To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_32.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (33.3 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:11 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 372 FP additions, 136 FP multiplications,
|
| 32 |
* (or, 236 additions, 0 multiplications, 136 fused multiply/add),
|
| 33 |
* 100 stack variables, 7 constants, and 128 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 40 |
DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
| 41 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 42 |
DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
| 43 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 44 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 45 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 46 |
{
|
| 47 |
INT i; |
| 48 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { |
| 49 |
E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; |
| 50 |
E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; |
| 51 |
E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5k, T2E; |
| 52 |
E T3M, T4W, T5j, T2N, T3P, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; |
| 53 |
E T4G, T5h, T2d, T3F, T4L, T5g, T2m, T3I; |
| 54 |
{
|
| 55 |
E T3, T1x, T14, T2R, T6, T2S, T17, T1y; |
| 56 |
{
|
| 57 |
E T1, T2, T12, T13; |
| 58 |
T1 = ri[0];
|
| 59 |
T2 = ri[WS(is, 16)];
|
| 60 |
T3 = T1 + T2; |
| 61 |
T1x = T1 - T2; |
| 62 |
T12 = ii[0];
|
| 63 |
T13 = ii[WS(is, 16)];
|
| 64 |
T14 = T12 + T13; |
| 65 |
T2R = T12 - T13; |
| 66 |
} |
| 67 |
{
|
| 68 |
E T4, T5, T15, T16; |
| 69 |
T4 = ri[WS(is, 8)];
|
| 70 |
T5 = ri[WS(is, 24)];
|
| 71 |
T6 = T4 + T5; |
| 72 |
T2S = T4 - T5; |
| 73 |
T15 = ii[WS(is, 8)];
|
| 74 |
T16 = ii[WS(is, 24)];
|
| 75 |
T17 = T15 + T16; |
| 76 |
T1y = T15 - T16; |
| 77 |
} |
| 78 |
T7 = T3 + T6; |
| 79 |
T4r = T3 - T6; |
| 80 |
T4Z = T14 - T17; |
| 81 |
T18 = T14 + T17; |
| 82 |
T1z = T1x + T1y; |
| 83 |
T3t = T1x - T1y; |
| 84 |
T3T = T2S + T2R; |
| 85 |
T2T = T2R - T2S; |
| 86 |
} |
| 87 |
{
|
| 88 |
E Ta, T1A, T1b, T1B, Td, T1D, T1e, T1E; |
| 89 |
{
|
| 90 |
E T8, T9, T19, T1a; |
| 91 |
T8 = ri[WS(is, 4)];
|
| 92 |
T9 = ri[WS(is, 20)];
|
| 93 |
Ta = T8 + T9; |
| 94 |
T1A = T8 - T9; |
| 95 |
T19 = ii[WS(is, 4)];
|
| 96 |
T1a = ii[WS(is, 20)];
|
| 97 |
T1b = T19 + T1a; |
| 98 |
T1B = T19 - T1a; |
| 99 |
} |
| 100 |
{
|
| 101 |
E Tb, Tc, T1c, T1d; |
| 102 |
Tb = ri[WS(is, 28)];
|
| 103 |
Tc = ri[WS(is, 12)];
|
| 104 |
Td = Tb + Tc; |
| 105 |
T1D = Tb - Tc; |
| 106 |
T1c = ii[WS(is, 28)];
|
| 107 |
T1d = ii[WS(is, 12)];
|
| 108 |
T1e = T1c + T1d; |
| 109 |
T1E = T1c - T1d; |
| 110 |
} |
| 111 |
Te = Ta + Td; |
| 112 |
T1f = T1b + T1e; |
| 113 |
T50 = Td - Ta; |
| 114 |
T4s = T1b - T1e; |
| 115 |
{
|
| 116 |
E T2U, T2V, T1C, T1F; |
| 117 |
T2U = T1B - T1A; |
| 118 |
T2V = T1D + T1E; |
| 119 |
T2W = T2U + T2V; |
| 120 |
T3u = T2U - T2V; |
| 121 |
T1C = T1A + T1B; |
| 122 |
T1F = T1D - T1E; |
| 123 |
T1G = T1C + T1F; |
| 124 |
T3U = T1F - T1C; |
| 125 |
} |
| 126 |
} |
| 127 |
{
|
| 128 |
E Ti, T1L, T1j, T1I, Tl, T1J, T1m, T1M, T1K, T1N; |
| 129 |
{
|
| 130 |
E Tg, Th, T1h, T1i; |
| 131 |
Tg = ri[WS(is, 2)];
|
| 132 |
Th = ri[WS(is, 18)];
|
| 133 |
Ti = Tg + Th; |
| 134 |
T1L = Tg - Th; |
| 135 |
T1h = ii[WS(is, 2)];
|
| 136 |
T1i = ii[WS(is, 18)];
|
| 137 |
T1j = T1h + T1i; |
| 138 |
T1I = T1h - T1i; |
| 139 |
} |
| 140 |
{
|
| 141 |
E Tj, Tk, T1k, T1l; |
| 142 |
Tj = ri[WS(is, 10)];
|
| 143 |
Tk = ri[WS(is, 26)];
|
| 144 |
Tl = Tj + Tk; |
| 145 |
T1J = Tj - Tk; |
| 146 |
T1k = ii[WS(is, 10)];
|
| 147 |
T1l = ii[WS(is, 26)];
|
| 148 |
T1m = T1k + T1l; |
| 149 |
T1M = T1k - T1l; |
| 150 |
} |
| 151 |
Tm = Ti + Tl; |
| 152 |
T1n = T1j + T1m; |
| 153 |
T1K = T1I - T1J; |
| 154 |
T1N = T1L + T1M; |
| 155 |
T1O = FNMS(KP414213562, T1N, T1K); |
| 156 |
T2Z = FMA(KP414213562, T1K, T1N); |
| 157 |
{
|
| 158 |
E T3w, T3x, T4u, T4v; |
| 159 |
T3w = T1J + T1I; |
| 160 |
T3x = T1L - T1M; |
| 161 |
T3y = FMA(KP414213562, T3x, T3w); |
| 162 |
T3X = FNMS(KP414213562, T3w, T3x); |
| 163 |
T4u = T1j - T1m; |
| 164 |
T4v = Ti - Tl; |
| 165 |
T4w = T4u - T4v; |
| 166 |
T53 = T4v + T4u; |
| 167 |
} |
| 168 |
} |
| 169 |
{
|
| 170 |
E Tp, T1S, T1q, T1P, Ts, T1Q, T1t, T1T, T1R, T1U; |
| 171 |
{
|
| 172 |
E Tn, To, T1o, T1p; |
| 173 |
Tn = ri[WS(is, 30)];
|
| 174 |
To = ri[WS(is, 14)];
|
| 175 |
Tp = Tn + To; |
| 176 |
T1S = Tn - To; |
| 177 |
T1o = ii[WS(is, 30)];
|
| 178 |
T1p = ii[WS(is, 14)];
|
| 179 |
T1q = T1o + T1p; |
| 180 |
T1P = T1o - T1p; |
| 181 |
} |
| 182 |
{
|
| 183 |
E Tq, Tr, T1r, T1s; |
| 184 |
Tq = ri[WS(is, 6)];
|
| 185 |
Tr = ri[WS(is, 22)];
|
| 186 |
Ts = Tq + Tr; |
| 187 |
T1Q = Tq - Tr; |
| 188 |
T1r = ii[WS(is, 6)];
|
| 189 |
T1s = ii[WS(is, 22)];
|
| 190 |
T1t = T1r + T1s; |
| 191 |
T1T = T1r - T1s; |
| 192 |
} |
| 193 |
Tt = Tp + Ts; |
| 194 |
T1u = T1q + T1t; |
| 195 |
T1R = T1P - T1Q; |
| 196 |
T1U = T1S + T1T; |
| 197 |
T1V = FMA(KP414213562, T1U, T1R); |
| 198 |
T2Y = FNMS(KP414213562, T1R, T1U); |
| 199 |
{
|
| 200 |
E T3z, T3A, T4x, T4y; |
| 201 |
T3z = T1Q + T1P; |
| 202 |
T3A = T1S - T1T; |
| 203 |
T3B = FNMS(KP414213562, T3A, T3z); |
| 204 |
T3W = FMA(KP414213562, T3z, T3A); |
| 205 |
T4x = Tp - Ts; |
| 206 |
T4y = T1q - T1t; |
| 207 |
T4z = T4x + T4y; |
| 208 |
T52 = T4x - T4y; |
| 209 |
} |
| 210 |
} |
| 211 |
{
|
| 212 |
E TN, T2G, T2r, T4N, TQ, T2s, T2J, T4O, TU, T2x, T2w, T4T, TX, T2z, T2C; |
| 213 |
E T4U; |
| 214 |
{
|
| 215 |
E TL, TM, T2p, T2q; |
| 216 |
TL = ri[WS(is, 31)];
|
| 217 |
TM = ri[WS(is, 15)];
|
| 218 |
TN = TL + TM; |
| 219 |
T2G = TL - TM; |
| 220 |
T2p = ii[WS(is, 31)];
|
| 221 |
T2q = ii[WS(is, 15)];
|
| 222 |
T2r = T2p - T2q; |
| 223 |
T4N = T2p + T2q; |
| 224 |
} |
| 225 |
{
|
| 226 |
E TO, TP, T2H, T2I; |
| 227 |
TO = ri[WS(is, 7)];
|
| 228 |
TP = ri[WS(is, 23)];
|
| 229 |
TQ = TO + TP; |
| 230 |
T2s = TO - TP; |
| 231 |
T2H = ii[WS(is, 7)];
|
| 232 |
T2I = ii[WS(is, 23)];
|
| 233 |
T2J = T2H - T2I; |
| 234 |
T4O = T2H + T2I; |
| 235 |
} |
| 236 |
{
|
| 237 |
E TS, TT, T2u, T2v; |
| 238 |
TS = ri[WS(is, 3)];
|
| 239 |
TT = ri[WS(is, 19)];
|
| 240 |
TU = TS + TT; |
| 241 |
T2x = TS - TT; |
| 242 |
T2u = ii[WS(is, 3)];
|
| 243 |
T2v = ii[WS(is, 19)];
|
| 244 |
T2w = T2u - T2v; |
| 245 |
T4T = T2u + T2v; |
| 246 |
} |
| 247 |
{
|
| 248 |
E TV, TW, T2A, T2B; |
| 249 |
TV = ri[WS(is, 27)];
|
| 250 |
TW = ri[WS(is, 11)];
|
| 251 |
TX = TV + TW; |
| 252 |
T2z = TV - TW; |
| 253 |
T2A = ii[WS(is, 27)];
|
| 254 |
T2B = ii[WS(is, 11)];
|
| 255 |
T2C = T2A - T2B; |
| 256 |
T4U = T2A + T2B; |
| 257 |
} |
| 258 |
T2t = T2r - T2s; |
| 259 |
T3L = T2G - T2J; |
| 260 |
T3O = T2s + T2r; |
| 261 |
T2K = T2G + T2J; |
| 262 |
TR = TN + TQ; |
| 263 |
TY = TU + TX; |
| 264 |
T5F = TR - TY; |
| 265 |
{
|
| 266 |
E T4P, T4Q, T2y, T2D; |
| 267 |
T5G = T4N + T4O; |
| 268 |
T5H = T4T + T4U; |
| 269 |
T5I = T5G - T5H; |
| 270 |
T4P = T4N - T4O; |
| 271 |
T4Q = TX - TU; |
| 272 |
T4R = T4P - T4Q; |
| 273 |
T5k = T4Q + T4P; |
| 274 |
T2y = T2w - T2x; |
| 275 |
T2D = T2z + T2C; |
| 276 |
T2E = T2y + T2D; |
| 277 |
T3M = T2D - T2y; |
| 278 |
{
|
| 279 |
E T4S, T4V, T2L, T2M; |
| 280 |
T4S = TN - TQ; |
| 281 |
T4V = T4T - T4U; |
| 282 |
T4W = T4S - T4V; |
| 283 |
T5j = T4S + T4V; |
| 284 |
T2L = T2x + T2w; |
| 285 |
T2M = T2z - T2C; |
| 286 |
T2N = T2L + T2M; |
| 287 |
T3P = T2L - T2M; |
| 288 |
} |
| 289 |
} |
| 290 |
} |
| 291 |
{
|
| 292 |
E Ty, T2f, T20, T4C, TB, T21, T2i, T4D, TF, T26, T25, T4I, TI, T28, T2b; |
| 293 |
E T4J; |
| 294 |
{
|
| 295 |
E Tw, Tx, T1Y, T1Z; |
| 296 |
Tw = ri[WS(is, 1)];
|
| 297 |
Tx = ri[WS(is, 17)];
|
| 298 |
Ty = Tw + Tx; |
| 299 |
T2f = Tw - Tx; |
| 300 |
T1Y = ii[WS(is, 1)];
|
| 301 |
T1Z = ii[WS(is, 17)];
|
| 302 |
T20 = T1Y - T1Z; |
| 303 |
T4C = T1Y + T1Z; |
| 304 |
} |
| 305 |
{
|
| 306 |
E Tz, TA, T2g, T2h; |
| 307 |
Tz = ri[WS(is, 9)];
|
| 308 |
TA = ri[WS(is, 25)];
|
| 309 |
TB = Tz + TA; |
| 310 |
T21 = Tz - TA; |
| 311 |
T2g = ii[WS(is, 9)];
|
| 312 |
T2h = ii[WS(is, 25)];
|
| 313 |
T2i = T2g - T2h; |
| 314 |
T4D = T2g + T2h; |
| 315 |
} |
| 316 |
{
|
| 317 |
E TD, TE, T23, T24; |
| 318 |
TD = ri[WS(is, 5)];
|
| 319 |
TE = ri[WS(is, 21)];
|
| 320 |
TF = TD + TE; |
| 321 |
T26 = TD - TE; |
| 322 |
T23 = ii[WS(is, 5)];
|
| 323 |
T24 = ii[WS(is, 21)];
|
| 324 |
T25 = T23 - T24; |
| 325 |
T4I = T23 + T24; |
| 326 |
} |
| 327 |
{
|
| 328 |
E TG, TH, T29, T2a; |
| 329 |
TG = ri[WS(is, 29)];
|
| 330 |
TH = ri[WS(is, 13)];
|
| 331 |
TI = TG + TH; |
| 332 |
T28 = TG - TH; |
| 333 |
T29 = ii[WS(is, 29)];
|
| 334 |
T2a = ii[WS(is, 13)];
|
| 335 |
T2b = T29 - T2a; |
| 336 |
T4J = T29 + T2a; |
| 337 |
} |
| 338 |
T22 = T20 - T21; |
| 339 |
T3E = T2f - T2i; |
| 340 |
T3H = T21 + T20; |
| 341 |
T2j = T2f + T2i; |
| 342 |
TC = Ty + TB; |
| 343 |
TJ = TF + TI; |
| 344 |
T5A = TC - TJ; |
| 345 |
{
|
| 346 |
E T4E, T4F, T27, T2c; |
| 347 |
T5B = T4C + T4D; |
| 348 |
T5C = T4I + T4J; |
| 349 |
T5D = T5B - T5C; |
| 350 |
T4E = T4C - T4D; |
| 351 |
T4F = TI - TF; |
| 352 |
T4G = T4E - T4F; |
| 353 |
T5h = T4F + T4E; |
| 354 |
T27 = T25 - T26; |
| 355 |
T2c = T28 + T2b; |
| 356 |
T2d = T27 + T2c; |
| 357 |
T3F = T2c - T27; |
| 358 |
{
|
| 359 |
E T4H, T4K, T2k, T2l; |
| 360 |
T4H = Ty - TB; |
| 361 |
T4K = T4I - T4J; |
| 362 |
T4L = T4H - T4K; |
| 363 |
T5g = T4H + T4K; |
| 364 |
T2k = T26 + T25; |
| 365 |
T2l = T28 - T2b; |
| 366 |
T2m = T2k + T2l; |
| 367 |
T3I = T2k - T2l; |
| 368 |
} |
| 369 |
} |
| 370 |
} |
| 371 |
{
|
| 372 |
E T4B, T5b, T5a, T5c, T4Y, T56, T55, T57; |
| 373 |
{
|
| 374 |
E T4t, T4A, T58, T59; |
| 375 |
T4t = T4r - T4s; |
| 376 |
T4A = T4w - T4z; |
| 377 |
T4B = FMA(KP707106781, T4A, T4t); |
| 378 |
T5b = FNMS(KP707106781, T4A, T4t); |
| 379 |
T58 = FMA(KP414213562, T4R, T4W); |
| 380 |
T59 = FNMS(KP414213562, T4G, T4L); |
| 381 |
T5a = T58 - T59; |
| 382 |
T5c = T59 + T58; |
| 383 |
} |
| 384 |
{
|
| 385 |
E T4M, T4X, T51, T54; |
| 386 |
T4M = FMA(KP414213562, T4L, T4G); |
| 387 |
T4X = FNMS(KP414213562, T4W, T4R); |
| 388 |
T4Y = T4M - T4X; |
| 389 |
T56 = T4M + T4X; |
| 390 |
T51 = T4Z - T50; |
| 391 |
T54 = T52 - T53; |
| 392 |
T55 = FNMS(KP707106781, T54, T51); |
| 393 |
T57 = FMA(KP707106781, T54, T51); |
| 394 |
} |
| 395 |
ro[WS(os, 22)] = FNMS(KP923879532, T4Y, T4B);
|
| 396 |
io[WS(os, 22)] = FNMS(KP923879532, T5a, T57);
|
| 397 |
ro[WS(os, 6)] = FMA(KP923879532, T4Y, T4B);
|
| 398 |
io[WS(os, 6)] = FMA(KP923879532, T5a, T57);
|
| 399 |
io[WS(os, 14)] = FNMS(KP923879532, T56, T55);
|
| 400 |
ro[WS(os, 14)] = FNMS(KP923879532, T5c, T5b);
|
| 401 |
io[WS(os, 30)] = FMA(KP923879532, T56, T55);
|
| 402 |
ro[WS(os, 30)] = FMA(KP923879532, T5c, T5b);
|
| 403 |
} |
| 404 |
{
|
| 405 |
E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v; |
| 406 |
{
|
| 407 |
E T5d, T5e, T5s, T5t; |
| 408 |
T5d = T4r + T4s; |
| 409 |
T5e = T53 + T52; |
| 410 |
T5f = FMA(KP707106781, T5e, T5d); |
| 411 |
T5r = FNMS(KP707106781, T5e, T5d); |
| 412 |
T5s = FNMS(KP414213562, T5g, T5h); |
| 413 |
T5t = FMA(KP414213562, T5j, T5k); |
| 414 |
T5u = T5s - T5t; |
| 415 |
T5w = T5s + T5t; |
| 416 |
} |
| 417 |
{
|
| 418 |
E T5i, T5l, T5n, T5o; |
| 419 |
T5i = FMA(KP414213562, T5h, T5g); |
| 420 |
T5l = FNMS(KP414213562, T5k, T5j); |
| 421 |
T5m = T5i + T5l; |
| 422 |
T5q = T5l - T5i; |
| 423 |
T5n = T50 + T4Z; |
| 424 |
T5o = T4w + T4z; |
| 425 |
T5p = FNMS(KP707106781, T5o, T5n); |
| 426 |
T5v = FMA(KP707106781, T5o, T5n); |
| 427 |
} |
| 428 |
ro[WS(os, 18)] = FNMS(KP923879532, T5m, T5f);
|
| 429 |
io[WS(os, 18)] = FNMS(KP923879532, T5w, T5v);
|
| 430 |
ro[WS(os, 2)] = FMA(KP923879532, T5m, T5f);
|
| 431 |
io[WS(os, 2)] = FMA(KP923879532, T5w, T5v);
|
| 432 |
io[WS(os, 26)] = FNMS(KP923879532, T5q, T5p);
|
| 433 |
ro[WS(os, 26)] = FNMS(KP923879532, T5u, T5r);
|
| 434 |
io[WS(os, 10)] = FMA(KP923879532, T5q, T5p);
|
| 435 |
ro[WS(os, 10)] = FMA(KP923879532, T5u, T5r);
|
| 436 |
} |
| 437 |
{
|
| 438 |
E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T; |
| 439 |
{
|
| 440 |
E T5x, T5y, T5Q, T5R; |
| 441 |
T5x = T7 - Te; |
| 442 |
T5y = T1n - T1u; |
| 443 |
T5z = T5x + T5y; |
| 444 |
T5P = T5x - T5y; |
| 445 |
T5Q = T5D - T5A; |
| 446 |
T5R = T5F + T5I; |
| 447 |
T5S = T5Q - T5R; |
| 448 |
T5U = T5Q + T5R; |
| 449 |
} |
| 450 |
{
|
| 451 |
E T5E, T5J, T5L, T5M; |
| 452 |
T5E = T5A + T5D; |
| 453 |
T5J = T5F - T5I; |
| 454 |
T5K = T5E + T5J; |
| 455 |
T5O = T5J - T5E; |
| 456 |
T5L = T18 - T1f; |
| 457 |
T5M = Tt - Tm; |
| 458 |
T5N = T5L - T5M; |
| 459 |
T5T = T5M + T5L; |
| 460 |
} |
| 461 |
ro[WS(os, 20)] = FNMS(KP707106781, T5K, T5z);
|
| 462 |
io[WS(os, 20)] = FNMS(KP707106781, T5U, T5T);
|
| 463 |
ro[WS(os, 4)] = FMA(KP707106781, T5K, T5z);
|
| 464 |
io[WS(os, 4)] = FMA(KP707106781, T5U, T5T);
|
| 465 |
io[WS(os, 28)] = FNMS(KP707106781, T5O, T5N);
|
| 466 |
ro[WS(os, 28)] = FNMS(KP707106781, T5S, T5P);
|
| 467 |
io[WS(os, 12)] = FMA(KP707106781, T5O, T5N);
|
| 468 |
ro[WS(os, 12)] = FMA(KP707106781, T5S, T5P);
|
| 469 |
} |
| 470 |
{
|
| 471 |
E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z; |
| 472 |
{
|
| 473 |
E Tf, Tu, T5W, T5X; |
| 474 |
Tf = T7 + Te; |
| 475 |
Tu = Tm + Tt; |
| 476 |
Tv = Tf + Tu; |
| 477 |
T5V = Tf - Tu; |
| 478 |
T5W = T5B + T5C; |
| 479 |
T5X = T5G + T5H; |
| 480 |
T5Y = T5W - T5X; |
| 481 |
T60 = T5W + T5X; |
| 482 |
} |
| 483 |
{
|
| 484 |
E TK, TZ, T1g, T1v; |
| 485 |
TK = TC + TJ; |
| 486 |
TZ = TR + TY; |
| 487 |
T10 = TK + TZ; |
| 488 |
T11 = TZ - TK; |
| 489 |
T1g = T18 + T1f; |
| 490 |
T1v = T1n + T1u; |
| 491 |
T1w = T1g - T1v; |
| 492 |
T5Z = T1g + T1v; |
| 493 |
} |
| 494 |
ro[WS(os, 16)] = Tv - T10;
|
| 495 |
io[WS(os, 16)] = T5Z - T60;
|
| 496 |
ro[0] = Tv + T10;
|
| 497 |
io[0] = T5Z + T60;
|
| 498 |
io[WS(os, 8)] = T11 + T1w;
|
| 499 |
ro[WS(os, 8)] = T5V + T5Y;
|
| 500 |
io[WS(os, 24)] = T1w - T11;
|
| 501 |
ro[WS(os, 24)] = T5V - T5Y;
|
| 502 |
} |
| 503 |
{
|
| 504 |
E T1X, T37, T31, T33, T2o, T35, T2P, T34; |
| 505 |
{
|
| 506 |
E T1H, T1W, T2X, T30; |
| 507 |
T1H = FNMS(KP707106781, T1G, T1z); |
| 508 |
T1W = T1O - T1V; |
| 509 |
T1X = FMA(KP923879532, T1W, T1H); |
| 510 |
T37 = FNMS(KP923879532, T1W, T1H); |
| 511 |
T2X = FNMS(KP707106781, T2W, T2T); |
| 512 |
T30 = T2Y - T2Z; |
| 513 |
T31 = FNMS(KP923879532, T30, T2X); |
| 514 |
T33 = FMA(KP923879532, T30, T2X); |
| 515 |
} |
| 516 |
{
|
| 517 |
E T2e, T2n, T2F, T2O; |
| 518 |
T2e = FNMS(KP707106781, T2d, T22); |
| 519 |
T2n = FNMS(KP707106781, T2m, T2j); |
| 520 |
T2o = FMA(KP668178637, T2n, T2e); |
| 521 |
T35 = FNMS(KP668178637, T2e, T2n); |
| 522 |
T2F = FNMS(KP707106781, T2E, T2t); |
| 523 |
T2O = FNMS(KP707106781, T2N, T2K); |
| 524 |
T2P = FNMS(KP668178637, T2O, T2F); |
| 525 |
T34 = FMA(KP668178637, T2F, T2O); |
| 526 |
} |
| 527 |
{
|
| 528 |
E T2Q, T36, T32, T38; |
| 529 |
T2Q = T2o - T2P; |
| 530 |
ro[WS(os, 21)] = FNMS(KP831469612, T2Q, T1X);
|
| 531 |
ro[WS(os, 5)] = FMA(KP831469612, T2Q, T1X);
|
| 532 |
T36 = T34 - T35; |
| 533 |
io[WS(os, 21)] = FNMS(KP831469612, T36, T33);
|
| 534 |
io[WS(os, 5)] = FMA(KP831469612, T36, T33);
|
| 535 |
T32 = T2o + T2P; |
| 536 |
io[WS(os, 13)] = FNMS(KP831469612, T32, T31);
|
| 537 |
io[WS(os, 29)] = FMA(KP831469612, T32, T31);
|
| 538 |
T38 = T35 + T34; |
| 539 |
ro[WS(os, 13)] = FNMS(KP831469612, T38, T37);
|
| 540 |
ro[WS(os, 29)] = FMA(KP831469612, T38, T37);
|
| 541 |
} |
| 542 |
} |
| 543 |
{
|
| 544 |
E T3D, T41, T3Z, T45, T3K, T42, T3R, T43; |
| 545 |
{
|
| 546 |
E T3v, T3C, T3V, T3Y; |
| 547 |
T3v = FMA(KP707106781, T3u, T3t); |
| 548 |
T3C = T3y - T3B; |
| 549 |
T3D = FMA(KP923879532, T3C, T3v); |
| 550 |
T41 = FNMS(KP923879532, T3C, T3v); |
| 551 |
T3V = FMA(KP707106781, T3U, T3T); |
| 552 |
T3Y = T3W - T3X; |
| 553 |
T3Z = FNMS(KP923879532, T3Y, T3V); |
| 554 |
T45 = FMA(KP923879532, T3Y, T3V); |
| 555 |
} |
| 556 |
{
|
| 557 |
E T3G, T3J, T3N, T3Q; |
| 558 |
T3G = FNMS(KP707106781, T3F, T3E); |
| 559 |
T3J = FNMS(KP707106781, T3I, T3H); |
| 560 |
T3K = FMA(KP668178637, T3J, T3G); |
| 561 |
T42 = FNMS(KP668178637, T3G, T3J); |
| 562 |
T3N = FNMS(KP707106781, T3M, T3L); |
| 563 |
T3Q = FNMS(KP707106781, T3P, T3O); |
| 564 |
T3R = FNMS(KP668178637, T3Q, T3N); |
| 565 |
T43 = FMA(KP668178637, T3N, T3Q); |
| 566 |
} |
| 567 |
{
|
| 568 |
E T3S, T46, T40, T44; |
| 569 |
T3S = T3K + T3R; |
| 570 |
ro[WS(os, 19)] = FNMS(KP831469612, T3S, T3D);
|
| 571 |
ro[WS(os, 3)] = FMA(KP831469612, T3S, T3D);
|
| 572 |
T46 = T42 + T43; |
| 573 |
io[WS(os, 19)] = FNMS(KP831469612, T46, T45);
|
| 574 |
io[WS(os, 3)] = FMA(KP831469612, T46, T45);
|
| 575 |
T40 = T3R - T3K; |
| 576 |
io[WS(os, 27)] = FNMS(KP831469612, T40, T3Z);
|
| 577 |
io[WS(os, 11)] = FMA(KP831469612, T40, T3Z);
|
| 578 |
T44 = T42 - T43; |
| 579 |
ro[WS(os, 27)] = FNMS(KP831469612, T44, T41);
|
| 580 |
ro[WS(os, 11)] = FMA(KP831469612, T44, T41);
|
| 581 |
} |
| 582 |
} |
| 583 |
{
|
| 584 |
E T49, T4p, T4j, T4l, T4c, T4n, T4f, T4m; |
| 585 |
{
|
| 586 |
E T47, T48, T4h, T4i; |
| 587 |
T47 = FNMS(KP707106781, T3u, T3t); |
| 588 |
T48 = T3X + T3W; |
| 589 |
T49 = FNMS(KP923879532, T48, T47); |
| 590 |
T4p = FMA(KP923879532, T48, T47); |
| 591 |
T4h = FNMS(KP707106781, T3U, T3T); |
| 592 |
T4i = T3y + T3B; |
| 593 |
T4j = FMA(KP923879532, T4i, T4h); |
| 594 |
T4l = FNMS(KP923879532, T4i, T4h); |
| 595 |
} |
| 596 |
{
|
| 597 |
E T4a, T4b, T4d, T4e; |
| 598 |
T4a = FMA(KP707106781, T3I, T3H); |
| 599 |
T4b = FMA(KP707106781, T3F, T3E); |
| 600 |
T4c = FMA(KP198912367, T4b, T4a); |
| 601 |
T4n = FNMS(KP198912367, T4a, T4b); |
| 602 |
T4d = FMA(KP707106781, T3P, T3O); |
| 603 |
T4e = FMA(KP707106781, T3M, T3L); |
| 604 |
T4f = FNMS(KP198912367, T4e, T4d); |
| 605 |
T4m = FMA(KP198912367, T4d, T4e); |
| 606 |
} |
| 607 |
{
|
| 608 |
E T4g, T4o, T4k, T4q; |
| 609 |
T4g = T4c - T4f; |
| 610 |
ro[WS(os, 23)] = FNMS(KP980785280, T4g, T49);
|
| 611 |
ro[WS(os, 7)] = FMA(KP980785280, T4g, T49);
|
| 612 |
T4o = T4m - T4n; |
| 613 |
io[WS(os, 23)] = FNMS(KP980785280, T4o, T4l);
|
| 614 |
io[WS(os, 7)] = FMA(KP980785280, T4o, T4l);
|
| 615 |
T4k = T4c + T4f; |
| 616 |
io[WS(os, 15)] = FNMS(KP980785280, T4k, T4j);
|
| 617 |
io[WS(os, 31)] = FMA(KP980785280, T4k, T4j);
|
| 618 |
T4q = T4n + T4m; |
| 619 |
ro[WS(os, 15)] = FNMS(KP980785280, T4q, T4p);
|
| 620 |
ro[WS(os, 31)] = FMA(KP980785280, T4q, T4p);
|
| 621 |
} |
| 622 |
} |
| 623 |
{
|
| 624 |
E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p; |
| 625 |
{
|
| 626 |
E T39, T3a, T3j, T3k; |
| 627 |
T39 = FMA(KP707106781, T1G, T1z); |
| 628 |
T3a = T2Z + T2Y; |
| 629 |
T3b = FMA(KP923879532, T3a, T39); |
| 630 |
T3n = FNMS(KP923879532, T3a, T39); |
| 631 |
T3j = FMA(KP707106781, T2W, T2T); |
| 632 |
T3k = T1O + T1V; |
| 633 |
T3l = FNMS(KP923879532, T3k, T3j); |
| 634 |
T3r = FMA(KP923879532, T3k, T3j); |
| 635 |
} |
| 636 |
{
|
| 637 |
E T3c, T3d, T3f, T3g; |
| 638 |
T3c = FMA(KP707106781, T2m, T2j); |
| 639 |
T3d = FMA(KP707106781, T2d, T22); |
| 640 |
T3e = FMA(KP198912367, T3d, T3c); |
| 641 |
T3o = FNMS(KP198912367, T3c, T3d); |
| 642 |
T3f = FMA(KP707106781, T2N, T2K); |
| 643 |
T3g = FMA(KP707106781, T2E, T2t); |
| 644 |
T3h = FNMS(KP198912367, T3g, T3f); |
| 645 |
T3p = FMA(KP198912367, T3f, T3g); |
| 646 |
} |
| 647 |
{
|
| 648 |
E T3i, T3s, T3m, T3q; |
| 649 |
T3i = T3e + T3h; |
| 650 |
ro[WS(os, 17)] = FNMS(KP980785280, T3i, T3b);
|
| 651 |
ro[WS(os, 1)] = FMA(KP980785280, T3i, T3b);
|
| 652 |
T3s = T3o + T3p; |
| 653 |
io[WS(os, 17)] = FNMS(KP980785280, T3s, T3r);
|
| 654 |
io[WS(os, 1)] = FMA(KP980785280, T3s, T3r);
|
| 655 |
T3m = T3h - T3e; |
| 656 |
io[WS(os, 25)] = FNMS(KP980785280, T3m, T3l);
|
| 657 |
io[WS(os, 9)] = FMA(KP980785280, T3m, T3l);
|
| 658 |
T3q = T3o - T3p; |
| 659 |
ro[WS(os, 25)] = FNMS(KP980785280, T3q, T3n);
|
| 660 |
ro[WS(os, 9)] = FMA(KP980785280, T3q, T3n);
|
| 661 |
} |
| 662 |
} |
| 663 |
} |
| 664 |
} |
| 665 |
} |
| 666 |
|
| 667 |
static const kdft_desc desc = { 32, "n1_32", {236, 0, 136, 0}, &GENUS, 0, 0, 0, 0 }; |
| 668 |
|
| 669 |
void X(codelet_n1_32) (planner *p) {
|
| 670 |
X(kdft_register) (p, n1_32, &desc); |
| 671 |
} |
| 672 |
|
| 673 |
#else
|
| 674 |
|
| 675 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 32 -name n1_32 -include dft/scalar/n.h */
|
| 676 |
|
| 677 |
/*
|
| 678 |
* This function contains 372 FP additions, 84 FP multiplications,
|
| 679 |
* (or, 340 additions, 52 multiplications, 32 fused multiply/add),
|
| 680 |
* 100 stack variables, 7 constants, and 128 memory accesses
|
| 681 |
*/
|
| 682 |
#include "dft/scalar/n.h" |
| 683 |
|
| 684 |
static void n1_32(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 685 |
{
|
| 686 |
DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
| 687 |
DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
| 688 |
DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
| 689 |
DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
| 690 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 691 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 692 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 693 |
{
|
| 694 |
INT i; |
| 695 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(128, is), MAKE_VOLATILE_STRIDE(128, os)) { |
| 696 |
E T7, T4r, T4Z, T18, T1z, T3t, T3T, T2T, Te, T1f, T50, T4s, T2W, T3u, T1G; |
| 697 |
E T3U, Tm, T1n, T1O, T2Z, T3y, T3X, T4w, T53, Tt, T1u, T1V, T2Y, T3B, T3W; |
| 698 |
E T4z, T52, T2t, T3L, T3O, T2K, TR, TY, T5F, T5G, T5H, T5I, T4R, T5j, T2E; |
| 699 |
E T3P, T4W, T5k, T2N, T3M, T22, T3E, T3H, T2j, TC, TJ, T5A, T5B, T5C, T5D; |
| 700 |
E T4G, T5g, T2d, T3F, T4L, T5h, T2m, T3I; |
| 701 |
{
|
| 702 |
E T3, T1x, T14, T2S, T6, T2R, T17, T1y; |
| 703 |
{
|
| 704 |
E T1, T2, T12, T13; |
| 705 |
T1 = ri[0];
|
| 706 |
T2 = ri[WS(is, 16)];
|
| 707 |
T3 = T1 + T2; |
| 708 |
T1x = T1 - T2; |
| 709 |
T12 = ii[0];
|
| 710 |
T13 = ii[WS(is, 16)];
|
| 711 |
T14 = T12 + T13; |
| 712 |
T2S = T12 - T13; |
| 713 |
} |
| 714 |
{
|
| 715 |
E T4, T5, T15, T16; |
| 716 |
T4 = ri[WS(is, 8)];
|
| 717 |
T5 = ri[WS(is, 24)];
|
| 718 |
T6 = T4 + T5; |
| 719 |
T2R = T4 - T5; |
| 720 |
T15 = ii[WS(is, 8)];
|
| 721 |
T16 = ii[WS(is, 24)];
|
| 722 |
T17 = T15 + T16; |
| 723 |
T1y = T15 - T16; |
| 724 |
} |
| 725 |
T7 = T3 + T6; |
| 726 |
T4r = T3 - T6; |
| 727 |
T4Z = T14 - T17; |
| 728 |
T18 = T14 + T17; |
| 729 |
T1z = T1x - T1y; |
| 730 |
T3t = T1x + T1y; |
| 731 |
T3T = T2S - T2R; |
| 732 |
T2T = T2R + T2S; |
| 733 |
} |
| 734 |
{
|
| 735 |
E Ta, T1B, T1b, T1A, Td, T1D, T1e, T1E; |
| 736 |
{
|
| 737 |
E T8, T9, T19, T1a; |
| 738 |
T8 = ri[WS(is, 4)];
|
| 739 |
T9 = ri[WS(is, 20)];
|
| 740 |
Ta = T8 + T9; |
| 741 |
T1B = T8 - T9; |
| 742 |
T19 = ii[WS(is, 4)];
|
| 743 |
T1a = ii[WS(is, 20)];
|
| 744 |
T1b = T19 + T1a; |
| 745 |
T1A = T19 - T1a; |
| 746 |
} |
| 747 |
{
|
| 748 |
E Tb, Tc, T1c, T1d; |
| 749 |
Tb = ri[WS(is, 28)];
|
| 750 |
Tc = ri[WS(is, 12)];
|
| 751 |
Td = Tb + Tc; |
| 752 |
T1D = Tb - Tc; |
| 753 |
T1c = ii[WS(is, 28)];
|
| 754 |
T1d = ii[WS(is, 12)];
|
| 755 |
T1e = T1c + T1d; |
| 756 |
T1E = T1c - T1d; |
| 757 |
} |
| 758 |
Te = Ta + Td; |
| 759 |
T1f = T1b + T1e; |
| 760 |
T50 = Td - Ta; |
| 761 |
T4s = T1b - T1e; |
| 762 |
{
|
| 763 |
E T2U, T2V, T1C, T1F; |
| 764 |
T2U = T1D - T1E; |
| 765 |
T2V = T1B + T1A; |
| 766 |
T2W = KP707106781 * (T2U - T2V); |
| 767 |
T3u = KP707106781 * (T2V + T2U); |
| 768 |
T1C = T1A - T1B; |
| 769 |
T1F = T1D + T1E; |
| 770 |
T1G = KP707106781 * (T1C - T1F); |
| 771 |
T3U = KP707106781 * (T1C + T1F); |
| 772 |
} |
| 773 |
} |
| 774 |
{
|
| 775 |
E Ti, T1L, T1j, T1J, Tl, T1I, T1m, T1M, T1K, T1N; |
| 776 |
{
|
| 777 |
E Tg, Th, T1h, T1i; |
| 778 |
Tg = ri[WS(is, 2)];
|
| 779 |
Th = ri[WS(is, 18)];
|
| 780 |
Ti = Tg + Th; |
| 781 |
T1L = Tg - Th; |
| 782 |
T1h = ii[WS(is, 2)];
|
| 783 |
T1i = ii[WS(is, 18)];
|
| 784 |
T1j = T1h + T1i; |
| 785 |
T1J = T1h - T1i; |
| 786 |
} |
| 787 |
{
|
| 788 |
E Tj, Tk, T1k, T1l; |
| 789 |
Tj = ri[WS(is, 10)];
|
| 790 |
Tk = ri[WS(is, 26)];
|
| 791 |
Tl = Tj + Tk; |
| 792 |
T1I = Tj - Tk; |
| 793 |
T1k = ii[WS(is, 10)];
|
| 794 |
T1l = ii[WS(is, 26)];
|
| 795 |
T1m = T1k + T1l; |
| 796 |
T1M = T1k - T1l; |
| 797 |
} |
| 798 |
Tm = Ti + Tl; |
| 799 |
T1n = T1j + T1m; |
| 800 |
T1K = T1I + T1J; |
| 801 |
T1N = T1L - T1M; |
| 802 |
T1O = FNMS(KP923879532, T1N, KP382683432 * T1K); |
| 803 |
T2Z = FMA(KP923879532, T1K, KP382683432 * T1N); |
| 804 |
{
|
| 805 |
E T3w, T3x, T4u, T4v; |
| 806 |
T3w = T1J - T1I; |
| 807 |
T3x = T1L + T1M; |
| 808 |
T3y = FNMS(KP382683432, T3x, KP923879532 * T3w); |
| 809 |
T3X = FMA(KP382683432, T3w, KP923879532 * T3x); |
| 810 |
T4u = T1j - T1m; |
| 811 |
T4v = Ti - Tl; |
| 812 |
T4w = T4u - T4v; |
| 813 |
T53 = T4v + T4u; |
| 814 |
} |
| 815 |
} |
| 816 |
{
|
| 817 |
E Tp, T1S, T1q, T1Q, Ts, T1P, T1t, T1T, T1R, T1U; |
| 818 |
{
|
| 819 |
E Tn, To, T1o, T1p; |
| 820 |
Tn = ri[WS(is, 30)];
|
| 821 |
To = ri[WS(is, 14)];
|
| 822 |
Tp = Tn + To; |
| 823 |
T1S = Tn - To; |
| 824 |
T1o = ii[WS(is, 30)];
|
| 825 |
T1p = ii[WS(is, 14)];
|
| 826 |
T1q = T1o + T1p; |
| 827 |
T1Q = T1o - T1p; |
| 828 |
} |
| 829 |
{
|
| 830 |
E Tq, Tr, T1r, T1s; |
| 831 |
Tq = ri[WS(is, 6)];
|
| 832 |
Tr = ri[WS(is, 22)];
|
| 833 |
Ts = Tq + Tr; |
| 834 |
T1P = Tq - Tr; |
| 835 |
T1r = ii[WS(is, 6)];
|
| 836 |
T1s = ii[WS(is, 22)];
|
| 837 |
T1t = T1r + T1s; |
| 838 |
T1T = T1r - T1s; |
| 839 |
} |
| 840 |
Tt = Tp + Ts; |
| 841 |
T1u = T1q + T1t; |
| 842 |
T1R = T1P + T1Q; |
| 843 |
T1U = T1S - T1T; |
| 844 |
T1V = FMA(KP382683432, T1R, KP923879532 * T1U); |
| 845 |
T2Y = FNMS(KP923879532, T1R, KP382683432 * T1U); |
| 846 |
{
|
| 847 |
E T3z, T3A, T4x, T4y; |
| 848 |
T3z = T1Q - T1P; |
| 849 |
T3A = T1S + T1T; |
| 850 |
T3B = FMA(KP923879532, T3z, KP382683432 * T3A); |
| 851 |
T3W = FNMS(KP382683432, T3z, KP923879532 * T3A); |
| 852 |
T4x = Tp - Ts; |
| 853 |
T4y = T1q - T1t; |
| 854 |
T4z = T4x + T4y; |
| 855 |
T52 = T4x - T4y; |
| 856 |
} |
| 857 |
} |
| 858 |
{
|
| 859 |
E TN, T2p, T2J, T4S, TQ, T2G, T2s, T4T, TU, T2x, T2w, T4O, TX, T2z, T2C; |
| 860 |
E T4P; |
| 861 |
{
|
| 862 |
E TL, TM, T2H, T2I; |
| 863 |
TL = ri[WS(is, 31)];
|
| 864 |
TM = ri[WS(is, 15)];
|
| 865 |
TN = TL + TM; |
| 866 |
T2p = TL - TM; |
| 867 |
T2H = ii[WS(is, 31)];
|
| 868 |
T2I = ii[WS(is, 15)];
|
| 869 |
T2J = T2H - T2I; |
| 870 |
T4S = T2H + T2I; |
| 871 |
} |
| 872 |
{
|
| 873 |
E TO, TP, T2q, T2r; |
| 874 |
TO = ri[WS(is, 7)];
|
| 875 |
TP = ri[WS(is, 23)];
|
| 876 |
TQ = TO + TP; |
| 877 |
T2G = TO - TP; |
| 878 |
T2q = ii[WS(is, 7)];
|
| 879 |
T2r = ii[WS(is, 23)];
|
| 880 |
T2s = T2q - T2r; |
| 881 |
T4T = T2q + T2r; |
| 882 |
} |
| 883 |
{
|
| 884 |
E TS, TT, T2u, T2v; |
| 885 |
TS = ri[WS(is, 3)];
|
| 886 |
TT = ri[WS(is, 19)];
|
| 887 |
TU = TS + TT; |
| 888 |
T2x = TS - TT; |
| 889 |
T2u = ii[WS(is, 3)];
|
| 890 |
T2v = ii[WS(is, 19)];
|
| 891 |
T2w = T2u - T2v; |
| 892 |
T4O = T2u + T2v; |
| 893 |
} |
| 894 |
{
|
| 895 |
E TV, TW, T2A, T2B; |
| 896 |
TV = ri[WS(is, 27)];
|
| 897 |
TW = ri[WS(is, 11)];
|
| 898 |
TX = TV + TW; |
| 899 |
T2z = TV - TW; |
| 900 |
T2A = ii[WS(is, 27)];
|
| 901 |
T2B = ii[WS(is, 11)];
|
| 902 |
T2C = T2A - T2B; |
| 903 |
T4P = T2A + T2B; |
| 904 |
} |
| 905 |
T2t = T2p - T2s; |
| 906 |
T3L = T2p + T2s; |
| 907 |
T3O = T2J - T2G; |
| 908 |
T2K = T2G + T2J; |
| 909 |
TR = TN + TQ; |
| 910 |
TY = TU + TX; |
| 911 |
T5F = TR - TY; |
| 912 |
{
|
| 913 |
E T4N, T4Q, T2y, T2D; |
| 914 |
T5G = T4S + T4T; |
| 915 |
T5H = T4O + T4P; |
| 916 |
T5I = T5G - T5H; |
| 917 |
T4N = TN - TQ; |
| 918 |
T4Q = T4O - T4P; |
| 919 |
T4R = T4N - T4Q; |
| 920 |
T5j = T4N + T4Q; |
| 921 |
T2y = T2w - T2x; |
| 922 |
T2D = T2z + T2C; |
| 923 |
T2E = KP707106781 * (T2y - T2D); |
| 924 |
T3P = KP707106781 * (T2y + T2D); |
| 925 |
{
|
| 926 |
E T4U, T4V, T2L, T2M; |
| 927 |
T4U = T4S - T4T; |
| 928 |
T4V = TX - TU; |
| 929 |
T4W = T4U - T4V; |
| 930 |
T5k = T4V + T4U; |
| 931 |
T2L = T2z - T2C; |
| 932 |
T2M = T2x + T2w; |
| 933 |
T2N = KP707106781 * (T2L - T2M); |
| 934 |
T3M = KP707106781 * (T2M + T2L); |
| 935 |
} |
| 936 |
} |
| 937 |
} |
| 938 |
{
|
| 939 |
E Ty, T2f, T21, T4C, TB, T1Y, T2i, T4D, TF, T28, T2b, T4I, TI, T23, T26; |
| 940 |
E T4J; |
| 941 |
{
|
| 942 |
E Tw, Tx, T1Z, T20; |
| 943 |
Tw = ri[WS(is, 1)];
|
| 944 |
Tx = ri[WS(is, 17)];
|
| 945 |
Ty = Tw + Tx; |
| 946 |
T2f = Tw - Tx; |
| 947 |
T1Z = ii[WS(is, 1)];
|
| 948 |
T20 = ii[WS(is, 17)];
|
| 949 |
T21 = T1Z - T20; |
| 950 |
T4C = T1Z + T20; |
| 951 |
} |
| 952 |
{
|
| 953 |
E Tz, TA, T2g, T2h; |
| 954 |
Tz = ri[WS(is, 9)];
|
| 955 |
TA = ri[WS(is, 25)];
|
| 956 |
TB = Tz + TA; |
| 957 |
T1Y = Tz - TA; |
| 958 |
T2g = ii[WS(is, 9)];
|
| 959 |
T2h = ii[WS(is, 25)];
|
| 960 |
T2i = T2g - T2h; |
| 961 |
T4D = T2g + T2h; |
| 962 |
} |
| 963 |
{
|
| 964 |
E TD, TE, T29, T2a; |
| 965 |
TD = ri[WS(is, 5)];
|
| 966 |
TE = ri[WS(is, 21)];
|
| 967 |
TF = TD + TE; |
| 968 |
T28 = TD - TE; |
| 969 |
T29 = ii[WS(is, 5)];
|
| 970 |
T2a = ii[WS(is, 21)];
|
| 971 |
T2b = T29 - T2a; |
| 972 |
T4I = T29 + T2a; |
| 973 |
} |
| 974 |
{
|
| 975 |
E TG, TH, T24, T25; |
| 976 |
TG = ri[WS(is, 29)];
|
| 977 |
TH = ri[WS(is, 13)];
|
| 978 |
TI = TG + TH; |
| 979 |
T23 = TG - TH; |
| 980 |
T24 = ii[WS(is, 29)];
|
| 981 |
T25 = ii[WS(is, 13)];
|
| 982 |
T26 = T24 - T25; |
| 983 |
T4J = T24 + T25; |
| 984 |
} |
| 985 |
T22 = T1Y + T21; |
| 986 |
T3E = T2f + T2i; |
| 987 |
T3H = T21 - T1Y; |
| 988 |
T2j = T2f - T2i; |
| 989 |
TC = Ty + TB; |
| 990 |
TJ = TF + TI; |
| 991 |
T5A = TC - TJ; |
| 992 |
{
|
| 993 |
E T4E, T4F, T27, T2c; |
| 994 |
T5B = T4C + T4D; |
| 995 |
T5C = T4I + T4J; |
| 996 |
T5D = T5B - T5C; |
| 997 |
T4E = T4C - T4D; |
| 998 |
T4F = TI - TF; |
| 999 |
T4G = T4E - T4F; |
| 1000 |
T5g = T4F + T4E; |
| 1001 |
T27 = T23 - T26; |
| 1002 |
T2c = T28 + T2b; |
| 1003 |
T2d = KP707106781 * (T27 - T2c); |
| 1004 |
T3F = KP707106781 * (T2c + T27); |
| 1005 |
{
|
| 1006 |
E T4H, T4K, T2k, T2l; |
| 1007 |
T4H = Ty - TB; |
| 1008 |
T4K = T4I - T4J; |
| 1009 |
T4L = T4H - T4K; |
| 1010 |
T5h = T4H + T4K; |
| 1011 |
T2k = T2b - T28; |
| 1012 |
T2l = T23 + T26; |
| 1013 |
T2m = KP707106781 * (T2k - T2l); |
| 1014 |
T3I = KP707106781 * (T2k + T2l); |
| 1015 |
} |
| 1016 |
} |
| 1017 |
} |
| 1018 |
{
|
| 1019 |
E T4B, T57, T5a, T5c, T4Y, T56, T55, T5b; |
| 1020 |
{
|
| 1021 |
E T4t, T4A, T58, T59; |
| 1022 |
T4t = T4r - T4s; |
| 1023 |
T4A = KP707106781 * (T4w - T4z); |
| 1024 |
T4B = T4t + T4A; |
| 1025 |
T57 = T4t - T4A; |
| 1026 |
T58 = FNMS(KP923879532, T4L, KP382683432 * T4G); |
| 1027 |
T59 = FMA(KP382683432, T4W, KP923879532 * T4R); |
| 1028 |
T5a = T58 - T59; |
| 1029 |
T5c = T58 + T59; |
| 1030 |
} |
| 1031 |
{
|
| 1032 |
E T4M, T4X, T51, T54; |
| 1033 |
T4M = FMA(KP923879532, T4G, KP382683432 * T4L); |
| 1034 |
T4X = FNMS(KP923879532, T4W, KP382683432 * T4R); |
| 1035 |
T4Y = T4M + T4X; |
| 1036 |
T56 = T4X - T4M; |
| 1037 |
T51 = T4Z - T50; |
| 1038 |
T54 = KP707106781 * (T52 - T53); |
| 1039 |
T55 = T51 - T54; |
| 1040 |
T5b = T51 + T54; |
| 1041 |
} |
| 1042 |
ro[WS(os, 22)] = T4B - T4Y;
|
| 1043 |
io[WS(os, 22)] = T5b - T5c;
|
| 1044 |
ro[WS(os, 6)] = T4B + T4Y;
|
| 1045 |
io[WS(os, 6)] = T5b + T5c;
|
| 1046 |
io[WS(os, 30)] = T55 - T56;
|
| 1047 |
ro[WS(os, 30)] = T57 - T5a;
|
| 1048 |
io[WS(os, 14)] = T55 + T56;
|
| 1049 |
ro[WS(os, 14)] = T57 + T5a;
|
| 1050 |
} |
| 1051 |
{
|
| 1052 |
E T5f, T5r, T5u, T5w, T5m, T5q, T5p, T5v; |
| 1053 |
{
|
| 1054 |
E T5d, T5e, T5s, T5t; |
| 1055 |
T5d = T4r + T4s; |
| 1056 |
T5e = KP707106781 * (T53 + T52); |
| 1057 |
T5f = T5d + T5e; |
| 1058 |
T5r = T5d - T5e; |
| 1059 |
T5s = FNMS(KP382683432, T5h, KP923879532 * T5g); |
| 1060 |
T5t = FMA(KP923879532, T5k, KP382683432 * T5j); |
| 1061 |
T5u = T5s - T5t; |
| 1062 |
T5w = T5s + T5t; |
| 1063 |
} |
| 1064 |
{
|
| 1065 |
E T5i, T5l, T5n, T5o; |
| 1066 |
T5i = FMA(KP382683432, T5g, KP923879532 * T5h); |
| 1067 |
T5l = FNMS(KP382683432, T5k, KP923879532 * T5j); |
| 1068 |
T5m = T5i + T5l; |
| 1069 |
T5q = T5l - T5i; |
| 1070 |
T5n = T50 + T4Z; |
| 1071 |
T5o = KP707106781 * (T4w + T4z); |
| 1072 |
T5p = T5n - T5o; |
| 1073 |
T5v = T5n + T5o; |
| 1074 |
} |
| 1075 |
ro[WS(os, 18)] = T5f - T5m;
|
| 1076 |
io[WS(os, 18)] = T5v - T5w;
|
| 1077 |
ro[WS(os, 2)] = T5f + T5m;
|
| 1078 |
io[WS(os, 2)] = T5v + T5w;
|
| 1079 |
io[WS(os, 26)] = T5p - T5q;
|
| 1080 |
ro[WS(os, 26)] = T5r - T5u;
|
| 1081 |
io[WS(os, 10)] = T5p + T5q;
|
| 1082 |
ro[WS(os, 10)] = T5r + T5u;
|
| 1083 |
} |
| 1084 |
{
|
| 1085 |
E T5z, T5P, T5S, T5U, T5K, T5O, T5N, T5T; |
| 1086 |
{
|
| 1087 |
E T5x, T5y, T5Q, T5R; |
| 1088 |
T5x = T7 - Te; |
| 1089 |
T5y = T1n - T1u; |
| 1090 |
T5z = T5x + T5y; |
| 1091 |
T5P = T5x - T5y; |
| 1092 |
T5Q = T5D - T5A; |
| 1093 |
T5R = T5F + T5I; |
| 1094 |
T5S = KP707106781 * (T5Q - T5R); |
| 1095 |
T5U = KP707106781 * (T5Q + T5R); |
| 1096 |
} |
| 1097 |
{
|
| 1098 |
E T5E, T5J, T5L, T5M; |
| 1099 |
T5E = T5A + T5D; |
| 1100 |
T5J = T5F - T5I; |
| 1101 |
T5K = KP707106781 * (T5E + T5J); |
| 1102 |
T5O = KP707106781 * (T5J - T5E); |
| 1103 |
T5L = T18 - T1f; |
| 1104 |
T5M = Tt - Tm; |
| 1105 |
T5N = T5L - T5M; |
| 1106 |
T5T = T5M + T5L; |
| 1107 |
} |
| 1108 |
ro[WS(os, 20)] = T5z - T5K;
|
| 1109 |
io[WS(os, 20)] = T5T - T5U;
|
| 1110 |
ro[WS(os, 4)] = T5z + T5K;
|
| 1111 |
io[WS(os, 4)] = T5T + T5U;
|
| 1112 |
io[WS(os, 28)] = T5N - T5O;
|
| 1113 |
ro[WS(os, 28)] = T5P - T5S;
|
| 1114 |
io[WS(os, 12)] = T5N + T5O;
|
| 1115 |
ro[WS(os, 12)] = T5P + T5S;
|
| 1116 |
} |
| 1117 |
{
|
| 1118 |
E Tv, T5V, T5Y, T60, T10, T11, T1w, T5Z; |
| 1119 |
{
|
| 1120 |
E Tf, Tu, T5W, T5X; |
| 1121 |
Tf = T7 + Te; |
| 1122 |
Tu = Tm + Tt; |
| 1123 |
Tv = Tf + Tu; |
| 1124 |
T5V = Tf - Tu; |
| 1125 |
T5W = T5B + T5C; |
| 1126 |
T5X = T5G + T5H; |
| 1127 |
T5Y = T5W - T5X; |
| 1128 |
T60 = T5W + T5X; |
| 1129 |
} |
| 1130 |
{
|
| 1131 |
E TK, TZ, T1g, T1v; |
| 1132 |
TK = TC + TJ; |
| 1133 |
TZ = TR + TY; |
| 1134 |
T10 = TK + TZ; |
| 1135 |
T11 = TZ - TK; |
| 1136 |
T1g = T18 + T1f; |
| 1137 |
T1v = T1n + T1u; |
| 1138 |
T1w = T1g - T1v; |
| 1139 |
T5Z = T1g + T1v; |
| 1140 |
} |
| 1141 |
ro[WS(os, 16)] = Tv - T10;
|
| 1142 |
io[WS(os, 16)] = T5Z - T60;
|
| 1143 |
ro[0] = Tv + T10;
|
| 1144 |
io[0] = T5Z + T60;
|
| 1145 |
io[WS(os, 8)] = T11 + T1w;
|
| 1146 |
ro[WS(os, 8)] = T5V + T5Y;
|
| 1147 |
io[WS(os, 24)] = T1w - T11;
|
| 1148 |
ro[WS(os, 24)] = T5V - T5Y;
|
| 1149 |
} |
| 1150 |
{
|
| 1151 |
E T1X, T33, T31, T37, T2o, T34, T2P, T35; |
| 1152 |
{
|
| 1153 |
E T1H, T1W, T2X, T30; |
| 1154 |
T1H = T1z - T1G; |
| 1155 |
T1W = T1O - T1V; |
| 1156 |
T1X = T1H + T1W; |
| 1157 |
T33 = T1H - T1W; |
| 1158 |
T2X = T2T - T2W; |
| 1159 |
T30 = T2Y - T2Z; |
| 1160 |
T31 = T2X - T30; |
| 1161 |
T37 = T2X + T30; |
| 1162 |
} |
| 1163 |
{
|
| 1164 |
E T2e, T2n, T2F, T2O; |
| 1165 |
T2e = T22 - T2d; |
| 1166 |
T2n = T2j - T2m; |
| 1167 |
T2o = FMA(KP980785280, T2e, KP195090322 * T2n); |
| 1168 |
T34 = FNMS(KP980785280, T2n, KP195090322 * T2e); |
| 1169 |
T2F = T2t - T2E; |
| 1170 |
T2O = T2K - T2N; |
| 1171 |
T2P = FNMS(KP980785280, T2O, KP195090322 * T2F); |
| 1172 |
T35 = FMA(KP195090322, T2O, KP980785280 * T2F); |
| 1173 |
} |
| 1174 |
{
|
| 1175 |
E T2Q, T38, T32, T36; |
| 1176 |
T2Q = T2o + T2P; |
| 1177 |
ro[WS(os, 23)] = T1X - T2Q;
|
| 1178 |
ro[WS(os, 7)] = T1X + T2Q;
|
| 1179 |
T38 = T34 + T35; |
| 1180 |
io[WS(os, 23)] = T37 - T38;
|
| 1181 |
io[WS(os, 7)] = T37 + T38;
|
| 1182 |
T32 = T2P - T2o; |
| 1183 |
io[WS(os, 31)] = T31 - T32;
|
| 1184 |
io[WS(os, 15)] = T31 + T32;
|
| 1185 |
T36 = T34 - T35; |
| 1186 |
ro[WS(os, 31)] = T33 - T36;
|
| 1187 |
ro[WS(os, 15)] = T33 + T36;
|
| 1188 |
} |
| 1189 |
} |
| 1190 |
{
|
| 1191 |
E T3D, T41, T3Z, T45, T3K, T42, T3R, T43; |
| 1192 |
{
|
| 1193 |
E T3v, T3C, T3V, T3Y; |
| 1194 |
T3v = T3t - T3u; |
| 1195 |
T3C = T3y - T3B; |
| 1196 |
T3D = T3v + T3C; |
| 1197 |
T41 = T3v - T3C; |
| 1198 |
T3V = T3T - T3U; |
| 1199 |
T3Y = T3W - T3X; |
| 1200 |
T3Z = T3V - T3Y; |
| 1201 |
T45 = T3V + T3Y; |
| 1202 |
} |
| 1203 |
{
|
| 1204 |
E T3G, T3J, T3N, T3Q; |
| 1205 |
T3G = T3E - T3F; |
| 1206 |
T3J = T3H - T3I; |
| 1207 |
T3K = FMA(KP555570233, T3G, KP831469612 * T3J); |
| 1208 |
T42 = FNMS(KP831469612, T3G, KP555570233 * T3J); |
| 1209 |
T3N = T3L - T3M; |
| 1210 |
T3Q = T3O - T3P; |
| 1211 |
T3R = FNMS(KP831469612, T3Q, KP555570233 * T3N); |
| 1212 |
T43 = FMA(KP831469612, T3N, KP555570233 * T3Q); |
| 1213 |
} |
| 1214 |
{
|
| 1215 |
E T3S, T46, T40, T44; |
| 1216 |
T3S = T3K + T3R; |
| 1217 |
ro[WS(os, 21)] = T3D - T3S;
|
| 1218 |
ro[WS(os, 5)] = T3D + T3S;
|
| 1219 |
T46 = T42 + T43; |
| 1220 |
io[WS(os, 21)] = T45 - T46;
|
| 1221 |
io[WS(os, 5)] = T45 + T46;
|
| 1222 |
T40 = T3R - T3K; |
| 1223 |
io[WS(os, 29)] = T3Z - T40;
|
| 1224 |
io[WS(os, 13)] = T3Z + T40;
|
| 1225 |
T44 = T42 - T43; |
| 1226 |
ro[WS(os, 29)] = T41 - T44;
|
| 1227 |
ro[WS(os, 13)] = T41 + T44;
|
| 1228 |
} |
| 1229 |
} |
| 1230 |
{
|
| 1231 |
E T49, T4l, T4j, T4p, T4c, T4m, T4f, T4n; |
| 1232 |
{
|
| 1233 |
E T47, T48, T4h, T4i; |
| 1234 |
T47 = T3t + T3u; |
| 1235 |
T48 = T3X + T3W; |
| 1236 |
T49 = T47 + T48; |
| 1237 |
T4l = T47 - T48; |
| 1238 |
T4h = T3T + T3U; |
| 1239 |
T4i = T3y + T3B; |
| 1240 |
T4j = T4h - T4i; |
| 1241 |
T4p = T4h + T4i; |
| 1242 |
} |
| 1243 |
{
|
| 1244 |
E T4a, T4b, T4d, T4e; |
| 1245 |
T4a = T3E + T3F; |
| 1246 |
T4b = T3H + T3I; |
| 1247 |
T4c = FMA(KP980785280, T4a, KP195090322 * T4b); |
| 1248 |
T4m = FNMS(KP195090322, T4a, KP980785280 * T4b); |
| 1249 |
T4d = T3L + T3M; |
| 1250 |
T4e = T3O + T3P; |
| 1251 |
T4f = FNMS(KP195090322, T4e, KP980785280 * T4d); |
| 1252 |
T4n = FMA(KP195090322, T4d, KP980785280 * T4e); |
| 1253 |
} |
| 1254 |
{
|
| 1255 |
E T4g, T4q, T4k, T4o; |
| 1256 |
T4g = T4c + T4f; |
| 1257 |
ro[WS(os, 17)] = T49 - T4g;
|
| 1258 |
ro[WS(os, 1)] = T49 + T4g;
|
| 1259 |
T4q = T4m + T4n; |
| 1260 |
io[WS(os, 17)] = T4p - T4q;
|
| 1261 |
io[WS(os, 1)] = T4p + T4q;
|
| 1262 |
T4k = T4f - T4c; |
| 1263 |
io[WS(os, 25)] = T4j - T4k;
|
| 1264 |
io[WS(os, 9)] = T4j + T4k;
|
| 1265 |
T4o = T4m - T4n; |
| 1266 |
ro[WS(os, 25)] = T4l - T4o;
|
| 1267 |
ro[WS(os, 9)] = T4l + T4o;
|
| 1268 |
} |
| 1269 |
} |
| 1270 |
{
|
| 1271 |
E T3b, T3n, T3l, T3r, T3e, T3o, T3h, T3p; |
| 1272 |
{
|
| 1273 |
E T39, T3a, T3j, T3k; |
| 1274 |
T39 = T1z + T1G; |
| 1275 |
T3a = T2Z + T2Y; |
| 1276 |
T3b = T39 + T3a; |
| 1277 |
T3n = T39 - T3a; |
| 1278 |
T3j = T2T + T2W; |
| 1279 |
T3k = T1O + T1V; |
| 1280 |
T3l = T3j - T3k; |
| 1281 |
T3r = T3j + T3k; |
| 1282 |
} |
| 1283 |
{
|
| 1284 |
E T3c, T3d, T3f, T3g; |
| 1285 |
T3c = T22 + T2d; |
| 1286 |
T3d = T2j + T2m; |
| 1287 |
T3e = FMA(KP555570233, T3c, KP831469612 * T3d); |
| 1288 |
T3o = FNMS(KP555570233, T3d, KP831469612 * T3c); |
| 1289 |
T3f = T2t + T2E; |
| 1290 |
T3g = T2K + T2N; |
| 1291 |
T3h = FNMS(KP555570233, T3g, KP831469612 * T3f); |
| 1292 |
T3p = FMA(KP831469612, T3g, KP555570233 * T3f); |
| 1293 |
} |
| 1294 |
{
|
| 1295 |
E T3i, T3s, T3m, T3q; |
| 1296 |
T3i = T3e + T3h; |
| 1297 |
ro[WS(os, 19)] = T3b - T3i;
|
| 1298 |
ro[WS(os, 3)] = T3b + T3i;
|
| 1299 |
T3s = T3o + T3p; |
| 1300 |
io[WS(os, 19)] = T3r - T3s;
|
| 1301 |
io[WS(os, 3)] = T3r + T3s;
|
| 1302 |
T3m = T3h - T3e; |
| 1303 |
io[WS(os, 27)] = T3l - T3m;
|
| 1304 |
io[WS(os, 11)] = T3l + T3m;
|
| 1305 |
T3q = T3o - T3p; |
| 1306 |
ro[WS(os, 27)] = T3n - T3q;
|
| 1307 |
ro[WS(os, 11)] = T3n + T3q;
|
| 1308 |
} |
| 1309 |
} |
| 1310 |
} |
| 1311 |
} |
| 1312 |
} |
| 1313 |
|
| 1314 |
static const kdft_desc desc = { 32, "n1_32", {340, 52, 32, 0}, &GENUS, 0, 0, 0, 0 }; |
| 1315 |
|
| 1316 |
void X(codelet_n1_32) (planner *p) {
|
| 1317 |
X(kdft_register) (p, n1_32, &desc); |
| 1318 |
} |
| 1319 |
|
| 1320 |
#endif
|