To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_25.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (38.1 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:12 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 352 FP additions, 268 FP multiplications,
|
| 32 |
* (or, 84 additions, 0 multiplications, 268 fused multiply/add),
|
| 33 |
* 128 stack variables, 47 constants, and 100 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP803003575, +0.803003575438660414833440593570376004635464850); |
| 40 |
DK(KP554608978, +0.554608978404018097464974850792216217022558774); |
| 41 |
DK(KP248028675, +0.248028675328619457762448260696444630363259177); |
| 42 |
DK(KP726211448, +0.726211448929902658173535992263577167607493062); |
| 43 |
DK(KP525970792, +0.525970792408939708442463226536226366643874659); |
| 44 |
DK(KP992114701, +0.992114701314477831049793042785778521453036709); |
| 45 |
DK(KP851038619, +0.851038619207379630836264138867114231259902550); |
| 46 |
DK(KP912575812, +0.912575812670962425556968549836277086778922727); |
| 47 |
DK(KP912018591, +0.912018591466481957908415381764119056233607330); |
| 48 |
DK(KP943557151, +0.943557151597354104399655195398983005179443399); |
| 49 |
DK(KP614372930, +0.614372930789563808870829930444362096004872855); |
| 50 |
DK(KP621716863, +0.621716863012209892444754556304102309693593202); |
| 51 |
DK(KP994076283, +0.994076283785401014123185814696322018529298887); |
| 52 |
DK(KP734762448, +0.734762448793050413546343770063151342619912334); |
| 53 |
DK(KP126329378, +0.126329378446108174786050455341811215027378105); |
| 54 |
DK(KP772036680, +0.772036680810363904029489473607579825330539880); |
| 55 |
DK(KP827271945, +0.827271945972475634034355757144307982555673741); |
| 56 |
DK(KP860541664, +0.860541664367944677098261680920518816412804187); |
| 57 |
DK(KP949179823, +0.949179823508441261575555465843363271711583843); |
| 58 |
DK(KP557913902, +0.557913902031834264187699648465567037992437152); |
| 59 |
DK(KP249506682, +0.249506682107067890488084201715862638334226305); |
| 60 |
DK(KP681693190, +0.681693190061530575150324149145440022633095390); |
| 61 |
DK(KP560319534, +0.560319534973832390111614715371676131169633784); |
| 62 |
DK(KP998026728, +0.998026728428271561952336806863450553336905220); |
| 63 |
DK(KP906616052, +0.906616052148196230441134447086066874408359177); |
| 64 |
DK(KP968479752, +0.968479752739016373193524836781420152702090879); |
| 65 |
DK(KP470564281, +0.470564281212251493087595091036643380879947982); |
| 66 |
DK(KP845997307, +0.845997307939530944175097360758058292389769300); |
| 67 |
DK(KP062914667, +0.062914667253649757225485955897349402364686947); |
| 68 |
DK(KP833417178, +0.833417178328688677408962550243238843138996060); |
| 69 |
DK(KP921177326, +0.921177326965143320250447435415066029359282231); |
| 70 |
DK(KP541454447, +0.541454447536312777046285590082819509052033189); |
| 71 |
DK(KP242145790, +0.242145790282157779872542093866183953459003101); |
| 72 |
DK(KP683113946, +0.683113946453479238701949862233725244439656928); |
| 73 |
DK(KP559154169, +0.559154169276087864842202529084232643714075927); |
| 74 |
DK(KP968583161, +0.968583161128631119490168375464735813836012403); |
| 75 |
DK(KP904730450, +0.904730450839922351881287709692877908104763647); |
| 76 |
DK(KP831864738, +0.831864738706457140726048799369896829771167132); |
| 77 |
DK(KP939062505, +0.939062505817492352556001843133229685779824606); |
| 78 |
DK(KP549754652, +0.549754652192770074288023275540779861653779767); |
| 79 |
DK(KP871714437, +0.871714437527667770979999223229522602943903653); |
| 80 |
DK(KP634619297, +0.634619297544148100711287640319130485732531031); |
| 81 |
DK(KP256756360, +0.256756360367726783319498520922669048172391148); |
| 82 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 83 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 84 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 85 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 86 |
{
|
| 87 |
INT i; |
| 88 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(100, is), MAKE_VOLATILE_STRIDE(100, os)) { |
| 89 |
E T9, T4Q, T1U, T3b, T45, T1D, T46, T3e, T1R, T4P, Ti, Tr, Ts, TY, T17; |
| 90 |
E T1E, T22, T5f, T3z, T4z, T2o, T5b, T3C, T4s, T2h, T5c, T3D, T4p, T29, T5e; |
| 91 |
E T3A, T4w, TB, TK, TL, T1h, T1q, T1F, T2x, T57, T3v, T4a, T2T, T55, T3s; |
| 92 |
E T4k, T2M, T54, T3t, T4h, T2E, T58, T3w, T4d; |
| 93 |
{
|
| 94 |
E T1, T4, T7, T8, T1T, T1S, T39, T3a; |
| 95 |
T1 = ri[0];
|
| 96 |
{
|
| 97 |
E T2, T3, T5, T6; |
| 98 |
T2 = ri[WS(is, 5)];
|
| 99 |
T3 = ri[WS(is, 20)];
|
| 100 |
T4 = T2 + T3; |
| 101 |
T5 = ri[WS(is, 10)];
|
| 102 |
T6 = ri[WS(is, 15)];
|
| 103 |
T7 = T5 + T6; |
| 104 |
T8 = T4 + T7; |
| 105 |
T1T = T5 - T6; |
| 106 |
T1S = T2 - T3; |
| 107 |
} |
| 108 |
T9 = T1 + T8; |
| 109 |
T4Q = FNMS(KP618033988, T1S, T1T); |
| 110 |
T1U = FMA(KP618033988, T1T, T1S); |
| 111 |
T39 = FNMS(KP250000000, T8, T1); |
| 112 |
T3a = T4 - T7; |
| 113 |
T3b = FMA(KP559016994, T3a, T39); |
| 114 |
T45 = FNMS(KP559016994, T3a, T39); |
| 115 |
} |
| 116 |
{
|
| 117 |
E T1v, T1y, T1B, T1C, T3d, T3c, T1P, T1Q; |
| 118 |
T1v = ii[0];
|
| 119 |
{
|
| 120 |
E T1w, T1x, T1z, T1A; |
| 121 |
T1w = ii[WS(is, 5)];
|
| 122 |
T1x = ii[WS(is, 20)];
|
| 123 |
T1y = T1w + T1x; |
| 124 |
T1z = ii[WS(is, 10)];
|
| 125 |
T1A = ii[WS(is, 15)];
|
| 126 |
T1B = T1z + T1A; |
| 127 |
T1C = T1y + T1B; |
| 128 |
T3d = T1z - T1A; |
| 129 |
T3c = T1w - T1x; |
| 130 |
} |
| 131 |
T1D = T1v + T1C; |
| 132 |
T46 = FNMS(KP618033988, T3c, T3d); |
| 133 |
T3e = FMA(KP618033988, T3d, T3c); |
| 134 |
T1P = FNMS(KP250000000, T1C, T1v); |
| 135 |
T1Q = T1y - T1B; |
| 136 |
T1R = FMA(KP559016994, T1Q, T1P); |
| 137 |
T4P = FNMS(KP559016994, T1Q, T1P); |
| 138 |
} |
| 139 |
{
|
| 140 |
E Ta, TQ, Tj, TZ, Th, T24, T1Z, T20, TX, T27, T1X, T26, Tq, T2m, T2c; |
| 141 |
E T2l, T16, T2j, T2e, T2f; |
| 142 |
Ta = ri[WS(is, 1)];
|
| 143 |
TQ = ii[WS(is, 1)];
|
| 144 |
Tj = ri[WS(is, 4)];
|
| 145 |
TZ = ii[WS(is, 4)];
|
| 146 |
{
|
| 147 |
E Tb, Tc, Td, Te, Tf, Tg; |
| 148 |
Tb = ri[WS(is, 6)];
|
| 149 |
Tc = ri[WS(is, 21)];
|
| 150 |
Td = Tb + Tc; |
| 151 |
Te = ri[WS(is, 11)];
|
| 152 |
Tf = ri[WS(is, 16)];
|
| 153 |
Tg = Te + Tf; |
| 154 |
Th = Td + Tg; |
| 155 |
T24 = Td - Tg; |
| 156 |
T1Z = Tc - Tb; |
| 157 |
T20 = Tf - Te; |
| 158 |
} |
| 159 |
{
|
| 160 |
E TR, TS, TT, TU, TV, TW; |
| 161 |
TR = ii[WS(is, 6)];
|
| 162 |
TS = ii[WS(is, 21)];
|
| 163 |
TT = TR + TS; |
| 164 |
TU = ii[WS(is, 11)];
|
| 165 |
TV = ii[WS(is, 16)];
|
| 166 |
TW = TU + TV; |
| 167 |
TX = TT + TW; |
| 168 |
T27 = TV - TU; |
| 169 |
T1X = TT - TW; |
| 170 |
T26 = TR - TS; |
| 171 |
} |
| 172 |
{
|
| 173 |
E Tk, Tl, Tm, Tn, To, Tp; |
| 174 |
Tk = ri[WS(is, 9)];
|
| 175 |
Tl = ri[WS(is, 24)];
|
| 176 |
Tm = Tk + Tl; |
| 177 |
Tn = ri[WS(is, 14)];
|
| 178 |
To = ri[WS(is, 19)];
|
| 179 |
Tp = Tn + To; |
| 180 |
Tq = Tm + Tp; |
| 181 |
T2m = To - Tn; |
| 182 |
T2c = Tm - Tp; |
| 183 |
T2l = Tl - Tk; |
| 184 |
} |
| 185 |
{
|
| 186 |
E T10, T11, T12, T13, T14, T15; |
| 187 |
T10 = ii[WS(is, 9)];
|
| 188 |
T11 = ii[WS(is, 24)];
|
| 189 |
T12 = T10 + T11; |
| 190 |
T13 = ii[WS(is, 14)];
|
| 191 |
T14 = ii[WS(is, 19)];
|
| 192 |
T15 = T13 + T14; |
| 193 |
T16 = T12 + T15; |
| 194 |
T2j = T15 - T12; |
| 195 |
T2e = T11 - T10; |
| 196 |
T2f = T14 - T13; |
| 197 |
} |
| 198 |
Ti = Ta + Th; |
| 199 |
Tr = Tj + Tq; |
| 200 |
Ts = Ti + Tr; |
| 201 |
TY = TQ + TX; |
| 202 |
T17 = TZ + T16; |
| 203 |
T1E = TY + T17; |
| 204 |
{
|
| 205 |
E T21, T4y, T1Y, T4x, T1W; |
| 206 |
T21 = FMA(KP618033988, T20, T1Z); |
| 207 |
T4y = FNMS(KP618033988, T1Z, T20); |
| 208 |
T1W = FNMS(KP250000000, TX, TQ); |
| 209 |
T1Y = FMA(KP559016994, T1X, T1W); |
| 210 |
T4x = FNMS(KP559016994, T1X, T1W); |
| 211 |
T22 = FMA(KP951056516, T21, T1Y); |
| 212 |
T5f = FNMS(KP951056516, T4y, T4x); |
| 213 |
T3z = FNMS(KP951056516, T21, T1Y); |
| 214 |
T4z = FMA(KP951056516, T4y, T4x); |
| 215 |
} |
| 216 |
{
|
| 217 |
E T2n, T4r, T2k, T4q, T2i; |
| 218 |
T2n = FMA(KP618033988, T2m, T2l); |
| 219 |
T4r = FNMS(KP618033988, T2l, T2m); |
| 220 |
T2i = FNMS(KP250000000, T16, TZ); |
| 221 |
T2k = FNMS(KP559016994, T2j, T2i); |
| 222 |
T4q = FMA(KP559016994, T2j, T2i); |
| 223 |
T2o = FMA(KP951056516, T2n, T2k); |
| 224 |
T5b = FNMS(KP951056516, T4r, T4q); |
| 225 |
T3C = FNMS(KP951056516, T2n, T2k); |
| 226 |
T4s = FMA(KP951056516, T4r, T4q); |
| 227 |
} |
| 228 |
{
|
| 229 |
E T2g, T4o, T2d, T4n, T2b; |
| 230 |
T2g = FMA(KP618033988, T2f, T2e); |
| 231 |
T4o = FNMS(KP618033988, T2e, T2f); |
| 232 |
T2b = FMS(KP250000000, Tq, Tj); |
| 233 |
T2d = FNMS(KP559016994, T2c, T2b); |
| 234 |
T4n = FMA(KP559016994, T2c, T2b); |
| 235 |
T2h = FMA(KP951056516, T2g, T2d); |
| 236 |
T5c = FNMS(KP951056516, T4o, T4n); |
| 237 |
T3D = FNMS(KP951056516, T2g, T2d); |
| 238 |
T4p = FMA(KP951056516, T4o, T4n); |
| 239 |
} |
| 240 |
{
|
| 241 |
E T28, T4v, T25, T4u, T23; |
| 242 |
T28 = FNMS(KP618033988, T27, T26); |
| 243 |
T4v = FMA(KP618033988, T26, T27); |
| 244 |
T23 = FNMS(KP250000000, Th, Ta); |
| 245 |
T25 = FMA(KP559016994, T24, T23); |
| 246 |
T4u = FNMS(KP559016994, T24, T23); |
| 247 |
T29 = FMA(KP951056516, T28, T25); |
| 248 |
T5e = FMA(KP951056516, T4v, T4u); |
| 249 |
T3A = FNMS(KP951056516, T28, T25); |
| 250 |
T4w = FNMS(KP951056516, T4v, T4u); |
| 251 |
} |
| 252 |
} |
| 253 |
{
|
| 254 |
E Tt, T19, TC, T1i, TA, T2z, T2u, T2v, T1g, T2C, T2s, T2B, TJ, T2O, T2J; |
| 255 |
E T2K, T1p, T2R, T2H, T2Q; |
| 256 |
Tt = ri[WS(is, 2)];
|
| 257 |
T19 = ii[WS(is, 2)];
|
| 258 |
TC = ri[WS(is, 3)];
|
| 259 |
T1i = ii[WS(is, 3)];
|
| 260 |
{
|
| 261 |
E Tu, Tv, Tw, Tx, Ty, Tz; |
| 262 |
Tu = ri[WS(is, 7)];
|
| 263 |
Tv = ri[WS(is, 22)];
|
| 264 |
Tw = Tu + Tv; |
| 265 |
Tx = ri[WS(is, 12)];
|
| 266 |
Ty = ri[WS(is, 17)];
|
| 267 |
Tz = Tx + Ty; |
| 268 |
TA = Tw + Tz; |
| 269 |
T2z = Tz - Tw; |
| 270 |
T2u = Tv - Tu; |
| 271 |
T2v = Ty - Tx; |
| 272 |
} |
| 273 |
{
|
| 274 |
E T1a, T1b, T1c, T1d, T1e, T1f; |
| 275 |
T1a = ii[WS(is, 7)];
|
| 276 |
T1b = ii[WS(is, 22)];
|
| 277 |
T1c = T1a + T1b; |
| 278 |
T1d = ii[WS(is, 12)];
|
| 279 |
T1e = ii[WS(is, 17)];
|
| 280 |
T1f = T1d + T1e; |
| 281 |
T1g = T1c + T1f; |
| 282 |
T2C = T1d - T1e; |
| 283 |
T2s = T1f - T1c; |
| 284 |
T2B = T1b - T1a; |
| 285 |
} |
| 286 |
{
|
| 287 |
E TD, TE, TF, TG, TH, TI; |
| 288 |
TD = ri[WS(is, 8)];
|
| 289 |
TE = ri[WS(is, 23)];
|
| 290 |
TF = TD + TE; |
| 291 |
TG = ri[WS(is, 13)];
|
| 292 |
TH = ri[WS(is, 18)];
|
| 293 |
TI = TG + TH; |
| 294 |
TJ = TF + TI; |
| 295 |
T2O = TI - TF; |
| 296 |
T2J = TD - TE; |
| 297 |
T2K = TG - TH; |
| 298 |
} |
| 299 |
{
|
| 300 |
E T1j, T1k, T1l, T1m, T1n, T1o; |
| 301 |
T1j = ii[WS(is, 8)];
|
| 302 |
T1k = ii[WS(is, 23)];
|
| 303 |
T1l = T1j + T1k; |
| 304 |
T1m = ii[WS(is, 13)];
|
| 305 |
T1n = ii[WS(is, 18)];
|
| 306 |
T1o = T1m + T1n; |
| 307 |
T1p = T1l + T1o; |
| 308 |
T2R = T1n - T1m; |
| 309 |
T2H = T1o - T1l; |
| 310 |
T2Q = T1k - T1j; |
| 311 |
} |
| 312 |
TB = Tt + TA; |
| 313 |
TK = TC + TJ; |
| 314 |
TL = TB + TK; |
| 315 |
T1h = T19 + T1g; |
| 316 |
T1q = T1i + T1p; |
| 317 |
T1F = T1h + T1q; |
| 318 |
{
|
| 319 |
E T2w, T49, T2t, T48, T2r; |
| 320 |
T2w = FMA(KP618033988, T2v, T2u); |
| 321 |
T49 = FNMS(KP618033988, T2u, T2v); |
| 322 |
T2r = FNMS(KP250000000, T1g, T19); |
| 323 |
T2t = FNMS(KP559016994, T2s, T2r); |
| 324 |
T48 = FMA(KP559016994, T2s, T2r); |
| 325 |
T2x = FMA(KP951056516, T2w, T2t); |
| 326 |
T57 = FNMS(KP951056516, T49, T48); |
| 327 |
T3v = FNMS(KP951056516, T2w, T2t); |
| 328 |
T4a = FMA(KP951056516, T49, T48); |
| 329 |
} |
| 330 |
{
|
| 331 |
E T2S, T4j, T2P, T4i, T2N; |
| 332 |
T2S = FMA(KP618033988, T2R, T2Q); |
| 333 |
T4j = FNMS(KP618033988, T2Q, T2R); |
| 334 |
T2N = FNMS(KP250000000, TJ, TC); |
| 335 |
T2P = FNMS(KP559016994, T2O, T2N); |
| 336 |
T4i = FMA(KP559016994, T2O, T2N); |
| 337 |
T2T = FNMS(KP951056516, T2S, T2P); |
| 338 |
T55 = FMA(KP951056516, T4j, T4i); |
| 339 |
T3s = FMA(KP951056516, T2S, T2P); |
| 340 |
T4k = FNMS(KP951056516, T4j, T4i); |
| 341 |
} |
| 342 |
{
|
| 343 |
E T2L, T4g, T2I, T4f, T2G; |
| 344 |
T2L = FMA(KP618033988, T2K, T2J); |
| 345 |
T4g = FNMS(KP618033988, T2J, T2K); |
| 346 |
T2G = FNMS(KP250000000, T1p, T1i); |
| 347 |
T2I = FNMS(KP559016994, T2H, T2G); |
| 348 |
T4f = FMA(KP559016994, T2H, T2G); |
| 349 |
T2M = FNMS(KP951056516, T2L, T2I); |
| 350 |
T54 = FMA(KP951056516, T4g, T4f); |
| 351 |
T3t = FMA(KP951056516, T2L, T2I); |
| 352 |
T4h = FNMS(KP951056516, T4g, T4f); |
| 353 |
} |
| 354 |
{
|
| 355 |
E T2D, T4c, T2A, T4b, T2y; |
| 356 |
T2D = FNMS(KP618033988, T2C, T2B); |
| 357 |
T4c = FMA(KP618033988, T2B, T2C); |
| 358 |
T2y = FNMS(KP250000000, TA, Tt); |
| 359 |
T2A = FNMS(KP559016994, T2z, T2y); |
| 360 |
T4b = FMA(KP559016994, T2z, T2y); |
| 361 |
T2E = FNMS(KP951056516, T2D, T2A); |
| 362 |
T58 = FNMS(KP951056516, T4c, T4b); |
| 363 |
T3w = FMA(KP951056516, T2D, T2A); |
| 364 |
T4d = FMA(KP951056516, T4c, T4b); |
| 365 |
} |
| 366 |
} |
| 367 |
{
|
| 368 |
E TO, TM, TN, T1s, T1u, T18, T1r, T1t, TP; |
| 369 |
TO = Ts - TL; |
| 370 |
TM = Ts + TL; |
| 371 |
TN = FNMS(KP250000000, TM, T9); |
| 372 |
T18 = TY - T17; |
| 373 |
T1r = T1h - T1q; |
| 374 |
T1s = FMA(KP618033988, T1r, T18); |
| 375 |
T1u = FNMS(KP618033988, T18, T1r); |
| 376 |
ro[0] = T9 + TM;
|
| 377 |
T1t = FNMS(KP559016994, TO, TN); |
| 378 |
ro[WS(os, 10)] = FNMS(KP951056516, T1u, T1t);
|
| 379 |
ro[WS(os, 15)] = FMA(KP951056516, T1u, T1t);
|
| 380 |
TP = FMA(KP559016994, TO, TN); |
| 381 |
ro[WS(os, 20)] = FNMS(KP951056516, T1s, TP);
|
| 382 |
ro[WS(os, 5)] = FMA(KP951056516, T1s, TP);
|
| 383 |
} |
| 384 |
{
|
| 385 |
E T1I, T1G, T1H, T1M, T1O, T1K, T1L, T1N, T1J; |
| 386 |
T1I = T1E - T1F; |
| 387 |
T1G = T1E + T1F; |
| 388 |
T1H = FNMS(KP250000000, T1G, T1D); |
| 389 |
T1K = Ti - Tr; |
| 390 |
T1L = TB - TK; |
| 391 |
T1M = FMA(KP618033988, T1L, T1K); |
| 392 |
T1O = FNMS(KP618033988, T1K, T1L); |
| 393 |
io[0] = T1D + T1G;
|
| 394 |
T1N = FNMS(KP559016994, T1I, T1H); |
| 395 |
io[WS(os, 10)] = FMA(KP951056516, T1O, T1N);
|
| 396 |
io[WS(os, 15)] = FNMS(KP951056516, T1O, T1N);
|
| 397 |
T1J = FMA(KP559016994, T1I, T1H); |
| 398 |
io[WS(os, 5)] = FNMS(KP951056516, T1M, T1J);
|
| 399 |
io[WS(os, 20)] = FMA(KP951056516, T1M, T1J);
|
| 400 |
} |
| 401 |
{
|
| 402 |
E T1V, T3f, T2W, T3n, T2Y, T3m, T32, T3k, T35, T3i; |
| 403 |
T1V = FNMS(KP951056516, T1U, T1R); |
| 404 |
T3f = FMA(KP951056516, T3e, T3b); |
| 405 |
{
|
| 406 |
E T2a, T2p, T2q, T2F, T2U, T2V; |
| 407 |
T2a = FNMS(KP256756360, T29, T22); |
| 408 |
T2p = FMA(KP634619297, T2o, T2h); |
| 409 |
T2q = FMA(KP871714437, T2p, T2a); |
| 410 |
T2F = FNMS(KP549754652, T2E, T2x); |
| 411 |
T2U = FNMS(KP939062505, T2T, T2M); |
| 412 |
T2V = FMA(KP831864738, T2U, T2F); |
| 413 |
T2W = FMA(KP904730450, T2V, T2q); |
| 414 |
T3n = FNMS(KP831864738, T2U, T2F); |
| 415 |
T2Y = FNMS(KP904730450, T2V, T2q); |
| 416 |
T3m = FNMS(KP871714437, T2p, T2a); |
| 417 |
} |
| 418 |
{
|
| 419 |
E T30, T31, T3g, T33, T34, T3h; |
| 420 |
T30 = FMA(KP256756360, T22, T29); |
| 421 |
T31 = FNMS(KP634619297, T2h, T2o); |
| 422 |
T3g = FMA(KP871714437, T31, T30); |
| 423 |
T33 = FMA(KP549754652, T2x, T2E); |
| 424 |
T34 = FMA(KP939062505, T2M, T2T); |
| 425 |
T3h = FMA(KP831864738, T34, T33); |
| 426 |
T32 = FNMS(KP871714437, T31, T30); |
| 427 |
T3k = FNMS(KP904730450, T3h, T3g); |
| 428 |
T35 = FNMS(KP831864738, T34, T33); |
| 429 |
T3i = FMA(KP904730450, T3h, T3g); |
| 430 |
} |
| 431 |
io[WS(os, 1)] = FMA(KP968583161, T2W, T1V);
|
| 432 |
ro[WS(os, 1)] = FMA(KP968583161, T3i, T3f);
|
| 433 |
{
|
| 434 |
E T36, T38, T2Z, T37, T2X; |
| 435 |
T36 = FMA(KP559154169, T35, T32); |
| 436 |
T38 = FNMS(KP683113946, T32, T35); |
| 437 |
T2X = FNMS(KP242145790, T2W, T1V); |
| 438 |
T2Z = FMA(KP541454447, T2Y, T2X); |
| 439 |
T37 = FNMS(KP541454447, T2Y, T2X); |
| 440 |
io[WS(os, 6)] = FNMS(KP921177326, T36, T2Z);
|
| 441 |
io[WS(os, 11)] = FMA(KP833417178, T38, T37);
|
| 442 |
io[WS(os, 21)] = FMA(KP921177326, T36, T2Z);
|
| 443 |
io[WS(os, 16)] = FNMS(KP833417178, T38, T37);
|
| 444 |
} |
| 445 |
{
|
| 446 |
E T3o, T3q, T3l, T3p, T3j; |
| 447 |
T3o = FMA(KP559154169, T3n, T3m); |
| 448 |
T3q = FNMS(KP683113946, T3m, T3n); |
| 449 |
T3j = FNMS(KP242145790, T3i, T3f); |
| 450 |
T3l = FMA(KP541454447, T3k, T3j); |
| 451 |
T3p = FNMS(KP541454447, T3k, T3j); |
| 452 |
ro[WS(os, 6)] = FMA(KP921177326, T3o, T3l);
|
| 453 |
ro[WS(os, 16)] = FMA(KP833417178, T3q, T3p);
|
| 454 |
ro[WS(os, 21)] = FNMS(KP921177326, T3o, T3l);
|
| 455 |
ro[WS(os, 11)] = FNMS(KP833417178, T3q, T3p);
|
| 456 |
} |
| 457 |
} |
| 458 |
{
|
| 459 |
E T53, T5j, T5i, T5A, T5u, T5v, T5q, T5D, T5s, T5C; |
| 460 |
T53 = FNMS(KP951056516, T46, T45); |
| 461 |
T5j = FMA(KP951056516, T4Q, T4P); |
| 462 |
{
|
| 463 |
E T56, T59, T5a, T5d, T5g, T5h; |
| 464 |
T56 = FMA(KP062914667, T55, T54); |
| 465 |
T59 = FMA(KP634619297, T58, T57); |
| 466 |
T5a = FMA(KP845997307, T59, T56); |
| 467 |
T5d = FMA(KP470564281, T5c, T5b); |
| 468 |
T5g = FMA(KP549754652, T5f, T5e); |
| 469 |
T5h = FMA(KP968479752, T5g, T5d); |
| 470 |
T5i = FMA(KP906616052, T5h, T5a); |
| 471 |
T5A = FNMS(KP906616052, T5h, T5a); |
| 472 |
T5u = FNMS(KP845997307, T59, T56); |
| 473 |
T5v = FNMS(KP968479752, T5g, T5d); |
| 474 |
} |
| 475 |
{
|
| 476 |
E T5k, T5l, T5m, T5n, T5o, T5p; |
| 477 |
T5k = FNMS(KP062914667, T54, T55); |
| 478 |
T5l = FNMS(KP634619297, T57, T58); |
| 479 |
T5m = FMA(KP845997307, T5l, T5k); |
| 480 |
T5n = FNMS(KP470564281, T5b, T5c); |
| 481 |
T5o = FNMS(KP549754652, T5e, T5f); |
| 482 |
T5p = FMA(KP968479752, T5o, T5n); |
| 483 |
T5q = FNMS(KP906616052, T5p, T5m); |
| 484 |
T5D = FNMS(KP845997307, T5l, T5k); |
| 485 |
T5s = FMA(KP906616052, T5p, T5m); |
| 486 |
T5C = FNMS(KP968479752, T5o, T5n); |
| 487 |
} |
| 488 |
ro[WS(os, 2)] = FMA(KP998026728, T5i, T53);
|
| 489 |
io[WS(os, 2)] = FNMS(KP998026728, T5q, T5j);
|
| 490 |
{
|
| 491 |
E T5w, T5y, T5t, T5x, T5r; |
| 492 |
T5w = FNMS(KP560319534, T5v, T5u); |
| 493 |
T5y = FMA(KP681693190, T5u, T5v); |
| 494 |
T5r = FMA(KP249506682, T5q, T5j); |
| 495 |
T5t = FNMS(KP557913902, T5s, T5r); |
| 496 |
T5x = FMA(KP557913902, T5s, T5r); |
| 497 |
io[WS(os, 12)] = FNMS(KP949179823, T5w, T5t);
|
| 498 |
io[WS(os, 22)] = FNMS(KP860541664, T5y, T5x);
|
| 499 |
io[WS(os, 17)] = FMA(KP949179823, T5w, T5t);
|
| 500 |
io[WS(os, 7)] = FMA(KP860541664, T5y, T5x);
|
| 501 |
} |
| 502 |
{
|
| 503 |
E T5E, T5G, T5B, T5F, T5z; |
| 504 |
T5E = FNMS(KP681693190, T5D, T5C); |
| 505 |
T5G = FMA(KP560319534, T5C, T5D); |
| 506 |
T5z = FNMS(KP249506682, T5i, T53); |
| 507 |
T5B = FNMS(KP557913902, T5A, T5z); |
| 508 |
T5F = FMA(KP557913902, T5A, T5z); |
| 509 |
ro[WS(os, 22)] = FMA(KP860541664, T5E, T5B);
|
| 510 |
ro[WS(os, 17)] = FMA(KP949179823, T5G, T5F);
|
| 511 |
ro[WS(os, 7)] = FNMS(KP860541664, T5E, T5B);
|
| 512 |
ro[WS(os, 12)] = FNMS(KP949179823, T5G, T5F);
|
| 513 |
} |
| 514 |
} |
| 515 |
{
|
| 516 |
E T47, T4R, T4C, T4Z, T4E, T4Y, T4I, T4W, T4L, T4U; |
| 517 |
T47 = FMA(KP951056516, T46, T45); |
| 518 |
T4R = FNMS(KP951056516, T4Q, T4P); |
| 519 |
{
|
| 520 |
E T4e, T4l, T4m, T4t, T4A, T4B; |
| 521 |
T4e = FMA(KP062914667, T4d, T4a); |
| 522 |
T4l = FNMS(KP827271945, T4k, T4h); |
| 523 |
T4m = FMA(KP772036680, T4l, T4e); |
| 524 |
T4t = FMA(KP126329378, T4s, T4p); |
| 525 |
T4A = FMA(KP939062505, T4z, T4w); |
| 526 |
T4B = FMA(KP734762448, T4A, T4t); |
| 527 |
T4C = FMA(KP994076283, T4B, T4m); |
| 528 |
T4Z = FNMS(KP734762448, T4A, T4t); |
| 529 |
T4E = FNMS(KP994076283, T4B, T4m); |
| 530 |
T4Y = FNMS(KP772036680, T4l, T4e); |
| 531 |
} |
| 532 |
{
|
| 533 |
E T4G, T4H, T4T, T4J, T4K, T4S; |
| 534 |
T4G = FNMS(KP126329378, T4p, T4s); |
| 535 |
T4H = FNMS(KP939062505, T4w, T4z); |
| 536 |
T4T = FNMS(KP734762448, T4H, T4G); |
| 537 |
T4J = FNMS(KP062914667, T4a, T4d); |
| 538 |
T4K = FMA(KP827271945, T4h, T4k); |
| 539 |
T4S = FMA(KP772036680, T4K, T4J); |
| 540 |
T4I = FMA(KP734762448, T4H, T4G); |
| 541 |
T4W = FNMS(KP994076283, T4T, T4S); |
| 542 |
T4L = FNMS(KP772036680, T4K, T4J); |
| 543 |
T4U = FMA(KP994076283, T4T, T4S); |
| 544 |
} |
| 545 |
ro[WS(os, 3)] = FMA(KP998026728, T4C, T47);
|
| 546 |
io[WS(os, 3)] = FNMS(KP998026728, T4U, T4R);
|
| 547 |
{
|
| 548 |
E T4M, T4O, T4F, T4N, T4D; |
| 549 |
T4M = FNMS(KP621716863, T4L, T4I); |
| 550 |
T4O = FMA(KP614372930, T4I, T4L); |
| 551 |
T4D = FNMS(KP249506682, T4C, T47); |
| 552 |
T4F = FNMS(KP557913902, T4E, T4D); |
| 553 |
T4N = FMA(KP557913902, T4E, T4D); |
| 554 |
ro[WS(os, 23)] = FNMS(KP943557151, T4M, T4F);
|
| 555 |
ro[WS(os, 13)] = FMA(KP949179823, T4O, T4N);
|
| 556 |
ro[WS(os, 8)] = FMA(KP943557151, T4M, T4F);
|
| 557 |
ro[WS(os, 18)] = FNMS(KP949179823, T4O, T4N);
|
| 558 |
} |
| 559 |
{
|
| 560 |
E T50, T52, T4X, T51, T4V; |
| 561 |
T50 = FMA(KP614372930, T4Z, T4Y); |
| 562 |
T52 = FNMS(KP621716863, T4Y, T4Z); |
| 563 |
T4V = FMA(KP249506682, T4U, T4R); |
| 564 |
T4X = FNMS(KP557913902, T4W, T4V); |
| 565 |
T51 = FMA(KP557913902, T4W, T4V); |
| 566 |
io[WS(os, 13)] = FMA(KP949179823, T50, T4X);
|
| 567 |
io[WS(os, 23)] = FNMS(KP943557151, T52, T51);
|
| 568 |
io[WS(os, 18)] = FNMS(KP949179823, T50, T4X);
|
| 569 |
io[WS(os, 8)] = FMA(KP943557151, T52, T51);
|
| 570 |
} |
| 571 |
} |
| 572 |
{
|
| 573 |
E T3r, T3H, T3G, T3Y, T3S, T3T, T3O, T41, T3Q, T40; |
| 574 |
T3r = FNMS(KP951056516, T3e, T3b); |
| 575 |
T3H = FMA(KP951056516, T1U, T1R); |
| 576 |
{
|
| 577 |
E T3u, T3x, T3y, T3B, T3E, T3F; |
| 578 |
T3u = FNMS(KP126329378, T3t, T3s); |
| 579 |
T3x = FNMS(KP470564281, T3w, T3v); |
| 580 |
T3y = FNMS(KP912018591, T3x, T3u); |
| 581 |
T3B = FMA(KP634619297, T3A, T3z); |
| 582 |
T3E = FNMS(KP827271945, T3D, T3C); |
| 583 |
T3F = FNMS(KP912575812, T3E, T3B); |
| 584 |
T3G = FNMS(KP851038619, T3F, T3y); |
| 585 |
T3Y = FMA(KP851038619, T3F, T3y); |
| 586 |
T3S = FMA(KP912018591, T3x, T3u); |
| 587 |
T3T = FMA(KP912575812, T3E, T3B); |
| 588 |
} |
| 589 |
{
|
| 590 |
E T3I, T3J, T3K, T3L, T3M, T3N; |
| 591 |
T3I = FMA(KP126329378, T3s, T3t); |
| 592 |
T3J = FMA(KP470564281, T3v, T3w); |
| 593 |
T3K = FMA(KP912018591, T3J, T3I); |
| 594 |
T3L = FNMS(KP634619297, T3z, T3A); |
| 595 |
T3M = FMA(KP827271945, T3C, T3D); |
| 596 |
T3N = FMA(KP912575812, T3M, T3L); |
| 597 |
T3O = FMA(KP851038619, T3N, T3K); |
| 598 |
T41 = FNMS(KP912018591, T3J, T3I); |
| 599 |
T3Q = FNMS(KP851038619, T3N, T3K); |
| 600 |
T40 = FNMS(KP912575812, T3M, T3L); |
| 601 |
} |
| 602 |
ro[WS(os, 4)] = FNMS(KP992114701, T3G, T3r);
|
| 603 |
io[WS(os, 4)] = FNMS(KP992114701, T3O, T3H);
|
| 604 |
{
|
| 605 |
E T3U, T3W, T3R, T3V, T3P; |
| 606 |
T3U = FNMS(KP525970792, T3T, T3S); |
| 607 |
T3W = FMA(KP726211448, T3S, T3T); |
| 608 |
T3P = FMA(KP248028675, T3O, T3H); |
| 609 |
T3R = FNMS(KP554608978, T3Q, T3P); |
| 610 |
T3V = FMA(KP554608978, T3Q, T3P); |
| 611 |
io[WS(os, 14)] = FMA(KP943557151, T3U, T3R);
|
| 612 |
io[WS(os, 24)] = FMA(KP803003575, T3W, T3V);
|
| 613 |
io[WS(os, 19)] = FNMS(KP943557151, T3U, T3R);
|
| 614 |
io[WS(os, 9)] = FNMS(KP803003575, T3W, T3V);
|
| 615 |
} |
| 616 |
{
|
| 617 |
E T42, T44, T3Z, T43, T3X; |
| 618 |
T42 = FNMS(KP726211448, T41, T40); |
| 619 |
T44 = FMA(KP525970792, T40, T41); |
| 620 |
T3X = FMA(KP248028675, T3G, T3r); |
| 621 |
T3Z = FMA(KP554608978, T3Y, T3X); |
| 622 |
T43 = FNMS(KP554608978, T3Y, T3X); |
| 623 |
ro[WS(os, 9)] = FNMS(KP803003575, T42, T3Z);
|
| 624 |
ro[WS(os, 19)] = FMA(KP943557151, T44, T43);
|
| 625 |
ro[WS(os, 24)] = FMA(KP803003575, T42, T3Z);
|
| 626 |
ro[WS(os, 14)] = FNMS(KP943557151, T44, T43);
|
| 627 |
} |
| 628 |
} |
| 629 |
} |
| 630 |
} |
| 631 |
} |
| 632 |
|
| 633 |
static const kdft_desc desc = { 25, "n1_25", {84, 0, 268, 0}, &GENUS, 0, 0, 0, 0 }; |
| 634 |
|
| 635 |
void X(codelet_n1_25) (planner *p) {
|
| 636 |
X(kdft_register) (p, n1_25, &desc); |
| 637 |
} |
| 638 |
|
| 639 |
#else
|
| 640 |
|
| 641 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 25 -name n1_25 -include dft/scalar/n.h */
|
| 642 |
|
| 643 |
/*
|
| 644 |
* This function contains 352 FP additions, 184 FP multiplications,
|
| 645 |
* (or, 260 additions, 92 multiplications, 92 fused multiply/add),
|
| 646 |
* 101 stack variables, 20 constants, and 100 memory accesses
|
| 647 |
*/
|
| 648 |
#include "dft/scalar/n.h" |
| 649 |
|
| 650 |
static void n1_25(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 651 |
{
|
| 652 |
DK(KP425779291, +0.425779291565072648862502445744251703979973042); |
| 653 |
DK(KP904827052, +0.904827052466019527713668647932697593970413911); |
| 654 |
DK(KP637423989, +0.637423989748689710176712811676016195434917298); |
| 655 |
DK(KP770513242, +0.770513242775789230803009636396177847271667672); |
| 656 |
DK(KP998026728, +0.998026728428271561952336806863450553336905220); |
| 657 |
DK(KP062790519, +0.062790519529313376076178224565631133122484832); |
| 658 |
DK(KP992114701, +0.992114701314477831049793042785778521453036709); |
| 659 |
DK(KP125333233, +0.125333233564304245373118759816508793942918247); |
| 660 |
DK(KP684547105, +0.684547105928688673732283357621209269889519233); |
| 661 |
DK(KP728968627, +0.728968627421411523146730319055259111372571664); |
| 662 |
DK(KP481753674, +0.481753674101715274987191502872129653528542010); |
| 663 |
DK(KP876306680, +0.876306680043863587308115903922062583399064238); |
| 664 |
DK(KP844327925, +0.844327925502015078548558063966681505381659241); |
| 665 |
DK(KP535826794, +0.535826794978996618271308767867639978063575346); |
| 666 |
DK(KP248689887, +0.248689887164854788242283746006447968417567406); |
| 667 |
DK(KP968583161, +0.968583161128631119490168375464735813836012403); |
| 668 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 669 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 670 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 671 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 672 |
{
|
| 673 |
INT i; |
| 674 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(100, is), MAKE_VOLATILE_STRIDE(100, os)) { |
| 675 |
E T9, T4u, T2T, TP, T3H, TW, T5y, T3I, T2Q, T4v, Ti, Tr, Ts, T5m, T5n; |
| 676 |
E T5v, T18, T4G, T34, T3M, T1G, T4J, T38, T3T, T1v, T4K, T37, T3W, T1j, T4H; |
| 677 |
E T35, T3P, TB, TK, TL, T5p, T5q, T5w, T1T, T4N, T3c, T41, T2r, T4Q, T3e; |
| 678 |
E T4b, T2g, T4R, T3f, T48, T24, T4O, T3b, T44; |
| 679 |
{
|
| 680 |
E T1, T4, T7, T8, T2S, T2R, TN, TO; |
| 681 |
T1 = ri[0];
|
| 682 |
{
|
| 683 |
E T2, T3, T5, T6; |
| 684 |
T2 = ri[WS(is, 5)];
|
| 685 |
T3 = ri[WS(is, 20)];
|
| 686 |
T4 = T2 + T3; |
| 687 |
T5 = ri[WS(is, 10)];
|
| 688 |
T6 = ri[WS(is, 15)];
|
| 689 |
T7 = T5 + T6; |
| 690 |
T8 = T4 + T7; |
| 691 |
T2S = T5 - T6; |
| 692 |
T2R = T2 - T3; |
| 693 |
} |
| 694 |
T9 = T1 + T8; |
| 695 |
T4u = FNMS(KP587785252, T2R, KP951056516 * T2S); |
| 696 |
T2T = FMA(KP951056516, T2R, KP587785252 * T2S); |
| 697 |
TN = KP559016994 * (T4 - T7); |
| 698 |
TO = FNMS(KP250000000, T8, T1); |
| 699 |
TP = TN + TO; |
| 700 |
T3H = TO - TN; |
| 701 |
} |
| 702 |
{
|
| 703 |
E T2N, T2K, T2L, TS, T2O, TV, T2M, T2P; |
| 704 |
T2N = ii[0];
|
| 705 |
{
|
| 706 |
E TQ, TR, TT, TU; |
| 707 |
TQ = ii[WS(is, 5)];
|
| 708 |
TR = ii[WS(is, 20)];
|
| 709 |
T2K = TQ + TR; |
| 710 |
TT = ii[WS(is, 10)];
|
| 711 |
TU = ii[WS(is, 15)];
|
| 712 |
T2L = TT + TU; |
| 713 |
TS = TQ - TR; |
| 714 |
T2O = T2K + T2L; |
| 715 |
TV = TT - TU; |
| 716 |
} |
| 717 |
TW = FMA(KP951056516, TS, KP587785252 * TV); |
| 718 |
T5y = T2N + T2O; |
| 719 |
T3I = FNMS(KP587785252, TS, KP951056516 * TV); |
| 720 |
T2M = KP559016994 * (T2K - T2L); |
| 721 |
T2P = FNMS(KP250000000, T2O, T2N); |
| 722 |
T2Q = T2M + T2P; |
| 723 |
T4v = T2P - T2M; |
| 724 |
} |
| 725 |
{
|
| 726 |
E Ta, T1c, Tj, T1z, Th, T1h, TY, T1g, T13, T1d, T16, T1b, Tq, T1E, T1l; |
| 727 |
E T1D, T1q, T1A, T1t, T1y; |
| 728 |
Ta = ri[WS(is, 1)];
|
| 729 |
T1c = ii[WS(is, 1)];
|
| 730 |
Tj = ri[WS(is, 4)];
|
| 731 |
T1z = ii[WS(is, 4)];
|
| 732 |
{
|
| 733 |
E Tb, Tc, Td, Te, Tf, Tg; |
| 734 |
Tb = ri[WS(is, 6)];
|
| 735 |
Tc = ri[WS(is, 21)];
|
| 736 |
Td = Tb + Tc; |
| 737 |
Te = ri[WS(is, 11)];
|
| 738 |
Tf = ri[WS(is, 16)];
|
| 739 |
Tg = Te + Tf; |
| 740 |
Th = Td + Tg; |
| 741 |
T1h = Te - Tf; |
| 742 |
TY = KP559016994 * (Td - Tg); |
| 743 |
T1g = Tb - Tc; |
| 744 |
} |
| 745 |
{
|
| 746 |
E T11, T12, T19, T14, T15, T1a; |
| 747 |
T11 = ii[WS(is, 6)];
|
| 748 |
T12 = ii[WS(is, 21)];
|
| 749 |
T19 = T11 + T12; |
| 750 |
T14 = ii[WS(is, 11)];
|
| 751 |
T15 = ii[WS(is, 16)];
|
| 752 |
T1a = T14 + T15; |
| 753 |
T13 = T11 - T12; |
| 754 |
T1d = T19 + T1a; |
| 755 |
T16 = T14 - T15; |
| 756 |
T1b = KP559016994 * (T19 - T1a); |
| 757 |
} |
| 758 |
{
|
| 759 |
E Tk, Tl, Tm, Tn, To, Tp; |
| 760 |
Tk = ri[WS(is, 9)];
|
| 761 |
Tl = ri[WS(is, 24)];
|
| 762 |
Tm = Tk + Tl; |
| 763 |
Tn = ri[WS(is, 14)];
|
| 764 |
To = ri[WS(is, 19)];
|
| 765 |
Tp = Tn + To; |
| 766 |
Tq = Tm + Tp; |
| 767 |
T1E = Tn - To; |
| 768 |
T1l = KP559016994 * (Tm - Tp); |
| 769 |
T1D = Tk - Tl; |
| 770 |
} |
| 771 |
{
|
| 772 |
E T1o, T1p, T1w, T1r, T1s, T1x; |
| 773 |
T1o = ii[WS(is, 9)];
|
| 774 |
T1p = ii[WS(is, 24)];
|
| 775 |
T1w = T1o + T1p; |
| 776 |
T1r = ii[WS(is, 14)];
|
| 777 |
T1s = ii[WS(is, 19)];
|
| 778 |
T1x = T1r + T1s; |
| 779 |
T1q = T1o - T1p; |
| 780 |
T1A = T1w + T1x; |
| 781 |
T1t = T1r - T1s; |
| 782 |
T1y = KP559016994 * (T1w - T1x); |
| 783 |
} |
| 784 |
Ti = Ta + Th; |
| 785 |
Tr = Tj + Tq; |
| 786 |
Ts = Ti + Tr; |
| 787 |
T5m = T1c + T1d; |
| 788 |
T5n = T1z + T1A; |
| 789 |
T5v = T5m + T5n; |
| 790 |
{
|
| 791 |
E T17, T3L, T10, T3K, TZ; |
| 792 |
T17 = FMA(KP951056516, T13, KP587785252 * T16); |
| 793 |
T3L = FNMS(KP587785252, T13, KP951056516 * T16); |
| 794 |
TZ = FNMS(KP250000000, Th, Ta); |
| 795 |
T10 = TY + TZ; |
| 796 |
T3K = TZ - TY; |
| 797 |
T18 = T10 + T17; |
| 798 |
T4G = T3K + T3L; |
| 799 |
T34 = T10 - T17; |
| 800 |
T3M = T3K - T3L; |
| 801 |
} |
| 802 |
{
|
| 803 |
E T1F, T3R, T1C, T3S, T1B; |
| 804 |
T1F = FMA(KP951056516, T1D, KP587785252 * T1E); |
| 805 |
T3R = FNMS(KP587785252, T1D, KP951056516 * T1E); |
| 806 |
T1B = FNMS(KP250000000, T1A, T1z); |
| 807 |
T1C = T1y + T1B; |
| 808 |
T3S = T1B - T1y; |
| 809 |
T1G = T1C - T1F; |
| 810 |
T4J = T3S - T3R; |
| 811 |
T38 = T1F + T1C; |
| 812 |
T3T = T3R + T3S; |
| 813 |
} |
| 814 |
{
|
| 815 |
E T1u, T3V, T1n, T3U, T1m; |
| 816 |
T1u = FMA(KP951056516, T1q, KP587785252 * T1t); |
| 817 |
T3V = FNMS(KP587785252, T1q, KP951056516 * T1t); |
| 818 |
T1m = FNMS(KP250000000, Tq, Tj); |
| 819 |
T1n = T1l + T1m; |
| 820 |
T3U = T1m - T1l; |
| 821 |
T1v = T1n + T1u; |
| 822 |
T4K = T3U + T3V; |
| 823 |
T37 = T1n - T1u; |
| 824 |
T3W = T3U - T3V; |
| 825 |
} |
| 826 |
{
|
| 827 |
E T1i, T3N, T1f, T3O, T1e; |
| 828 |
T1i = FMA(KP951056516, T1g, KP587785252 * T1h); |
| 829 |
T3N = FNMS(KP587785252, T1g, KP951056516 * T1h); |
| 830 |
T1e = FNMS(KP250000000, T1d, T1c); |
| 831 |
T1f = T1b + T1e; |
| 832 |
T3O = T1e - T1b; |
| 833 |
T1j = T1f - T1i; |
| 834 |
T4H = T3O - T3N; |
| 835 |
T35 = T1i + T1f; |
| 836 |
T3P = T3N + T3O; |
| 837 |
} |
| 838 |
} |
| 839 |
{
|
| 840 |
E Tt, T1X, TC, T2k, TA, T22, T1J, T21, T1O, T1Y, T1R, T1W, TJ, T2p, T26; |
| 841 |
E T2o, T2b, T2l, T2e, T2j; |
| 842 |
Tt = ri[WS(is, 2)];
|
| 843 |
T1X = ii[WS(is, 2)];
|
| 844 |
TC = ri[WS(is, 3)];
|
| 845 |
T2k = ii[WS(is, 3)];
|
| 846 |
{
|
| 847 |
E Tu, Tv, Tw, Tx, Ty, Tz; |
| 848 |
Tu = ri[WS(is, 7)];
|
| 849 |
Tv = ri[WS(is, 22)];
|
| 850 |
Tw = Tu + Tv; |
| 851 |
Tx = ri[WS(is, 12)];
|
| 852 |
Ty = ri[WS(is, 17)];
|
| 853 |
Tz = Tx + Ty; |
| 854 |
TA = Tw + Tz; |
| 855 |
T22 = Tx - Ty; |
| 856 |
T1J = KP559016994 * (Tw - Tz); |
| 857 |
T21 = Tu - Tv; |
| 858 |
} |
| 859 |
{
|
| 860 |
E T1M, T1N, T1U, T1P, T1Q, T1V; |
| 861 |
T1M = ii[WS(is, 7)];
|
| 862 |
T1N = ii[WS(is, 22)];
|
| 863 |
T1U = T1M + T1N; |
| 864 |
T1P = ii[WS(is, 12)];
|
| 865 |
T1Q = ii[WS(is, 17)];
|
| 866 |
T1V = T1P + T1Q; |
| 867 |
T1O = T1M - T1N; |
| 868 |
T1Y = T1U + T1V; |
| 869 |
T1R = T1P - T1Q; |
| 870 |
T1W = KP559016994 * (T1U - T1V); |
| 871 |
} |
| 872 |
{
|
| 873 |
E TD, TE, TF, TG, TH, TI; |
| 874 |
TD = ri[WS(is, 8)];
|
| 875 |
TE = ri[WS(is, 23)];
|
| 876 |
TF = TD + TE; |
| 877 |
TG = ri[WS(is, 13)];
|
| 878 |
TH = ri[WS(is, 18)];
|
| 879 |
TI = TG + TH; |
| 880 |
TJ = TF + TI; |
| 881 |
T2p = TG - TH; |
| 882 |
T26 = KP559016994 * (TF - TI); |
| 883 |
T2o = TD - TE; |
| 884 |
} |
| 885 |
{
|
| 886 |
E T29, T2a, T2h, T2c, T2d, T2i; |
| 887 |
T29 = ii[WS(is, 8)];
|
| 888 |
T2a = ii[WS(is, 23)];
|
| 889 |
T2h = T29 + T2a; |
| 890 |
T2c = ii[WS(is, 13)];
|
| 891 |
T2d = ii[WS(is, 18)];
|
| 892 |
T2i = T2c + T2d; |
| 893 |
T2b = T29 - T2a; |
| 894 |
T2l = T2h + T2i; |
| 895 |
T2e = T2c - T2d; |
| 896 |
T2j = KP559016994 * (T2h - T2i); |
| 897 |
} |
| 898 |
TB = Tt + TA; |
| 899 |
TK = TC + TJ; |
| 900 |
TL = TB + TK; |
| 901 |
T5p = T1X + T1Y; |
| 902 |
T5q = T2k + T2l; |
| 903 |
T5w = T5p + T5q; |
| 904 |
{
|
| 905 |
E T1S, T40, T1L, T3Z, T1K; |
| 906 |
T1S = FMA(KP951056516, T1O, KP587785252 * T1R); |
| 907 |
T40 = FNMS(KP587785252, T1O, KP951056516 * T1R); |
| 908 |
T1K = FNMS(KP250000000, TA, Tt); |
| 909 |
T1L = T1J + T1K; |
| 910 |
T3Z = T1K - T1J; |
| 911 |
T1T = T1L + T1S; |
| 912 |
T4N = T3Z + T40; |
| 913 |
T3c = T1L - T1S; |
| 914 |
T41 = T3Z - T40; |
| 915 |
} |
| 916 |
{
|
| 917 |
E T2q, T49, T2n, T4a, T2m; |
| 918 |
T2q = FMA(KP951056516, T2o, KP587785252 * T2p); |
| 919 |
T49 = FNMS(KP587785252, T2o, KP951056516 * T2p); |
| 920 |
T2m = FNMS(KP250000000, T2l, T2k); |
| 921 |
T2n = T2j + T2m; |
| 922 |
T4a = T2m - T2j; |
| 923 |
T2r = T2n - T2q; |
| 924 |
T4Q = T4a - T49; |
| 925 |
T3e = T2q + T2n; |
| 926 |
T4b = T49 + T4a; |
| 927 |
} |
| 928 |
{
|
| 929 |
E T2f, T47, T28, T46, T27; |
| 930 |
T2f = FMA(KP951056516, T2b, KP587785252 * T2e); |
| 931 |
T47 = FNMS(KP587785252, T2b, KP951056516 * T2e); |
| 932 |
T27 = FNMS(KP250000000, TJ, TC); |
| 933 |
T28 = T26 + T27; |
| 934 |
T46 = T27 - T26; |
| 935 |
T2g = T28 + T2f; |
| 936 |
T4R = T46 + T47; |
| 937 |
T3f = T28 - T2f; |
| 938 |
T48 = T46 - T47; |
| 939 |
} |
| 940 |
{
|
| 941 |
E T23, T42, T20, T43, T1Z; |
| 942 |
T23 = FMA(KP951056516, T21, KP587785252 * T22); |
| 943 |
T42 = FNMS(KP587785252, T21, KP951056516 * T22); |
| 944 |
T1Z = FNMS(KP250000000, T1Y, T1X); |
| 945 |
T20 = T1W + T1Z; |
| 946 |
T43 = T1Z - T1W; |
| 947 |
T24 = T20 - T23; |
| 948 |
T4O = T43 - T42; |
| 949 |
T3b = T23 + T20; |
| 950 |
T44 = T42 + T43; |
| 951 |
} |
| 952 |
} |
| 953 |
{
|
| 954 |
E T5j, TM, T5k, T5s, T5u, T5o, T5r, T5t, T5l; |
| 955 |
T5j = KP559016994 * (Ts - TL); |
| 956 |
TM = Ts + TL; |
| 957 |
T5k = FNMS(KP250000000, TM, T9); |
| 958 |
T5o = T5m - T5n; |
| 959 |
T5r = T5p - T5q; |
| 960 |
T5s = FMA(KP951056516, T5o, KP587785252 * T5r); |
| 961 |
T5u = FNMS(KP587785252, T5o, KP951056516 * T5r); |
| 962 |
ro[0] = T9 + TM;
|
| 963 |
T5t = T5k - T5j; |
| 964 |
ro[WS(os, 10)] = T5t - T5u;
|
| 965 |
ro[WS(os, 15)] = T5t + T5u;
|
| 966 |
T5l = T5j + T5k; |
| 967 |
ro[WS(os, 20)] = T5l - T5s;
|
| 968 |
ro[WS(os, 5)] = T5l + T5s;
|
| 969 |
} |
| 970 |
{
|
| 971 |
E T5x, T5z, T5A, T5E, T5F, T5C, T5D, T5G, T5B; |
| 972 |
T5x = KP559016994 * (T5v - T5w); |
| 973 |
T5z = T5v + T5w; |
| 974 |
T5A = FNMS(KP250000000, T5z, T5y); |
| 975 |
T5C = Ti - Tr; |
| 976 |
T5D = TB - TK; |
| 977 |
T5E = FMA(KP951056516, T5C, KP587785252 * T5D); |
| 978 |
T5F = FNMS(KP587785252, T5C, KP951056516 * T5D); |
| 979 |
io[0] = T5y + T5z;
|
| 980 |
T5G = T5A - T5x; |
| 981 |
io[WS(os, 10)] = T5F + T5G;
|
| 982 |
io[WS(os, 15)] = T5G - T5F;
|
| 983 |
T5B = T5x + T5A; |
| 984 |
io[WS(os, 5)] = T5B - T5E;
|
| 985 |
io[WS(os, 20)] = T5E + T5B;
|
| 986 |
} |
| 987 |
{
|
| 988 |
E TX, T2U, T2u, T2Z, T2v, T2Y, T2A, T2V, T2D, T2J; |
| 989 |
TX = TP + TW; |
| 990 |
T2U = T2Q - T2T; |
| 991 |
{
|
| 992 |
E T1k, T1H, T1I, T25, T2s, T2t; |
| 993 |
T1k = FMA(KP968583161, T18, KP248689887 * T1j); |
| 994 |
T1H = FMA(KP535826794, T1v, KP844327925 * T1G); |
| 995 |
T1I = T1k + T1H; |
| 996 |
T25 = FMA(KP876306680, T1T, KP481753674 * T24); |
| 997 |
T2s = FMA(KP728968627, T2g, KP684547105 * T2r); |
| 998 |
T2t = T25 + T2s; |
| 999 |
T2u = T1I + T2t; |
| 1000 |
T2Z = T25 - T2s; |
| 1001 |
T2v = KP559016994 * (T1I - T2t); |
| 1002 |
T2Y = T1k - T1H; |
| 1003 |
} |
| 1004 |
{
|
| 1005 |
E T2y, T2z, T2H, T2B, T2C, T2I; |
| 1006 |
T2y = FNMS(KP248689887, T18, KP968583161 * T1j); |
| 1007 |
T2z = FNMS(KP844327925, T1v, KP535826794 * T1G); |
| 1008 |
T2H = T2y + T2z; |
| 1009 |
T2B = FNMS(KP481753674, T1T, KP876306680 * T24); |
| 1010 |
T2C = FNMS(KP684547105, T2g, KP728968627 * T2r); |
| 1011 |
T2I = T2B + T2C; |
| 1012 |
T2A = T2y - T2z; |
| 1013 |
T2V = T2H + T2I; |
| 1014 |
T2D = T2B - T2C; |
| 1015 |
T2J = KP559016994 * (T2H - T2I); |
| 1016 |
} |
| 1017 |
ro[WS(os, 1)] = TX + T2u;
|
| 1018 |
io[WS(os, 1)] = T2U + T2V;
|
| 1019 |
{
|
| 1020 |
E T2E, T2G, T2x, T2F, T2w; |
| 1021 |
T2E = FMA(KP951056516, T2A, KP587785252 * T2D); |
| 1022 |
T2G = FNMS(KP587785252, T2A, KP951056516 * T2D); |
| 1023 |
T2w = FNMS(KP250000000, T2u, TX); |
| 1024 |
T2x = T2v + T2w; |
| 1025 |
T2F = T2w - T2v; |
| 1026 |
ro[WS(os, 21)] = T2x - T2E;
|
| 1027 |
ro[WS(os, 16)] = T2F + T2G;
|
| 1028 |
ro[WS(os, 6)] = T2x + T2E;
|
| 1029 |
ro[WS(os, 11)] = T2F - T2G;
|
| 1030 |
} |
| 1031 |
{
|
| 1032 |
E T30, T31, T2X, T32, T2W; |
| 1033 |
T30 = FMA(KP951056516, T2Y, KP587785252 * T2Z); |
| 1034 |
T31 = FNMS(KP587785252, T2Y, KP951056516 * T2Z); |
| 1035 |
T2W = FNMS(KP250000000, T2V, T2U); |
| 1036 |
T2X = T2J + T2W; |
| 1037 |
T32 = T2W - T2J; |
| 1038 |
io[WS(os, 6)] = T2X - T30;
|
| 1039 |
io[WS(os, 16)] = T32 - T31;
|
| 1040 |
io[WS(os, 21)] = T30 + T2X;
|
| 1041 |
io[WS(os, 11)] = T31 + T32;
|
| 1042 |
} |
| 1043 |
} |
| 1044 |
{
|
| 1045 |
E T4F, T52, T4U, T5b, T56, T57, T51, T5f, T53, T5e; |
| 1046 |
T4F = T3H + T3I; |
| 1047 |
T52 = T4v - T4u; |
| 1048 |
{
|
| 1049 |
E T4I, T4L, T4M, T4P, T4S, T4T; |
| 1050 |
T4I = FMA(KP728968627, T4G, KP684547105 * T4H); |
| 1051 |
T4L = FNMS(KP992114701, T4K, KP125333233 * T4J); |
| 1052 |
T4M = T4I + T4L; |
| 1053 |
T4P = FMA(KP062790519, T4N, KP998026728 * T4O); |
| 1054 |
T4S = FNMS(KP637423989, T4R, KP770513242 * T4Q); |
| 1055 |
T4T = T4P + T4S; |
| 1056 |
T4U = T4M + T4T; |
| 1057 |
T5b = KP559016994 * (T4M - T4T); |
| 1058 |
T56 = T4I - T4L; |
| 1059 |
T57 = T4P - T4S; |
| 1060 |
} |
| 1061 |
{
|
| 1062 |
E T4V, T4W, T4X, T4Y, T4Z, T50; |
| 1063 |
T4V = FNMS(KP684547105, T4G, KP728968627 * T4H); |
| 1064 |
T4W = FMA(KP125333233, T4K, KP992114701 * T4J); |
| 1065 |
T4X = T4V - T4W; |
| 1066 |
T4Y = FNMS(KP998026728, T4N, KP062790519 * T4O); |
| 1067 |
T4Z = FMA(KP770513242, T4R, KP637423989 * T4Q); |
| 1068 |
T50 = T4Y - T4Z; |
| 1069 |
T51 = KP559016994 * (T4X - T50); |
| 1070 |
T5f = T4Y + T4Z; |
| 1071 |
T53 = T4X + T50; |
| 1072 |
T5e = T4V + T4W; |
| 1073 |
} |
| 1074 |
ro[WS(os, 3)] = T4F + T4U;
|
| 1075 |
io[WS(os, 3)] = T52 + T53;
|
| 1076 |
{
|
| 1077 |
E T58, T59, T55, T5a, T54; |
| 1078 |
T58 = FMA(KP951056516, T56, KP587785252 * T57); |
| 1079 |
T59 = FNMS(KP587785252, T56, KP951056516 * T57); |
| 1080 |
T54 = FNMS(KP250000000, T53, T52); |
| 1081 |
T55 = T51 + T54; |
| 1082 |
T5a = T54 - T51; |
| 1083 |
io[WS(os, 8)] = T55 - T58;
|
| 1084 |
io[WS(os, 18)] = T5a - T59;
|
| 1085 |
io[WS(os, 23)] = T58 + T55;
|
| 1086 |
io[WS(os, 13)] = T59 + T5a;
|
| 1087 |
} |
| 1088 |
{
|
| 1089 |
E T5g, T5i, T5d, T5h, T5c; |
| 1090 |
T5g = FMA(KP951056516, T5e, KP587785252 * T5f); |
| 1091 |
T5i = FNMS(KP587785252, T5e, KP951056516 * T5f); |
| 1092 |
T5c = FNMS(KP250000000, T4U, T4F); |
| 1093 |
T5d = T5b + T5c; |
| 1094 |
T5h = T5c - T5b; |
| 1095 |
ro[WS(os, 23)] = T5d - T5g;
|
| 1096 |
ro[WS(os, 18)] = T5h + T5i;
|
| 1097 |
ro[WS(os, 8)] = T5d + T5g;
|
| 1098 |
ro[WS(os, 13)] = T5h - T5i;
|
| 1099 |
} |
| 1100 |
} |
| 1101 |
{
|
| 1102 |
E T3J, T4w, T4e, T4B, T4f, T4A, T4k, T4x, T4n, T4t; |
| 1103 |
T3J = T3H - T3I; |
| 1104 |
T4w = T4u + T4v; |
| 1105 |
{
|
| 1106 |
E T3Q, T3X, T3Y, T45, T4c, T4d; |
| 1107 |
T3Q = FMA(KP876306680, T3M, KP481753674 * T3P); |
| 1108 |
T3X = FNMS(KP425779291, T3W, KP904827052 * T3T); |
| 1109 |
T3Y = T3Q + T3X; |
| 1110 |
T45 = FMA(KP535826794, T41, KP844327925 * T44); |
| 1111 |
T4c = FMA(KP062790519, T48, KP998026728 * T4b); |
| 1112 |
T4d = T45 + T4c; |
| 1113 |
T4e = T3Y + T4d; |
| 1114 |
T4B = T45 - T4c; |
| 1115 |
T4f = KP559016994 * (T3Y - T4d); |
| 1116 |
T4A = T3Q - T3X; |
| 1117 |
} |
| 1118 |
{
|
| 1119 |
E T4i, T4j, T4r, T4l, T4m, T4s; |
| 1120 |
T4i = FNMS(KP481753674, T3M, KP876306680 * T3P); |
| 1121 |
T4j = FMA(KP904827052, T3W, KP425779291 * T3T); |
| 1122 |
T4r = T4i - T4j; |
| 1123 |
T4l = FNMS(KP844327925, T41, KP535826794 * T44); |
| 1124 |
T4m = FNMS(KP998026728, T48, KP062790519 * T4b); |
| 1125 |
T4s = T4l + T4m; |
| 1126 |
T4k = T4i + T4j; |
| 1127 |
T4x = T4r + T4s; |
| 1128 |
T4n = T4l - T4m; |
| 1129 |
T4t = KP559016994 * (T4r - T4s); |
| 1130 |
} |
| 1131 |
ro[WS(os, 2)] = T3J + T4e;
|
| 1132 |
io[WS(os, 2)] = T4w + T4x;
|
| 1133 |
{
|
| 1134 |
E T4o, T4q, T4h, T4p, T4g; |
| 1135 |
T4o = FMA(KP951056516, T4k, KP587785252 * T4n); |
| 1136 |
T4q = FNMS(KP587785252, T4k, KP951056516 * T4n); |
| 1137 |
T4g = FNMS(KP250000000, T4e, T3J); |
| 1138 |
T4h = T4f + T4g; |
| 1139 |
T4p = T4g - T4f; |
| 1140 |
ro[WS(os, 22)] = T4h - T4o;
|
| 1141 |
ro[WS(os, 17)] = T4p + T4q;
|
| 1142 |
ro[WS(os, 7)] = T4h + T4o;
|
| 1143 |
ro[WS(os, 12)] = T4p - T4q;
|
| 1144 |
} |
| 1145 |
{
|
| 1146 |
E T4C, T4D, T4z, T4E, T4y; |
| 1147 |
T4C = FMA(KP951056516, T4A, KP587785252 * T4B); |
| 1148 |
T4D = FNMS(KP587785252, T4A, KP951056516 * T4B); |
| 1149 |
T4y = FNMS(KP250000000, T4x, T4w); |
| 1150 |
T4z = T4t + T4y; |
| 1151 |
T4E = T4y - T4t; |
| 1152 |
io[WS(os, 7)] = T4z - T4C;
|
| 1153 |
io[WS(os, 17)] = T4E - T4D;
|
| 1154 |
io[WS(os, 22)] = T4C + T4z;
|
| 1155 |
io[WS(os, 12)] = T4D + T4E;
|
| 1156 |
} |
| 1157 |
} |
| 1158 |
{
|
| 1159 |
E T33, T3j, T3i, T3z, T3r, T3s, T3q, T3D, T3v, T3C; |
| 1160 |
T33 = TP - TW; |
| 1161 |
T3j = T2T + T2Q; |
| 1162 |
{
|
| 1163 |
E T36, T39, T3a, T3d, T3g, T3h; |
| 1164 |
T36 = FMA(KP535826794, T34, KP844327925 * T35); |
| 1165 |
T39 = FMA(KP637423989, T37, KP770513242 * T38); |
| 1166 |
T3a = T36 - T39; |
| 1167 |
T3d = FNMS(KP425779291, T3c, KP904827052 * T3b); |
| 1168 |
T3g = FNMS(KP992114701, T3f, KP125333233 * T3e); |
| 1169 |
T3h = T3d + T3g; |
| 1170 |
T3i = T3a + T3h; |
| 1171 |
T3z = KP559016994 * (T3a - T3h); |
| 1172 |
T3r = T3d - T3g; |
| 1173 |
T3s = T36 + T39; |
| 1174 |
} |
| 1175 |
{
|
| 1176 |
E T3k, T3l, T3m, T3n, T3o, T3p; |
| 1177 |
T3k = FNMS(KP844327925, T34, KP535826794 * T35); |
| 1178 |
T3l = FNMS(KP637423989, T38, KP770513242 * T37); |
| 1179 |
T3m = T3k + T3l; |
| 1180 |
T3n = FMA(KP904827052, T3c, KP425779291 * T3b); |
| 1181 |
T3o = FMA(KP125333233, T3f, KP992114701 * T3e); |
| 1182 |
T3p = T3n + T3o; |
| 1183 |
T3q = T3m - T3p; |
| 1184 |
T3D = T3o - T3n; |
| 1185 |
T3v = KP559016994 * (T3m + T3p); |
| 1186 |
T3C = T3k - T3l; |
| 1187 |
} |
| 1188 |
ro[WS(os, 4)] = T33 + T3i;
|
| 1189 |
io[WS(os, 4)] = T3j + T3q;
|
| 1190 |
{
|
| 1191 |
E T3t, T3y, T3w, T3x, T3u; |
| 1192 |
T3t = FNMS(KP587785252, T3s, KP951056516 * T3r); |
| 1193 |
T3y = FMA(KP951056516, T3s, KP587785252 * T3r); |
| 1194 |
T3u = FNMS(KP250000000, T3q, T3j); |
| 1195 |
T3w = T3u - T3v; |
| 1196 |
T3x = T3u + T3v; |
| 1197 |
io[WS(os, 14)] = T3t + T3w;
|
| 1198 |
io[WS(os, 24)] = T3y + T3x;
|
| 1199 |
io[WS(os, 19)] = T3w - T3t;
|
| 1200 |
io[WS(os, 9)] = T3x - T3y;
|
| 1201 |
} |
| 1202 |
{
|
| 1203 |
E T3E, T3G, T3B, T3F, T3A; |
| 1204 |
T3E = FMA(KP951056516, T3C, KP587785252 * T3D); |
| 1205 |
T3G = FNMS(KP587785252, T3C, KP951056516 * T3D); |
| 1206 |
T3A = FNMS(KP250000000, T3i, T33); |
| 1207 |
T3B = T3z + T3A; |
| 1208 |
T3F = T3A - T3z; |
| 1209 |
ro[WS(os, 24)] = T3B - T3E;
|
| 1210 |
ro[WS(os, 19)] = T3F + T3G;
|
| 1211 |
ro[WS(os, 9)] = T3B + T3E;
|
| 1212 |
ro[WS(os, 14)] = T3F - T3G;
|
| 1213 |
} |
| 1214 |
} |
| 1215 |
} |
| 1216 |
} |
| 1217 |
} |
| 1218 |
|
| 1219 |
static const kdft_desc desc = { 25, "n1_25", {260, 92, 92, 0}, &GENUS, 0, 0, 0, 0 }; |
| 1220 |
|
| 1221 |
void X(codelet_n1_25) (planner *p) {
|
| 1222 |
X(kdft_register) (p, n1_25, &desc); |
| 1223 |
} |
| 1224 |
|
| 1225 |
#endif
|