
|
| 2166 |
T1i = ri[WS(is, 37)];
|
| 2167 |
T1j = T1h + T1i; |
| 2168 |
T4H = T1h - T1i; |
| 2169 |
T4D = ii[WS(is, 5)];
|
| 2170 |
T4E = ii[WS(is, 37)];
|
| 2171 |
T4F = T4D - T4E; |
| 2172 |
TaR = T4D + T4E; |
| 2173 |
} |
| 2174 |
{
|
| 2175 |
E T1k, T1l, T4I, T4J; |
| 2176 |
T1k = ri[WS(is, 21)];
|
| 2177 |
T1l = ri[WS(is, 53)];
|
| 2178 |
T1m = T1k + T1l; |
| 2179 |
T4C = T1k - T1l; |
| 2180 |
T4I = ii[WS(is, 21)];
|
| 2181 |
T4J = ii[WS(is, 53)];
|
| 2182 |
T4K = T4I - T4J; |
| 2183 |
TaS = T4I + T4J; |
| 2184 |
} |
| 2185 |
T4G = T4C + T4F; |
| 2186 |
T4L = T4H - T4K; |
| 2187 |
TaT = TaR - TaS; |
| 2188 |
TaQ = T1j - T1m; |
| 2189 |
T89 = T4H + T4K; |
| 2190 |
T88 = T4F - T4C; |
| 2191 |
} |
| 2192 |
{
|
| 2193 |
E T4r, T4z, T4w, T4u; |
| 2194 |
{
|
| 2195 |
E T1o, T1p, T4x, T4y; |
| 2196 |
T1o = ri[WS(is, 61)];
|
| 2197 |
T1p = ri[WS(is, 29)];
|
| 2198 |
T1q = T1o + T1p; |
| 2199 |
T4r = T1o - T1p; |
| 2200 |
T4x = ii[WS(is, 61)];
|
| 2201 |
T4y = ii[WS(is, 29)];
|
| 2202 |
T4z = T4x - T4y; |
| 2203 |
TaM = T4x + T4y; |
| 2204 |
} |
| 2205 |
{
|
| 2206 |
E T1r, T1s, T4s, T4t; |
| 2207 |
T1r = ri[WS(is, 13)];
|
| 2208 |
T1s = ri[WS(is, 45)];
|
| 2209 |
T1t = T1r + T1s; |
| 2210 |
T4w = T1r - T1s; |
| 2211 |
T4s = ii[WS(is, 13)];
|
| 2212 |
T4t = ii[WS(is, 45)];
|
| 2213 |
T4u = T4s - T4t; |
| 2214 |
TaN = T4s + T4t; |
| 2215 |
} |
| 2216 |
T4v = T4r - T4u; |
| 2217 |
T4A = T4w + T4z; |
| 2218 |
TaO = TaM - TaN; |
| 2219 |
TaL = T1q - T1t; |
| 2220 |
T86 = T4z - T4w; |
| 2221 |
T85 = T4r + T4u; |
| 2222 |
} |
| 2223 |
{
|
| 2224 |
E T1n, T1u, Tb2, Tb3; |
| 2225 |
T1n = T1j + T1m; |
| 2226 |
T1u = T1q + T1t; |
| 2227 |
T1v = T1n + T1u; |
| 2228 |
Tdn = T1u - T1n; |
| 2229 |
Tb2 = TaT - TaQ; |
| 2230 |
Tb3 = TaL + TaO; |
| 2231 |
Tb4 = KP707106781 * (Tb2 - Tb3); |
| 2232 |
Tcq = KP707106781 * (Tb2 + Tb3); |
| 2233 |
} |
| 2234 |
{
|
| 2235 |
E Tdq, Tdr, T4B, T4M; |
| 2236 |
Tdq = TaR + TaS; |
| 2237 |
Tdr = TaM + TaN; |
| 2238 |
Tds = Tdq - Tdr; |
| 2239 |
Tek = Tdq + Tdr; |
| 2240 |
T4B = FNMS(KP923879532, T4A, KP382683432 * T4v); |
| 2241 |
T4M = FMA(KP923879532, T4G, KP382683432 * T4L); |
| 2242 |
T4N = T4B - T4M; |
| 2243 |
T6P = T4M + T4B; |
| 2244 |
} |
| 2245 |
{
|
| 2246 |
E T4Y, T4Z, T8g, T8h; |
| 2247 |
T4Y = FNMS(KP923879532, T4L, KP382683432 * T4G); |
| 2248 |
T4Z = FMA(KP382683432, T4A, KP923879532 * T4v); |
| 2249 |
T50 = T4Y - T4Z; |
| 2250 |
T6S = T4Y + T4Z; |
| 2251 |
T8g = FNMS(KP382683432, T89, KP923879532 * T88); |
| 2252 |
T8h = FMA(KP923879532, T86, KP382683432 * T85); |
| 2253 |
T8i = T8g - T8h; |
| 2254 |
T9w = T8g + T8h; |
| 2255 |
} |
| 2256 |
{
|
| 2257 |
E TaP, TaU, T87, T8a; |
| 2258 |
TaP = TaL - TaO; |
| 2259 |
TaU = TaQ + TaT; |
| 2260 |
TaV = KP707106781 * (TaP - TaU); |
| 2261 |
Tcn = KP707106781 * (TaU + TaP); |
| 2262 |
T87 = FNMS(KP382683432, T86, KP923879532 * T85); |
| 2263 |
T8a = FMA(KP382683432, T88, KP923879532 * T89); |
| 2264 |
T8b = T87 - T8a; |
| 2265 |
T9t = T8a + T87; |
| 2266 |
} |
| 2267 |
} |
| 2268 |
{
|
| 2269 |
E T1O, Tbc, T1R, Tbd, T5o, T5t, Tbf, Tbe, T8p, T8o, T1V, Tbi, T1Y, Tbj, T5z; |
| 2270 |
E T5E, Tbk, Tbh, T8s, T8r; |
| 2271 |
{
|
| 2272 |
E T5p, T5n, T5k, T5s; |
| 2273 |
{
|
| 2274 |
E T1M, T1N, T5l, T5m; |
| 2275 |
T1M = ri[WS(is, 3)];
|
| 2276 |
T1N = ri[WS(is, 35)];
|
| 2277 |
T1O = T1M + T1N; |
| 2278 |
T5p = T1M - T1N; |
| 2279 |
T5l = ii[WS(is, 3)];
|
| 2280 |
T5m = ii[WS(is, 35)];
|
| 2281 |
T5n = T5l - T5m; |
| 2282 |
Tbc = T5l + T5m; |
| 2283 |
} |
| 2284 |
{
|
| 2285 |
E T1P, T1Q, T5q, T5r; |
| 2286 |
T1P = ri[WS(is, 19)];
|
| 2287 |
T1Q = ri[WS(is, 51)];
|
| 2288 |
T1R = T1P + T1Q; |
| 2289 |
T5k = T1P - T1Q; |
| 2290 |
T5q = ii[WS(is, 19)];
|
| 2291 |
T5r = ii[WS(is, 51)];
|
| 2292 |
T5s = T5q - T5r; |
| 2293 |
Tbd = T5q + T5r; |
| 2294 |
} |
| 2295 |
T5o = T5k + T5n; |
| 2296 |
T5t = T5p - T5s; |
| 2297 |
Tbf = T1O - T1R; |
| 2298 |
Tbe = Tbc - Tbd; |
| 2299 |
T8p = T5p + T5s; |
| 2300 |
T8o = T5n - T5k; |
| 2301 |
} |
| 2302 |
{
|
| 2303 |
E T5A, T5y, T5v, T5D; |
| 2304 |
{
|
| 2305 |
E T1T, T1U, T5w, T5x; |
| 2306 |
T1T = ri[WS(is, 59)];
|
| 2307 |
T1U = ri[WS(is, 27)];
|
| 2308 |
T1V = T1T + T1U; |
| 2309 |
T5A = T1T - T1U; |
| 2310 |
T5w = ii[WS(is, 59)];
|
| 2311 |
T5x = ii[WS(is, 27)];
|
| 2312 |
T5y = T5w - T5x; |
| 2313 |
Tbi = T5w + T5x; |
| 2314 |
} |
| 2315 |
{
|
| 2316 |
E T1W, T1X, T5B, T5C; |
| 2317 |
T1W = ri[WS(is, 11)];
|
| 2318 |
T1X = ri[WS(is, 43)];
|
| 2319 |
T1Y = T1W + T1X; |
| 2320 |
T5v = T1W - T1X; |
| 2321 |
T5B = ii[WS(is, 11)];
|
| 2322 |
T5C = ii[WS(is, 43)];
|
| 2323 |
T5D = T5B - T5C; |
| 2324 |
Tbj = T5B + T5C; |
| 2325 |
} |
| 2326 |
T5z = T5v + T5y; |
| 2327 |
T5E = T5A - T5D; |
| 2328 |
Tbk = Tbi - Tbj; |
| 2329 |
Tbh = T1V - T1Y; |
| 2330 |
T8s = T5A + T5D; |
| 2331 |
T8r = T5y - T5v; |
| 2332 |
} |
| 2333 |
{
|
| 2334 |
E T1S, T1Z, Tbt, Tbu; |
| 2335 |
T1S = T1O + T1R; |
| 2336 |
T1Z = T1V + T1Y; |
| 2337 |
T20 = T1S + T1Z; |
| 2338 |
TdD = T1Z - T1S; |
| 2339 |
Tbt = Tbh - Tbk; |
| 2340 |
Tbu = Tbf + Tbe; |
| 2341 |
Tbv = KP707106781 * (Tbt - Tbu); |
| 2342 |
Tcu = KP707106781 * (Tbu + Tbt); |
| 2343 |
} |
| 2344 |
{
|
| 2345 |
E Tdw, Tdx, T5u, T5F; |
| 2346 |
Tdw = Tbc + Tbd; |
| 2347 |
Tdx = Tbi + Tbj; |
| 2348 |
Tdy = Tdw - Tdx; |
| 2349 |
Tep = Tdw + Tdx; |
| 2350 |
T5u = FNMS(KP923879532, T5t, KP382683432 * T5o); |
| 2351 |
T5F = FMA(KP382683432, T5z, KP923879532 * T5E); |
| 2352 |
T5G = T5u - T5F; |
| 2353 |
T6Z = T5u + T5F; |
| 2354 |
} |
| 2355 |
{
|
| 2356 |
E T5R, T5S, T8z, T8A; |
| 2357 |
T5R = FNMS(KP923879532, T5z, KP382683432 * T5E); |
| 2358 |
T5S = FMA(KP923879532, T5o, KP382683432 * T5t); |
| 2359 |
T5T = T5R - T5S; |
| 2360 |
T6W = T5S + T5R; |
| 2361 |
T8z = FNMS(KP382683432, T8r, KP923879532 * T8s); |
| 2362 |
T8A = FMA(KP382683432, T8o, KP923879532 * T8p); |
| 2363 |
T8B = T8z - T8A; |
| 2364 |
T9A = T8A + T8z; |
| 2365 |
} |
| 2366 |
{
|
| 2367 |
E Tbg, Tbl, T8q, T8t; |
| 2368 |
Tbg = Tbe - Tbf; |
| 2369 |
Tbl = Tbh + Tbk; |
| 2370 |
Tbm = KP707106781 * (Tbg - Tbl); |
| 2371 |
Tcx = KP707106781 * (Tbg + Tbl); |
| 2372 |
T8q = FNMS(KP382683432, T8p, KP923879532 * T8o); |
| 2373 |
T8t = FMA(KP923879532, T8r, KP382683432 * T8s); |
| 2374 |
T8u = T8q - T8t; |
| 2375 |
T9D = T8q + T8t; |
| 2376 |
} |
| 2377 |
} |
| 2378 |
{
|
| 2379 |
E T11, TeD, TeG, TeI, T22, T23, T34, TeH; |
| 2380 |
{
|
| 2381 |
E Tv, T10, TeE, TeF; |
| 2382 |
Tv = Tf + Tu; |
| 2383 |
T10 = TK + TZ; |
| 2384 |
T11 = Tv + T10; |
| 2385 |
TeD = Tv - T10; |
| 2386 |
TeE = Tej + Tek; |
| 2387 |
TeF = Teo + Tep; |
| 2388 |
TeG = TeE - TeF; |
| 2389 |
TeI = TeE + TeF; |
| 2390 |
} |
| 2391 |
{
|
| 2392 |
E T1w, T21, T2y, T33; |
| 2393 |
T1w = T1g + T1v; |
| 2394 |
T21 = T1L + T20; |
| 2395 |
T22 = T1w + T21; |
| 2396 |
T23 = T21 - T1w; |
| 2397 |
T2y = T2i + T2x; |
| 2398 |
T33 = T2N + T32; |
| 2399 |
T34 = T2y - T33; |
| 2400 |
TeH = T2y + T33; |
| 2401 |
} |
| 2402 |
ro[WS(os, 32)] = T11 - T22;
|
| 2403 |
io[WS(os, 32)] = TeH - TeI;
|
| 2404 |
ro[0] = T11 + T22;
|
| 2405 |
io[0] = TeH + TeI;
|
| 2406 |
io[WS(os, 16)] = T23 + T34;
|
| 2407 |
ro[WS(os, 16)] = TeD + TeG;
|
| 2408 |
io[WS(os, 48)] = T34 - T23;
|
| 2409 |
ro[WS(os, 48)] = TeD - TeG;
|
| 2410 |
} |
| 2411 |
{
|
| 2412 |
E Teh, Tex, Tev, TeB, Tem, Tey, Ter, Tez; |
| 2413 |
{
|
| 2414 |
E Tef, Teg, Tet, Teu; |
| 2415 |
Tef = Tf - Tu; |
| 2416 |
Teg = T2N - T32; |
| 2417 |
Teh = Tef + Teg; |
| 2418 |
Tex = Tef - Teg; |
| 2419 |
Tet = T2i - T2x; |
| 2420 |
Teu = TZ - TK; |
| 2421 |
Tev = Tet - Teu; |
| 2422 |
TeB = Teu + Tet; |
| 2423 |
} |
| 2424 |
{
|
| 2425 |
E Tei, Tel, Ten, Teq; |
| 2426 |
Tei = T1g - T1v; |
| 2427 |
Tel = Tej - Tek; |
| 2428 |
Tem = Tei + Tel; |
| 2429 |
Tey = Tel - Tei; |
| 2430 |
Ten = T1L - T20; |
| 2431 |
Teq = Teo - Tep; |
| 2432 |
Ter = Ten - Teq; |
| 2433 |
Tez = Ten + Teq; |
| 2434 |
} |
| 2435 |
{
|
| 2436 |
E Tes, TeC, Tew, TeA; |
| 2437 |
Tes = KP707106781 * (Tem + Ter); |
| 2438 |
ro[WS(os, 40)] = Teh - Tes;
|
| 2439 |
ro[WS(os, 8)] = Teh + Tes;
|
| 2440 |
TeC = KP707106781 * (Tey + Tez); |
| 2441 |
io[WS(os, 40)] = TeB - TeC;
|
| 2442 |
io[WS(os, 8)] = TeB + TeC;
|
| 2443 |
Tew = KP707106781 * (Ter - Tem); |
| 2444 |
io[WS(os, 56)] = Tev - Tew;
|
| 2445 |
io[WS(os, 24)] = Tev + Tew;
|
| 2446 |
TeA = KP707106781 * (Tey - Tez); |
| 2447 |
ro[WS(os, 56)] = Tex - TeA;
|
| 2448 |
ro[WS(os, 24)] = Tex + TeA;
|
| 2449 |
} |
| 2450 |
} |
| 2451 |
{
|
| 2452 |
E Tdb, TdV, Te5, TdJ, Tdi, Te6, Te3, Teb, TdM, TdW, Tdu, TdQ, Te0, Tea, TdF; |
| 2453 |
E TdR; |
| 2454 |
{
|
| 2455 |
E Tde, Tdh, Tdo, Tdt; |
| 2456 |
Tdb = Td9 - Tda; |
| 2457 |
TdV = Td9 + Tda; |
| 2458 |
Te5 = TdI + TdH; |
| 2459 |
TdJ = TdH - TdI; |
| 2460 |
Tde = Tdc - Tdd; |
| 2461 |
Tdh = Tdf + Tdg; |
| 2462 |
Tdi = KP707106781 * (Tde - Tdh); |
| 2463 |
Te6 = KP707106781 * (Tde + Tdh); |
| 2464 |
{
|
| 2465 |
E Te1, Te2, TdK, TdL; |
| 2466 |
Te1 = Tdv + Tdy; |
| 2467 |
Te2 = TdD + TdC; |
| 2468 |
Te3 = FNMS(KP382683432, Te2, KP923879532 * Te1); |
| 2469 |
Teb = FMA(KP923879532, Te2, KP382683432 * Te1); |
| 2470 |
TdK = Tdf - Tdg; |
| 2471 |
TdL = Tdd + Tdc; |
| 2472 |
TdM = KP707106781 * (TdK - TdL); |
| 2473 |
TdW = KP707106781 * (TdL + TdK); |
| 2474 |
} |
| 2475 |
Tdo = Tdm - Tdn; |
| 2476 |
Tdt = Tdp - Tds; |
| 2477 |
Tdu = FMA(KP923879532, Tdo, KP382683432 * Tdt); |
| 2478 |
TdQ = FNMS(KP923879532, Tdt, KP382683432 * Tdo); |
| 2479 |
{
|
| 2480 |
E TdY, TdZ, Tdz, TdE; |
| 2481 |
TdY = Tdn + Tdm; |
| 2482 |
TdZ = Tdp + Tds; |
| 2483 |
Te0 = FMA(KP382683432, TdY, KP923879532 * TdZ); |
| 2484 |
Tea = FNMS(KP382683432, TdZ, KP923879532 * TdY); |
| 2485 |
Tdz = Tdv - Tdy; |
| 2486 |
TdE = TdC - TdD; |
| 2487 |
TdF = FNMS(KP923879532, TdE, KP382683432 * Tdz); |
| 2488 |
TdR = FMA(KP382683432, TdE, KP923879532 * Tdz); |
| 2489 |
} |
| 2490 |
} |
| 2491 |
{
|
| 2492 |
E Tdj, TdG, TdT, TdU; |
| 2493 |
Tdj = Tdb + Tdi; |
| 2494 |
TdG = Tdu + TdF; |
| 2495 |
ro[WS(os, 44)] = Tdj - TdG;
|
| 2496 |
ro[WS(os, 12)] = Tdj + TdG;
|
| 2497 |
TdT = TdJ + TdM; |
| 2498 |
TdU = TdQ + TdR; |
| 2499 |
io[WS(os, 44)] = TdT - TdU;
|
| 2500 |
io[WS(os, 12)] = TdT + TdU;
|
| 2501 |
} |
| 2502 |
{
|
| 2503 |
E TdN, TdO, TdP, TdS; |
| 2504 |
TdN = TdJ - TdM; |
| 2505 |
TdO = TdF - Tdu; |
| 2506 |
io[WS(os, 60)] = TdN - TdO;
|
| 2507 |
io[WS(os, 28)] = TdN + TdO;
|
| 2508 |
TdP = Tdb - Tdi; |
| 2509 |
TdS = TdQ - TdR; |
| 2510 |
ro[WS(os, 60)] = TdP - TdS;
|
| 2511 |
ro[WS(os, 28)] = TdP + TdS;
|
| 2512 |
} |
| 2513 |
{
|
| 2514 |
E TdX, Te4, Ted, Tee; |
| 2515 |
TdX = TdV + TdW; |
| 2516 |
Te4 = Te0 + Te3; |
| 2517 |
ro[WS(os, 36)] = TdX - Te4;
|
| 2518 |
ro[WS(os, 4)] = TdX + Te4;
|
| 2519 |
Ted = Te5 + Te6; |
| 2520 |
Tee = Tea + Teb; |
| 2521 |
io[WS(os, 36)] = Ted - Tee;
|
| 2522 |
io[WS(os, 4)] = Ted + Tee;
|
| 2523 |
} |
| 2524 |
{
|
| 2525 |
E Te7, Te8, Te9, Tec; |
| 2526 |
Te7 = Te5 - Te6; |
| 2527 |
Te8 = Te3 - Te0; |
| 2528 |
io[WS(os, 52)] = Te7 - Te8;
|
| 2529 |
io[WS(os, 20)] = Te7 + Te8;
|
| 2530 |
Te9 = TdV - TdW; |
| 2531 |
Tec = Tea - Teb; |
| 2532 |
ro[WS(os, 52)] = Te9 - Tec;
|
| 2533 |
ro[WS(os, 20)] = Te9 + Tec;
|
| 2534 |
} |
| 2535 |
} |
| 2536 |
{
|
| 2537 |
E Tcd, TcP, TcD, TcZ, Tck, Td0, TcX, Td5, Tcs, TcK, TcG, TcQ, TcU, Td4, Tcz; |
| 2538 |
E TcL, Tcc, TcC; |
| 2539 |
Tcc = KP707106781 * (TbD + TbC); |
| 2540 |
Tcd = Tcb - Tcc; |
| 2541 |
TcP = Tcb + Tcc; |
| 2542 |
TcC = KP707106781 * (Tak + Tan); |
| 2543 |
TcD = TcB - TcC; |
| 2544 |
TcZ = TcB + TcC; |
| 2545 |
{
|
| 2546 |
E Tcg, Tcj, TcV, TcW; |
| 2547 |
Tcg = FNMS(KP382683432, Tcf, KP923879532 * Tce); |
| 2548 |
Tcj = FMA(KP923879532, Tch, KP382683432 * Tci); |
| 2549 |
Tck = Tcg - Tcj; |
| 2550 |
Td0 = Tcg + Tcj; |
| 2551 |
TcV = Tct + Tcu; |
| 2552 |
TcW = Tcw + Tcx; |
| 2553 |
TcX = FNMS(KP195090322, TcW, KP980785280 * TcV); |
| 2554 |
Td5 = FMA(KP195090322, TcV, KP980785280 * TcW); |
| 2555 |
} |
| 2556 |
{
|
| 2557 |
E Tco, Tcr, TcE, TcF; |
| 2558 |
Tco = Tcm - Tcn; |
| 2559 |
Tcr = Tcp - Tcq; |
| 2560 |
Tcs = FMA(KP555570233, Tco, KP831469612 * Tcr); |
| 2561 |
TcK = FNMS(KP831469612, Tco, KP555570233 * Tcr); |
| 2562 |
TcE = FNMS(KP382683432, Tch, KP923879532 * Tci); |
| 2563 |
TcF = FMA(KP382683432, Tce, KP923879532 * Tcf); |
| 2564 |
TcG = TcE - TcF; |
| 2565 |
TcQ = TcF + TcE; |
| 2566 |
} |
| 2567 |
{
|
| 2568 |
E TcS, TcT, Tcv, Tcy; |
| 2569 |
TcS = Tcm + Tcn; |
| 2570 |
TcT = Tcp + Tcq; |
| 2571 |
TcU = FMA(KP980785280, TcS, KP195090322 * TcT); |
| 2572 |
Td4 = FNMS(KP195090322, TcS, KP980785280 * TcT); |
| 2573 |
Tcv = Tct - Tcu; |
| 2574 |
Tcy = Tcw - Tcx; |
| 2575 |
Tcz = FNMS(KP831469612, Tcy, KP555570233 * Tcv); |
| 2576 |
TcL = FMA(KP831469612, Tcv, KP555570233 * Tcy); |
| 2577 |
} |
| 2578 |
{
|
| 2579 |
E Tcl, TcA, TcN, TcO; |
| 2580 |
Tcl = Tcd + Tck; |
| 2581 |
TcA = Tcs + Tcz; |
| 2582 |
ro[WS(os, 42)] = Tcl - TcA;
|
| 2583 |
ro[WS(os, 10)] = Tcl + TcA;
|
| 2584 |
TcN = TcD + TcG; |
| 2585 |
TcO = TcK + TcL; |
| 2586 |
io[WS(os, 42)] = TcN - TcO;
|
| 2587 |
io[WS(os, 10)] = TcN + TcO;
|
| 2588 |
} |
| 2589 |
{
|
| 2590 |
E TcH, TcI, TcJ, TcM; |
| 2591 |
TcH = TcD - TcG; |
| 2592 |
TcI = Tcz - Tcs; |
| 2593 |
io[WS(os, 58)] = TcH - TcI;
|
| 2594 |
io[WS(os, 26)] = TcH + TcI;
|
| 2595 |
TcJ = Tcd - Tck; |
| 2596 |
TcM = TcK - TcL; |
| 2597 |
ro[WS(os, 58)] = TcJ - TcM;
|
| 2598 |
ro[WS(os, 26)] = TcJ + TcM;
|
| 2599 |
} |
| 2600 |
{
|
| 2601 |
E TcR, TcY, Td7, Td8; |
| 2602 |
TcR = TcP + TcQ; |
| 2603 |
TcY = TcU + TcX; |
| 2604 |
ro[WS(os, 34)] = TcR - TcY;
|
| 2605 |
ro[WS(os, 2)] = TcR + TcY;
|
| 2606 |
Td7 = TcZ + Td0; |
| 2607 |
Td8 = Td4 + Td5; |
| 2608 |
io[WS(os, 34)] = Td7 - Td8;
|
| 2609 |
io[WS(os, 2)] = Td7 + Td8;
|
| 2610 |
} |
| 2611 |
{
|
| 2612 |
E Td1, Td2, Td3, Td6; |
| 2613 |
Td1 = TcZ - Td0; |
| 2614 |
Td2 = TcX - TcU; |
| 2615 |
io[WS(os, 50)] = Td1 - Td2;
|
| 2616 |
io[WS(os, 18)] = Td1 + Td2;
|
| 2617 |
Td3 = TcP - TcQ; |
| 2618 |
Td6 = Td4 - Td5; |
| 2619 |
ro[WS(os, 50)] = Td3 - Td6;
|
| 2620 |
ro[WS(os, 18)] = Td3 + Td6;
|
| 2621 |
} |
| 2622 |
} |
| 2623 |
{
|
| 2624 |
E Tap, TbR, TbF, Tc1, TaE, Tc2, TbZ, Tc7, Tb6, TbM, TbI, TbS, TbW, Tc6, Tbx; |
| 2625 |
E TbN, Tao, TbE; |
| 2626 |
Tao = KP707106781 * (Tak - Tan); |
| 2627 |
Tap = Tah - Tao; |
| 2628 |
TbR = Tah + Tao; |
| 2629 |
TbE = KP707106781 * (TbC - TbD); |
| 2630 |
TbF = TbB - TbE; |
| 2631 |
Tc1 = TbB + TbE; |
| 2632 |
{
|
| 2633 |
E Taw, TaD, TbX, TbY; |
| 2634 |
Taw = FNMS(KP923879532, Tav, KP382683432 * Tas); |
| 2635 |
TaD = FMA(KP382683432, Taz, KP923879532 * TaC); |
| 2636 |
TaE = Taw - TaD; |
| 2637 |
Tc2 = Taw + TaD; |
| 2638 |
TbX = Tbb + Tbm; |
| 2639 |
TbY = Tbs + Tbv; |
| 2640 |
TbZ = FNMS(KP555570233, TbY, KP831469612 * TbX); |
| 2641 |
Tc7 = FMA(KP831469612, TbY, KP555570233 * TbX); |
| 2642 |
} |
| 2643 |
{
|
| 2644 |
E TaW, Tb5, TbG, TbH; |
| 2645 |
TaW = TaK - TaV; |
| 2646 |
Tb5 = Tb1 - Tb4; |
| 2647 |
Tb6 = FMA(KP980785280, TaW, KP195090322 * Tb5); |
| 2648 |
TbM = FNMS(KP980785280, Tb5, KP195090322 * TaW); |
| 2649 |
TbG = FNMS(KP923879532, Taz, KP382683432 * TaC); |
| 2650 |
TbH = FMA(KP923879532, Tas, KP382683432 * Tav); |
| 2651 |
TbI = TbG - TbH; |
| 2652 |
TbS = TbH + TbG; |
| 2653 |
} |
| 2654 |
{
|
| 2655 |
E TbU, TbV, Tbn, Tbw; |
| 2656 |
TbU = TaK + TaV; |
| 2657 |
TbV = Tb1 + Tb4; |
| 2658 |
TbW = FMA(KP555570233, TbU, KP831469612 * TbV); |
| 2659 |
Tc6 = FNMS(KP555570233, TbV, KP831469612 * TbU); |
| 2660 |
Tbn = Tbb - Tbm; |
| 2661 |
Tbw = Tbs - Tbv; |
| 2662 |
Tbx = FNMS(KP980785280, Tbw, KP195090322 * Tbn); |
| 2663 |
TbN = FMA(KP195090322, Tbw, KP980785280 * Tbn); |
| 2664 |
} |
| 2665 |
{
|
| 2666 |
E TaF, Tby, TbP, TbQ; |
| 2667 |
TaF = Tap + TaE; |
| 2668 |
Tby = Tb6 + Tbx; |
| 2669 |
ro[WS(os, 46)] = TaF - Tby;
|
| 2670 |
ro[WS(os, 14)] = TaF + Tby;
|
| 2671 |
TbP = TbF + TbI; |
| 2672 |
TbQ = TbM + TbN; |
| 2673 |
io[WS(os, 46)] = TbP - TbQ;
|
| 2674 |
io[WS(os, 14)] = TbP + TbQ;
|
| 2675 |
} |
| 2676 |
{
|
| 2677 |
E TbJ, TbK, TbL, TbO; |
| 2678 |
TbJ = TbF - TbI; |
| 2679 |
TbK = Tbx - Tb6; |
| 2680 |
io[WS(os, 62)] = TbJ - TbK;
|
| 2681 |
io[WS(os, 30)] = TbJ + TbK;
|
| 2682 |
TbL = Tap - TaE; |
| 2683 |
TbO = TbM - TbN; |
| 2684 |
ro[WS(os, 62)] = TbL - TbO;
|
| 2685 |
ro[WS(os, 30)] = TbL + TbO;
|
| 2686 |
} |
| 2687 |
{
|
| 2688 |
E TbT, Tc0, Tc9, Tca; |
| 2689 |
TbT = TbR + TbS; |
| 2690 |
Tc0 = TbW + TbZ; |
| 2691 |
ro[WS(os, 38)] = TbT - Tc0;
|
| 2692 |
ro[WS(os, 6)] = TbT + Tc0;
|
| 2693 |
Tc9 = Tc1 + Tc2; |
| 2694 |
Tca = Tc6 + Tc7; |
| 2695 |
io[WS(os, 38)] = Tc9 - Tca;
|
| 2696 |
io[WS(os, 6)] = Tc9 + Tca;
|
| 2697 |
} |
| 2698 |
{
|
| 2699 |
E Tc3, Tc4, Tc5, Tc8; |
| 2700 |
Tc3 = Tc1 - Tc2; |
| 2701 |
Tc4 = TbZ - TbW; |
| 2702 |
io[WS(os, 54)] = Tc3 - Tc4;
|
| 2703 |
io[WS(os, 22)] = Tc3 + Tc4;
|
| 2704 |
Tc5 = TbR - TbS; |
| 2705 |
Tc8 = Tc6 - Tc7; |
| 2706 |
ro[WS(os, 54)] = Tc5 - Tc8;
|
| 2707 |
ro[WS(os, 22)] = Tc5 + Tc8;
|
| 2708 |
} |
| 2709 |
} |
| 2710 |
{
|
| 2711 |
E T6F, T7h, T7m, T7w, T7p, T7x, T6M, T7s, T6U, T7c, T75, T7r, T78, T7i, T71; |
| 2712 |
E T7d; |
| 2713 |
{
|
| 2714 |
E T6D, T6E, T7k, T7l; |
| 2715 |
T6D = T37 + T3e; |
| 2716 |
T6E = T65 + T64; |
| 2717 |
T6F = T6D - T6E; |
| 2718 |
T7h = T6D + T6E; |
| 2719 |
T7k = T6O + T6P; |
| 2720 |
T7l = T6R + T6S; |
| 2721 |
T7m = FMA(KP956940335, T7k, KP290284677 * T7l); |
| 2722 |
T7w = FNMS(KP290284677, T7k, KP956940335 * T7l); |
| 2723 |
} |
| 2724 |
{
|
| 2725 |
E T7n, T7o, T6I, T6L; |
| 2726 |
T7n = T6V + T6W; |
| 2727 |
T7o = T6Y + T6Z; |
| 2728 |
T7p = FNMS(KP290284677, T7o, KP956940335 * T7n); |
| 2729 |
T7x = FMA(KP290284677, T7n, KP956940335 * T7o); |
| 2730 |
T6I = FNMS(KP555570233, T6H, KP831469612 * T6G); |
| 2731 |
T6L = FMA(KP831469612, T6J, KP555570233 * T6K); |
| 2732 |
T6M = T6I - T6L; |
| 2733 |
T7s = T6I + T6L; |
| 2734 |
} |
| 2735 |
{
|
| 2736 |
E T6Q, T6T, T73, T74; |
| 2737 |
T6Q = T6O - T6P; |
| 2738 |
T6T = T6R - T6S; |
| 2739 |
T6U = FMA(KP471396736, T6Q, KP881921264 * T6T); |
| 2740 |
T7c = FNMS(KP881921264, T6Q, KP471396736 * T6T); |
| 2741 |
T73 = T5Z + T62; |
| 2742 |
T74 = T3m + T3t; |
| 2743 |
T75 = T73 - T74; |
| 2744 |
T7r = T73 + T74; |
| 2745 |
} |
| 2746 |
{
|
| 2747 |
E T76, T77, T6X, T70; |
| 2748 |
T76 = FNMS(KP555570233, T6J, KP831469612 * T6K); |
| 2749 |
T77 = FMA(KP555570233, T6G, KP831469612 * T6H); |
| 2750 |
T78 = T76 - T77; |
| 2751 |
T7i = T77 + T76; |
| 2752 |
T6X = T6V - T6W; |
| 2753 |
T70 = T6Y - T6Z; |
| 2754 |
T71 = FNMS(KP881921264, T70, KP471396736 * T6X); |
| 2755 |
T7d = FMA(KP881921264, T6X, KP471396736 * T70); |
| 2756 |
} |
| 2757 |
{
|
| 2758 |
E T6N, T72, T7f, T7g; |
| 2759 |
T6N = T6F + T6M; |
| 2760 |
T72 = T6U + T71; |
| 2761 |
ro[WS(os, 43)] = T6N - T72;
|
| 2762 |
ro[WS(os, 11)] = T6N + T72;
|
| 2763 |
T7f = T75 + T78; |
| 2764 |
T7g = T7c + T7d; |
| 2765 |
io[WS(os, 43)] = T7f - T7g;
|
| 2766 |
io[WS(os, 11)] = T7f + T7g;
|
| 2767 |
} |
| 2768 |
{
|
| 2769 |
E T79, T7a, T7b, T7e; |
| 2770 |
T79 = T75 - T78; |
| 2771 |
T7a = T71 - T6U; |
| 2772 |
io[WS(os, 59)] = T79 - T7a;
|
| 2773 |
io[WS(os, 27)] = T79 + T7a;
|
| 2774 |
T7b = T6F - T6M; |
| 2775 |
T7e = T7c - T7d; |
| 2776 |
ro[WS(os, 59)] = T7b - T7e;
|
| 2777 |
ro[WS(os, 27)] = T7b + T7e;
|
| 2778 |
} |
| 2779 |
{
|
| 2780 |
E T7j, T7q, T7z, T7A; |
| 2781 |
T7j = T7h + T7i; |
| 2782 |
T7q = T7m + T7p; |
| 2783 |
ro[WS(os, 35)] = T7j - T7q;
|
| 2784 |
ro[WS(os, 3)] = T7j + T7q;
|
| 2785 |
T7z = T7r + T7s; |
| 2786 |
T7A = T7w + T7x; |
| 2787 |
io[WS(os, 35)] = T7z - T7A;
|
| 2788 |
io[WS(os, 3)] = T7z + T7A;
|
| 2789 |
} |
| 2790 |
{
|
| 2791 |
E T7t, T7u, T7v, T7y; |
| 2792 |
T7t = T7r - T7s; |
| 2793 |
T7u = T7p - T7m; |
| 2794 |
io[WS(os, 51)] = T7t - T7u;
|
| 2795 |
io[WS(os, 19)] = T7t + T7u;
|
| 2796 |
T7v = T7h - T7i; |
| 2797 |
T7y = T7w - T7x; |
| 2798 |
ro[WS(os, 51)] = T7v - T7y;
|
| 2799 |
ro[WS(os, 19)] = T7v + T7y;
|
| 2800 |
} |
| 2801 |
} |
| 2802 |
{
|
| 2803 |
E T9j, T9V, Ta0, Taa, Ta3, Tab, T9q, Ta6, T9y, T9Q, T9J, Ta5, T9M, T9W, T9F; |
| 2804 |
E T9R; |
| 2805 |
{
|
| 2806 |
E T9h, T9i, T9Y, T9Z; |
| 2807 |
T9h = T7B + T7C; |
| 2808 |
T9i = T8J + T8I; |
| 2809 |
T9j = T9h - T9i; |
| 2810 |
T9V = T9h + T9i; |
| 2811 |
T9Y = T9s + T9t; |
| 2812 |
T9Z = T9v + T9w; |
| 2813 |
Ta0 = FMA(KP995184726, T9Y, KP098017140 * T9Z); |
| 2814 |
Taa = FNMS(KP098017140, T9Y, KP995184726 * T9Z); |
| 2815 |
} |
| 2816 |
{
|
| 2817 |
E Ta1, Ta2, T9m, T9p; |
| 2818 |
Ta1 = T9z + T9A; |
| 2819 |
Ta2 = T9C + T9D; |
| 2820 |
Ta3 = FNMS(KP098017140, Ta2, KP995184726 * Ta1); |
| 2821 |
Tab = FMA(KP098017140, Ta1, KP995184726 * Ta2); |
| 2822 |
T9m = FNMS(KP195090322, T9l, KP980785280 * T9k); |
| 2823 |
T9p = FMA(KP195090322, T9n, KP980785280 * T9o); |
| 2824 |
T9q = T9m - T9p; |
| 2825 |
Ta6 = T9m + T9p; |
| 2826 |
} |
| 2827 |
{
|
| 2828 |
E T9u, T9x, T9H, T9I; |
| 2829 |
T9u = T9s - T9t; |
| 2830 |
T9x = T9v - T9w; |
| 2831 |
T9y = FMA(KP634393284, T9u, KP773010453 * T9x); |
| 2832 |
T9Q = FNMS(KP773010453, T9u, KP634393284 * T9x); |
| 2833 |
T9H = T8F + T8G; |
| 2834 |
T9I = T7G + T7J; |
| 2835 |
T9J = T9H - T9I; |
| 2836 |
Ta5 = T9H + T9I; |
| 2837 |
} |
| 2838 |
{
|
| 2839 |
E T9K, T9L, T9B, T9E; |
| 2840 |
T9K = FNMS(KP195090322, T9o, KP980785280 * T9n); |
| 2841 |
T9L = FMA(KP980785280, T9l, KP195090322 * T9k); |
| 2842 |
T9M = T9K - T9L; |
| 2843 |
T9W = T9L + T9K; |
| 2844 |
T9B = T9z - T9A; |
| 2845 |
T9E = T9C - T9D; |
| 2846 |
T9F = FNMS(KP773010453, T9E, KP634393284 * T9B); |
| 2847 |
T9R = FMA(KP773010453, T9B, KP634393284 * T9E); |
| 2848 |
} |
| 2849 |
{
|
| 2850 |
E T9r, T9G, T9T, T9U; |
| 2851 |
T9r = T9j + T9q; |
| 2852 |
T9G = T9y + T9F; |
| 2853 |
ro[WS(os, 41)] = T9r - T9G;
|
| 2854 |
ro[WS(os, 9)] = T9r + T9G;
|
| 2855 |
T9T = T9J + T9M; |
| 2856 |
T9U = T9Q + T9R; |
| 2857 |
io[WS(os, 41)] = T9T - T9U;
|
| 2858 |
io[WS(os, 9)] = T9T + T9U;
|
| 2859 |
} |
| 2860 |
{
|
| 2861 |
E T9N, T9O, T9P, T9S; |
| 2862 |
T9N = T9J - T9M; |
| 2863 |
T9O = T9F - T9y; |
| 2864 |
io[WS(os, 57)] = T9N - T9O;
|
| 2865 |
io[WS(os, 25)] = T9N + T9O;
|
| 2866 |
T9P = T9j - T9q; |
| 2867 |
T9S = T9Q - T9R; |
| 2868 |
ro[WS(os, 57)] = T9P - T9S;
|
| 2869 |
ro[WS(os, 25)] = T9P + T9S;
|
| 2870 |
} |
| 2871 |
{
|
| 2872 |
E T9X, Ta4, Tad, Tae; |
| 2873 |
T9X = T9V + T9W; |
| 2874 |
Ta4 = Ta0 + Ta3; |
| 2875 |
ro[WS(os, 33)] = T9X - Ta4;
|
| 2876 |
ro[WS(os, 1)] = T9X + Ta4;
|
| 2877 |
Tad = Ta5 + Ta6; |
| 2878 |
Tae = Taa + Tab; |
| 2879 |
io[WS(os, 33)] = Tad - Tae;
|
| 2880 |
io[WS(os, 1)] = Tad + Tae;
|
| 2881 |
} |
| 2882 |
{
|
| 2883 |
E Ta7, Ta8, Ta9, Tac; |
| 2884 |
Ta7 = Ta5 - Ta6; |
| 2885 |
Ta8 = Ta3 - Ta0; |
| 2886 |
io[WS(os, 49)] = Ta7 - Ta8;
|
| 2887 |
io[WS(os, 17)] = Ta7 + Ta8;
|
| 2888 |
Ta9 = T9V - T9W; |
| 2889 |
Tac = Taa - Tab; |
| 2890 |
ro[WS(os, 49)] = Ta9 - Tac;
|
| 2891 |
ro[WS(os, 17)] = Ta9 + Tac;
|
| 2892 |
} |
| 2893 |
} |
| 2894 |
{
|
| 2895 |
E T3v, T6j, T6o, T6y, T6r, T6z, T48, T6u, T52, T6e, T67, T6t, T6a, T6k, T5V; |
| 2896 |
E T6f; |
| 2897 |
{
|
| 2898 |
E T3f, T3u, T6m, T6n; |
| 2899 |
T3f = T37 - T3e; |
| 2900 |
T3u = T3m - T3t; |
| 2901 |
T3v = T3f - T3u; |
| 2902 |
T6j = T3f + T3u; |
| 2903 |
T6m = T4q + T4N; |
| 2904 |
T6n = T4X + T50; |
| 2905 |
T6o = FMA(KP634393284, T6m, KP773010453 * T6n); |
| 2906 |
T6y = FNMS(KP634393284, T6n, KP773010453 * T6m); |
| 2907 |
} |
| 2908 |
{
|
| 2909 |
E T6p, T6q, T3O, T47; |
| 2910 |
T6p = T5j + T5G; |
| 2911 |
T6q = T5Q + T5T; |
| 2912 |
T6r = FNMS(KP634393284, T6q, KP773010453 * T6p); |
| 2913 |
T6z = FMA(KP773010453, T6q, KP634393284 * T6p); |
| 2914 |
T3O = FNMS(KP980785280, T3N, KP195090322 * T3G); |
| 2915 |
T47 = FMA(KP195090322, T3Z, KP980785280 * T46); |
| 2916 |
T48 = T3O - T47; |
| 2917 |
T6u = T3O + T47; |
| 2918 |
} |
| 2919 |
{
|
| 2920 |
E T4O, T51, T63, T66; |
| 2921 |
T4O = T4q - T4N; |
| 2922 |
T51 = T4X - T50; |
| 2923 |
T52 = FMA(KP995184726, T4O, KP098017140 * T51); |
| 2924 |
T6e = FNMS(KP995184726, T51, KP098017140 * T4O); |
| 2925 |
T63 = T5Z - T62; |
| 2926 |
T66 = T64 - T65; |
| 2927 |
T67 = T63 - T66; |
| 2928 |
T6t = T63 + T66; |
| 2929 |
} |
| 2930 |
{
|
| 2931 |
E T68, T69, T5H, T5U; |
| 2932 |
T68 = FNMS(KP980785280, T3Z, KP195090322 * T46); |
| 2933 |
T69 = FMA(KP980785280, T3G, KP195090322 * T3N); |
| 2934 |
T6a = T68 - T69; |
| 2935 |
T6k = T69 + T68; |
| 2936 |
T5H = T5j - T5G; |
| 2937 |
T5U = T5Q - T5T; |
| 2938 |
T5V = FNMS(KP995184726, T5U, KP098017140 * T5H); |
| 2939 |
T6f = FMA(KP098017140, T5U, KP995184726 * T5H); |
| 2940 |
} |
| 2941 |
{
|
| 2942 |
E T49, T5W, T6h, T6i; |
| 2943 |
T49 = T3v + T48; |
| 2944 |
T5W = T52 + T5V; |
| 2945 |
ro[WS(os, 47)] = T49 - T5W;
|
| 2946 |
ro[WS(os, 15)] = T49 + T5W;
|
| 2947 |
T6h = T67 + T6a; |
| 2948 |
T6i = T6e + T6f; |
| 2949 |
io[WS(os, 47)] = T6h - T6i;
|
| 2950 |
io[WS(os, 15)] = T6h + T6i;
|
| 2951 |
} |
| 2952 |
{
|
| 2953 |
E T6b, T6c, T6d, T6g; |
| 2954 |
T6b = T67 - T6a; |
| 2955 |
T6c = T5V - T52; |
| 2956 |
io[WS(os, 63)] = T6b - T6c;
|
| 2957 |
io[WS(os, 31)] = T6b + T6c;
|
| 2958 |
T6d = T3v - T48; |
| 2959 |
T6g = T6e - T6f; |
| 2960 |
ro[WS(os, 63)] = T6d - T6g;
|
| 2961 |
ro[WS(os, 31)] = T6d + T6g;
|
| 2962 |
} |
| 2963 |
{
|
| 2964 |
E T6l, T6s, T6B, T6C; |
| 2965 |
T6l = T6j + T6k; |
| 2966 |
T6s = T6o + T6r; |
| 2967 |
ro[WS(os, 39)] = T6l - T6s;
|
| 2968 |
ro[WS(os, 7)] = T6l + T6s;
|
| 2969 |
T6B = T6t + T6u; |
| 2970 |
T6C = T6y + T6z; |
| 2971 |
io[WS(os, 39)] = T6B - T6C;
|
| 2972 |
io[WS(os, 7)] = T6B + T6C;
|
| 2973 |
} |
| 2974 |
{
|
| 2975 |
E T6v, T6w, T6x, T6A; |
| 2976 |
T6v = T6t - T6u; |
| 2977 |
T6w = T6r - T6o; |
| 2978 |
io[WS(os, 55)] = T6v - T6w;
|
| 2979 |
io[WS(os, 23)] = T6v + T6w;
|
| 2980 |
T6x = T6j - T6k; |
| 2981 |
T6A = T6y - T6z; |
| 2982 |
ro[WS(os, 55)] = T6x - T6A;
|
| 2983 |
ro[WS(os, 23)] = T6x + T6A;
|
| 2984 |
} |
| 2985 |
} |
| 2986 |
{
|
| 2987 |
E T7L, T8X, T92, T9c, T95, T9d, T80, T98, T8k, T8S, T8L, T97, T8O, T8Y, T8D; |
| 2988 |
E T8T; |
| 2989 |
{
|
| 2990 |
E T7D, T7K, T90, T91; |
| 2991 |
T7D = T7B - T7C; |
| 2992 |
T7K = T7G - T7J; |
| 2993 |
T7L = T7D - T7K; |
| 2994 |
T8X = T7D + T7K; |
| 2995 |
T90 = T84 + T8b; |
| 2996 |
T91 = T8f + T8i; |
| 2997 |
T92 = FMA(KP471396736, T90, KP881921264 * T91); |
| 2998 |
T9c = FNMS(KP471396736, T91, KP881921264 * T90); |
| 2999 |
} |
| 3000 |
{
|
| 3001 |
E T93, T94, T7S, T7Z; |
| 3002 |
T93 = T8n + T8u; |
| 3003 |
T94 = T8y + T8B; |
| 3004 |
T95 = FNMS(KP471396736, T94, KP881921264 * T93); |
| 3005 |
T9d = FMA(KP881921264, T94, KP471396736 * T93); |
| 3006 |
T7S = FNMS(KP831469612, T7R, KP555570233 * T7O); |
| 3007 |
T7Z = FMA(KP831469612, T7V, KP555570233 * T7Y); |
| 3008 |
T80 = T7S - T7Z; |
| 3009 |
T98 = T7S + T7Z; |
| 3010 |
} |
| 3011 |
{
|
| 3012 |
E T8c, T8j, T8H, T8K; |
| 3013 |
T8c = T84 - T8b; |
| 3014 |
T8j = T8f - T8i; |
| 3015 |
T8k = FMA(KP956940335, T8c, KP290284677 * T8j); |
| 3016 |
T8S = FNMS(KP956940335, T8j, KP290284677 * T8c); |
| 3017 |
T8H = T8F - T8G; |
| 3018 |
T8K = T8I - T8J; |
| 3019 |
T8L = T8H - T8K; |
| 3020 |
T97 = T8H + T8K; |
| 3021 |
} |
| 3022 |
{
|
| 3023 |
E T8M, T8N, T8v, T8C; |
| 3024 |
T8M = FNMS(KP831469612, T7Y, KP555570233 * T7V); |
| 3025 |
T8N = FMA(KP555570233, T7R, KP831469612 * T7O); |
| 3026 |
T8O = T8M - T8N; |
| 3027 |
T8Y = T8N + T8M; |
| 3028 |
T8v = T8n - T8u; |
| 3029 |
T8C = T8y - T8B; |
| 3030 |
T8D = FNMS(KP956940335, T8C, KP290284677 * T8v); |
| 3031 |
T8T = FMA(KP290284677, T8C, KP956940335 * T8v); |
| 3032 |
} |
| 3033 |
{
|
| 3034 |
E T81, T8E, T8V, T8W; |
| 3035 |
T81 = T7L + T80; |
| 3036 |
T8E = T8k + T8D; |
| 3037 |
ro[WS(os, 45)] = T81 - T8E;
|
| 3038 |
ro[WS(os, 13)] = T81 + T8E;
|
| 3039 |
T8V = T8L + T8O; |
| 3040 |
T8W = T8S + T8T; |
| 3041 |
io[WS(os, 45)] = T8V - T8W;
|
| 3042 |
io[WS(os, 13)] = T8V + T8W;
|
| 3043 |
} |
| 3044 |
{
|
| 3045 |
E T8P, T8Q, T8R, T8U; |
| 3046 |
T8P = T8L - T8O; |
| 3047 |
T8Q = T8D - T8k; |
| 3048 |
io[WS(os, 61)] = T8P - T8Q;
|
| 3049 |
io[WS(os, 29)] = T8P + T8Q;
|
| 3050 |
T8R = T7L - T80; |
| 3051 |
T8U = T8S - T8T; |
| 3052 |
ro[WS(os, 61)] = T8R - T8U;
|
| 3053 |
ro[WS(os, 29)] = T8R + T8U;
|
| 3054 |
} |
| 3055 |
{
|
| 3056 |
E T8Z, T96, T9f, T9g; |
| 3057 |
T8Z = T8X + T8Y; |
| 3058 |
T96 = T92 + T95; |
| 3059 |
ro[WS(os, 37)] = T8Z - T96;
|
| 3060 |
ro[WS(os, 5)] = T8Z + T96;
|
| 3061 |
T9f = T97 + T98; |
| 3062 |
T9g = T9c + T9d; |
| 3063 |
io[WS(os, 37)] = T9f - T9g;
|
| 3064 |
io[WS(os, 5)] = T9f + T9g;
|
| 3065 |
} |
| 3066 |
{
|
| 3067 |
E T99, T9a, T9b, T9e; |
| 3068 |
T99 = T97 - T98; |
| 3069 |
T9a = T95 - T92; |
| 3070 |
io[WS(os, 53)] = T99 - T9a;
|
| 3071 |
io[WS(os, 21)] = T99 + T9a;
|
| 3072 |
T9b = T8X - T8Y; |
| 3073 |
T9e = T9c - T9d; |
| 3074 |
ro[WS(os, 53)] = T9b - T9e;
|
| 3075 |
ro[WS(os, 21)] = T9b + T9e;
|
| 3076 |
} |
| 3077 |
} |
| 3078 |
} |
| 3079 |
} |
| 3080 |
} |
| 3081 |
|
| 3082 |
static const kdft_desc desc = { 64, "n1_64", {808, 144, 104, 0}, &GENUS, 0, 0, 0, 0 }; |
| 3083 |
|
| 3084 |
void X(codelet_n1_64) (planner *p) {
|
| 3085 |
X(kdft_register) (p, n1_64, &desc); |
| 3086 |
} |
| 3087 |
|
| 3088 |
#endif
|