To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_20.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (19.8 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:12 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 208 FP additions, 72 FP multiplications,
|
| 32 |
* (or, 136 additions, 0 multiplications, 72 fused multiply/add),
|
| 33 |
* 81 stack variables, 4 constants, and 80 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 42 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 43 |
{
|
| 44 |
INT i; |
| 45 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { |
| 46 |
E T7, T2N, T3b, TD, TP, T1R, T2f, T1d, Tt, TA, TB, T2w, T2z, T2P, T35; |
| 47 |
E T36, T3d, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1T, T29, T2a, T2h, T1h; |
| 48 |
E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2O, T32, T33, T3c, TE, TF, TG, TU; |
| 49 |
E TZ, T10, T1D, T1I, T1S, T26, T27, T2g, T1e, T1f, T1g; |
| 50 |
{
|
| 51 |
E T3, T1N, TN, T2L, T6, TO, T1Q, T2M; |
| 52 |
{
|
| 53 |
E T1, T2, TL, TM; |
| 54 |
T1 = ri[0];
|
| 55 |
T2 = ri[WS(is, 10)];
|
| 56 |
T3 = T1 + T2; |
| 57 |
T1N = T1 - T2; |
| 58 |
TL = ii[0];
|
| 59 |
TM = ii[WS(is, 10)];
|
| 60 |
TN = TL - TM; |
| 61 |
T2L = TL + TM; |
| 62 |
} |
| 63 |
{
|
| 64 |
E T4, T5, T1O, T1P; |
| 65 |
T4 = ri[WS(is, 5)];
|
| 66 |
T5 = ri[WS(is, 15)];
|
| 67 |
T6 = T4 + T5; |
| 68 |
TO = T4 - T5; |
| 69 |
T1O = ii[WS(is, 5)];
|
| 70 |
T1P = ii[WS(is, 15)];
|
| 71 |
T1Q = T1O - T1P; |
| 72 |
T2M = T1O + T1P; |
| 73 |
} |
| 74 |
T7 = T3 - T6; |
| 75 |
T2N = T2L - T2M; |
| 76 |
T3b = T2L + T2M; |
| 77 |
TD = T3 + T6; |
| 78 |
TP = TN - TO; |
| 79 |
T1R = T1N - T1Q; |
| 80 |
T2f = T1N + T1Q; |
| 81 |
T1d = TO + TN; |
| 82 |
} |
| 83 |
{
|
| 84 |
E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; |
| 85 |
E T2y; |
| 86 |
{
|
| 87 |
E Tn, To, T11, T12; |
| 88 |
Tn = ri[WS(is, 8)];
|
| 89 |
To = ri[WS(is, 18)];
|
| 90 |
Tp = Tn + To; |
| 91 |
T1o = Tn - To; |
| 92 |
T11 = ii[WS(is, 8)];
|
| 93 |
T12 = ii[WS(is, 18)];
|
| 94 |
T13 = T11 - T12; |
| 95 |
T2u = T11 + T12; |
| 96 |
} |
| 97 |
{
|
| 98 |
E Tq, Tr, T1p, T1q; |
| 99 |
Tq = ri[WS(is, 13)];
|
| 100 |
Tr = ri[WS(is, 3)];
|
| 101 |
Ts = Tq + Tr; |
| 102 |
T14 = Tq - Tr; |
| 103 |
T1p = ii[WS(is, 13)];
|
| 104 |
T1q = ii[WS(is, 3)];
|
| 105 |
T1r = T1p - T1q; |
| 106 |
T2v = T1p + T1q; |
| 107 |
} |
| 108 |
{
|
| 109 |
E Tu, Tv, T16, T17; |
| 110 |
Tu = ri[WS(is, 12)];
|
| 111 |
Tv = ri[WS(is, 2)];
|
| 112 |
Tw = Tu + Tv; |
| 113 |
T1t = Tu - Tv; |
| 114 |
T16 = ii[WS(is, 12)];
|
| 115 |
T17 = ii[WS(is, 2)];
|
| 116 |
T18 = T16 - T17; |
| 117 |
T2x = T16 + T17; |
| 118 |
} |
| 119 |
{
|
| 120 |
E Tx, Ty, T1u, T1v; |
| 121 |
Tx = ri[WS(is, 17)];
|
| 122 |
Ty = ri[WS(is, 7)];
|
| 123 |
Tz = Tx + Ty; |
| 124 |
T19 = Tx - Ty; |
| 125 |
T1u = ii[WS(is, 17)];
|
| 126 |
T1v = ii[WS(is, 7)];
|
| 127 |
T1w = T1u - T1v; |
| 128 |
T2y = T1u + T1v; |
| 129 |
} |
| 130 |
Tt = Tp - Ts; |
| 131 |
TA = Tw - Tz; |
| 132 |
TB = Tt + TA; |
| 133 |
T2w = T2u - T2v; |
| 134 |
T2z = T2x - T2y; |
| 135 |
T2P = T2w + T2z; |
| 136 |
T35 = T2u + T2v; |
| 137 |
T36 = T2x + T2y; |
| 138 |
T3d = T35 + T36; |
| 139 |
TH = Tp + Ts; |
| 140 |
TI = Tw + Tz; |
| 141 |
TJ = TH + TI; |
| 142 |
T15 = T13 - T14; |
| 143 |
T1a = T18 - T19; |
| 144 |
T1b = T15 + T1a; |
| 145 |
T1s = T1o - T1r; |
| 146 |
T1x = T1t - T1w; |
| 147 |
T1T = T1s + T1x; |
| 148 |
T29 = T1o + T1r; |
| 149 |
T2a = T1t + T1w; |
| 150 |
T2h = T29 + T2a; |
| 151 |
T1h = T14 + T13; |
| 152 |
T1i = T19 + T18; |
| 153 |
T1j = T1h + T1i; |
| 154 |
} |
| 155 |
{
|
| 156 |
E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; |
| 157 |
E T2F; |
| 158 |
{
|
| 159 |
E T8, T9, TQ, TR; |
| 160 |
T8 = ri[WS(is, 4)];
|
| 161 |
T9 = ri[WS(is, 14)];
|
| 162 |
Ta = T8 + T9; |
| 163 |
T1z = T8 - T9; |
| 164 |
TQ = ii[WS(is, 4)];
|
| 165 |
TR = ii[WS(is, 14)];
|
| 166 |
TS = TQ - TR; |
| 167 |
T2B = TQ + TR; |
| 168 |
} |
| 169 |
{
|
| 170 |
E Tb, Tc, T1A, T1B; |
| 171 |
Tb = ri[WS(is, 9)];
|
| 172 |
Tc = ri[WS(is, 19)];
|
| 173 |
Td = Tb + Tc; |
| 174 |
TT = Tb - Tc; |
| 175 |
T1A = ii[WS(is, 9)];
|
| 176 |
T1B = ii[WS(is, 19)];
|
| 177 |
T1C = T1A - T1B; |
| 178 |
T2C = T1A + T1B; |
| 179 |
} |
| 180 |
{
|
| 181 |
E Tf, Tg, TV, TW; |
| 182 |
Tf = ri[WS(is, 16)];
|
| 183 |
Tg = ri[WS(is, 6)];
|
| 184 |
Th = Tf + Tg; |
| 185 |
T1E = Tf - Tg; |
| 186 |
TV = ii[WS(is, 16)];
|
| 187 |
TW = ii[WS(is, 6)];
|
| 188 |
TX = TV - TW; |
| 189 |
T2E = TV + TW; |
| 190 |
} |
| 191 |
{
|
| 192 |
E Ti, Tj, T1F, T1G; |
| 193 |
Ti = ri[WS(is, 1)];
|
| 194 |
Tj = ri[WS(is, 11)];
|
| 195 |
Tk = Ti + Tj; |
| 196 |
TY = Ti - Tj; |
| 197 |
T1F = ii[WS(is, 1)];
|
| 198 |
T1G = ii[WS(is, 11)];
|
| 199 |
T1H = T1F - T1G; |
| 200 |
T2F = T1F + T1G; |
| 201 |
} |
| 202 |
Te = Ta - Td; |
| 203 |
Tl = Th - Tk; |
| 204 |
Tm = Te + Tl; |
| 205 |
T2D = T2B - T2C; |
| 206 |
T2G = T2E - T2F; |
| 207 |
T2O = T2D + T2G; |
| 208 |
T32 = T2B + T2C; |
| 209 |
T33 = T2E + T2F; |
| 210 |
T3c = T32 + T33; |
| 211 |
TE = Ta + Td; |
| 212 |
TF = Th + Tk; |
| 213 |
TG = TE + TF; |
| 214 |
TU = TS - TT; |
| 215 |
TZ = TX - TY; |
| 216 |
T10 = TU + TZ; |
| 217 |
T1D = T1z - T1C; |
| 218 |
T1I = T1E - T1H; |
| 219 |
T1S = T1D + T1I; |
| 220 |
T26 = T1z + T1C; |
| 221 |
T27 = T1E + T1H; |
| 222 |
T2g = T26 + T27; |
| 223 |
T1e = TT + TS; |
| 224 |
T1f = TY + TX; |
| 225 |
T1g = T1e + T1f; |
| 226 |
} |
| 227 |
{
|
| 228 |
E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; |
| 229 |
T2s = Tm - TB; |
| 230 |
TC = Tm + TB; |
| 231 |
T2r = FNMS(KP250000000, TC, T7); |
| 232 |
T2A = T2w - T2z; |
| 233 |
T2H = T2D - T2G; |
| 234 |
T2I = FNMS(KP618033988, T2H, T2A); |
| 235 |
T2K = FMA(KP618033988, T2A, T2H); |
| 236 |
ro[WS(os, 10)] = T7 + TC;
|
| 237 |
T2J = FMA(KP559016994, T2s, T2r); |
| 238 |
ro[WS(os, 14)] = FNMS(KP951056516, T2K, T2J);
|
| 239 |
ro[WS(os, 6)] = FMA(KP951056516, T2K, T2J);
|
| 240 |
T2t = FNMS(KP559016994, T2s, T2r); |
| 241 |
ro[WS(os, 2)] = FNMS(KP951056516, T2I, T2t);
|
| 242 |
ro[WS(os, 18)] = FMA(KP951056516, T2I, T2t);
|
| 243 |
} |
| 244 |
{
|
| 245 |
E T2S, T2Q, T2R, T2W, T2Y, T2U, T2V, T2X, T2T; |
| 246 |
T2S = T2O - T2P; |
| 247 |
T2Q = T2O + T2P; |
| 248 |
T2R = FNMS(KP250000000, T2Q, T2N); |
| 249 |
T2U = Tt - TA; |
| 250 |
T2V = Te - Tl; |
| 251 |
T2W = FNMS(KP618033988, T2V, T2U); |
| 252 |
T2Y = FMA(KP618033988, T2U, T2V); |
| 253 |
io[WS(os, 10)] = T2N + T2Q;
|
| 254 |
T2X = FMA(KP559016994, T2S, T2R); |
| 255 |
io[WS(os, 6)] = FNMS(KP951056516, T2Y, T2X);
|
| 256 |
io[WS(os, 14)] = FMA(KP951056516, T2Y, T2X);
|
| 257 |
T2T = FNMS(KP559016994, T2S, T2R); |
| 258 |
io[WS(os, 2)] = FMA(KP951056516, T2W, T2T);
|
| 259 |
io[WS(os, 18)] = FNMS(KP951056516, T2W, T2T);
|
| 260 |
} |
| 261 |
{
|
| 262 |
E T30, TK, T2Z, T38, T3a, T34, T37, T39, T31; |
| 263 |
T30 = TG - TJ; |
| 264 |
TK = TG + TJ; |
| 265 |
T2Z = FNMS(KP250000000, TK, TD); |
| 266 |
T34 = T32 - T33; |
| 267 |
T37 = T35 - T36; |
| 268 |
T38 = FMA(KP618033988, T37, T34); |
| 269 |
T3a = FNMS(KP618033988, T34, T37); |
| 270 |
ro[0] = TD + TK;
|
| 271 |
T39 = FNMS(KP559016994, T30, T2Z); |
| 272 |
ro[WS(os, 12)] = FNMS(KP951056516, T3a, T39);
|
| 273 |
ro[WS(os, 8)] = FMA(KP951056516, T3a, T39);
|
| 274 |
T31 = FMA(KP559016994, T30, T2Z); |
| 275 |
ro[WS(os, 4)] = FNMS(KP951056516, T38, T31);
|
| 276 |
ro[WS(os, 16)] = FMA(KP951056516, T38, T31);
|
| 277 |
} |
| 278 |
{
|
| 279 |
E T3g, T3e, T3f, T3k, T3m, T3i, T3j, T3l, T3h; |
| 280 |
T3g = T3c - T3d; |
| 281 |
T3e = T3c + T3d; |
| 282 |
T3f = FNMS(KP250000000, T3e, T3b); |
| 283 |
T3i = TE - TF; |
| 284 |
T3j = TH - TI; |
| 285 |
T3k = FMA(KP618033988, T3j, T3i); |
| 286 |
T3m = FNMS(KP618033988, T3i, T3j); |
| 287 |
io[0] = T3b + T3e;
|
| 288 |
T3l = FNMS(KP559016994, T3g, T3f); |
| 289 |
io[WS(os, 8)] = FNMS(KP951056516, T3m, T3l);
|
| 290 |
io[WS(os, 12)] = FMA(KP951056516, T3m, T3l);
|
| 291 |
T3h = FMA(KP559016994, T3g, T3f); |
| 292 |
io[WS(os, 4)] = FMA(KP951056516, T3k, T3h);
|
| 293 |
io[WS(os, 16)] = FNMS(KP951056516, T3k, T3h);
|
| 294 |
} |
| 295 |
{
|
| 296 |
E T24, T1c, T23, T2c, T2e, T28, T2b, T2d, T25; |
| 297 |
T24 = T10 - T1b; |
| 298 |
T1c = T10 + T1b; |
| 299 |
T23 = FNMS(KP250000000, T1c, TP); |
| 300 |
T28 = T26 - T27; |
| 301 |
T2b = T29 - T2a; |
| 302 |
T2c = FMA(KP618033988, T2b, T28); |
| 303 |
T2e = FNMS(KP618033988, T28, T2b); |
| 304 |
io[WS(os, 5)] = TP + T1c;
|
| 305 |
T2d = FNMS(KP559016994, T24, T23); |
| 306 |
io[WS(os, 13)] = FNMS(KP951056516, T2e, T2d);
|
| 307 |
io[WS(os, 17)] = FMA(KP951056516, T2e, T2d);
|
| 308 |
T25 = FMA(KP559016994, T24, T23); |
| 309 |
io[WS(os, 1)] = FNMS(KP951056516, T2c, T25);
|
| 310 |
io[WS(os, 9)] = FMA(KP951056516, T2c, T25);
|
| 311 |
} |
| 312 |
{
|
| 313 |
E T2k, T2i, T2j, T2o, T2q, T2m, T2n, T2p, T2l; |
| 314 |
T2k = T2g - T2h; |
| 315 |
T2i = T2g + T2h; |
| 316 |
T2j = FNMS(KP250000000, T2i, T2f); |
| 317 |
T2m = TU - TZ; |
| 318 |
T2n = T15 - T1a; |
| 319 |
T2o = FMA(KP618033988, T2n, T2m); |
| 320 |
T2q = FNMS(KP618033988, T2m, T2n); |
| 321 |
ro[WS(os, 5)] = T2f + T2i;
|
| 322 |
T2p = FNMS(KP559016994, T2k, T2j); |
| 323 |
ro[WS(os, 13)] = FMA(KP951056516, T2q, T2p);
|
| 324 |
ro[WS(os, 17)] = FNMS(KP951056516, T2q, T2p);
|
| 325 |
T2l = FMA(KP559016994, T2k, T2j); |
| 326 |
ro[WS(os, 1)] = FMA(KP951056516, T2o, T2l);
|
| 327 |
ro[WS(os, 9)] = FNMS(KP951056516, T2o, T2l);
|
| 328 |
} |
| 329 |
{
|
| 330 |
E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; |
| 331 |
T1m = T1g - T1j; |
| 332 |
T1k = T1g + T1j; |
| 333 |
T1l = FNMS(KP250000000, T1k, T1d); |
| 334 |
T1y = T1s - T1x; |
| 335 |
T1J = T1D - T1I; |
| 336 |
T1K = FNMS(KP618033988, T1J, T1y); |
| 337 |
T1M = FMA(KP618033988, T1y, T1J); |
| 338 |
io[WS(os, 15)] = T1d + T1k;
|
| 339 |
T1L = FMA(KP559016994, T1m, T1l); |
| 340 |
io[WS(os, 11)] = FNMS(KP951056516, T1M, T1L);
|
| 341 |
io[WS(os, 19)] = FMA(KP951056516, T1M, T1L);
|
| 342 |
T1n = FNMS(KP559016994, T1m, T1l); |
| 343 |
io[WS(os, 3)] = FNMS(KP951056516, T1K, T1n);
|
| 344 |
io[WS(os, 7)] = FMA(KP951056516, T1K, T1n);
|
| 345 |
} |
| 346 |
{
|
| 347 |
E T1W, T1U, T1V, T20, T22, T1Y, T1Z, T21, T1X; |
| 348 |
T1W = T1S - T1T; |
| 349 |
T1U = T1S + T1T; |
| 350 |
T1V = FNMS(KP250000000, T1U, T1R); |
| 351 |
T1Y = T1h - T1i; |
| 352 |
T1Z = T1e - T1f; |
| 353 |
T20 = FNMS(KP618033988, T1Z, T1Y); |
| 354 |
T22 = FMA(KP618033988, T1Y, T1Z); |
| 355 |
ro[WS(os, 15)] = T1R + T1U;
|
| 356 |
T21 = FMA(KP559016994, T1W, T1V); |
| 357 |
ro[WS(os, 11)] = FMA(KP951056516, T22, T21);
|
| 358 |
ro[WS(os, 19)] = FNMS(KP951056516, T22, T21);
|
| 359 |
T1X = FNMS(KP559016994, T1W, T1V); |
| 360 |
ro[WS(os, 3)] = FMA(KP951056516, T20, T1X);
|
| 361 |
ro[WS(os, 7)] = FNMS(KP951056516, T20, T1X);
|
| 362 |
} |
| 363 |
} |
| 364 |
} |
| 365 |
} |
| 366 |
|
| 367 |
static const kdft_desc desc = { 20, "n1_20", {136, 0, 72, 0}, &GENUS, 0, 0, 0, 0 }; |
| 368 |
|
| 369 |
void X(codelet_n1_20) (planner *p) {
|
| 370 |
X(kdft_register) (p, n1_20, &desc); |
| 371 |
} |
| 372 |
|
| 373 |
#else
|
| 374 |
|
| 375 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 20 -name n1_20 -include dft/scalar/n.h */
|
| 376 |
|
| 377 |
/*
|
| 378 |
* This function contains 208 FP additions, 48 FP multiplications,
|
| 379 |
* (or, 184 additions, 24 multiplications, 24 fused multiply/add),
|
| 380 |
* 81 stack variables, 4 constants, and 80 memory accesses
|
| 381 |
*/
|
| 382 |
#include "dft/scalar/n.h" |
| 383 |
|
| 384 |
static void n1_20(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 385 |
{
|
| 386 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 387 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 388 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 389 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 390 |
{
|
| 391 |
INT i; |
| 392 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(80, is), MAKE_VOLATILE_STRIDE(80, os)) { |
| 393 |
E T7, T2Q, T3h, TD, TP, T1U, T2l, T1d, Tt, TA, TB, T2w, T2z, T2S, T35; |
| 394 |
E T36, T3f, TH, TI, TJ, T15, T1a, T1b, T1s, T1x, T1W, T29, T2a, T2j, T1h; |
| 395 |
E T1i, T1j, Te, Tl, Tm, T2D, T2G, T2R, T32, T33, T3e, TE, TF, TG, TU; |
| 396 |
E TZ, T10, T1D, T1I, T1V, T26, T27, T2i, T1e, T1f, T1g; |
| 397 |
{
|
| 398 |
E T3, T1Q, TN, T2O, T6, TO, T1T, T2P; |
| 399 |
{
|
| 400 |
E T1, T2, TL, TM; |
| 401 |
T1 = ri[0];
|
| 402 |
T2 = ri[WS(is, 10)];
|
| 403 |
T3 = T1 + T2; |
| 404 |
T1Q = T1 - T2; |
| 405 |
TL = ii[0];
|
| 406 |
TM = ii[WS(is, 10)];
|
| 407 |
TN = TL - TM; |
| 408 |
T2O = TL + TM; |
| 409 |
} |
| 410 |
{
|
| 411 |
E T4, T5, T1R, T1S; |
| 412 |
T4 = ri[WS(is, 5)];
|
| 413 |
T5 = ri[WS(is, 15)];
|
| 414 |
T6 = T4 + T5; |
| 415 |
TO = T4 - T5; |
| 416 |
T1R = ii[WS(is, 5)];
|
| 417 |
T1S = ii[WS(is, 15)];
|
| 418 |
T1T = T1R - T1S; |
| 419 |
T2P = T1R + T1S; |
| 420 |
} |
| 421 |
T7 = T3 - T6; |
| 422 |
T2Q = T2O - T2P; |
| 423 |
T3h = T2O + T2P; |
| 424 |
TD = T3 + T6; |
| 425 |
TP = TN - TO; |
| 426 |
T1U = T1Q - T1T; |
| 427 |
T2l = T1Q + T1T; |
| 428 |
T1d = TO + TN; |
| 429 |
} |
| 430 |
{
|
| 431 |
E Tp, T1o, T13, T2u, Ts, T14, T1r, T2v, Tw, T1t, T18, T2x, Tz, T19, T1w; |
| 432 |
E T2y; |
| 433 |
{
|
| 434 |
E Tn, To, T11, T12; |
| 435 |
Tn = ri[WS(is, 8)];
|
| 436 |
To = ri[WS(is, 18)];
|
| 437 |
Tp = Tn + To; |
| 438 |
T1o = Tn - To; |
| 439 |
T11 = ii[WS(is, 8)];
|
| 440 |
T12 = ii[WS(is, 18)];
|
| 441 |
T13 = T11 - T12; |
| 442 |
T2u = T11 + T12; |
| 443 |
} |
| 444 |
{
|
| 445 |
E Tq, Tr, T1p, T1q; |
| 446 |
Tq = ri[WS(is, 13)];
|
| 447 |
Tr = ri[WS(is, 3)];
|
| 448 |
Ts = Tq + Tr; |
| 449 |
T14 = Tq - Tr; |
| 450 |
T1p = ii[WS(is, 13)];
|
| 451 |
T1q = ii[WS(is, 3)];
|
| 452 |
T1r = T1p - T1q; |
| 453 |
T2v = T1p + T1q; |
| 454 |
} |
| 455 |
{
|
| 456 |
E Tu, Tv, T16, T17; |
| 457 |
Tu = ri[WS(is, 12)];
|
| 458 |
Tv = ri[WS(is, 2)];
|
| 459 |
Tw = Tu + Tv; |
| 460 |
T1t = Tu - Tv; |
| 461 |
T16 = ii[WS(is, 12)];
|
| 462 |
T17 = ii[WS(is, 2)];
|
| 463 |
T18 = T16 - T17; |
| 464 |
T2x = T16 + T17; |
| 465 |
} |
| 466 |
{
|
| 467 |
E Tx, Ty, T1u, T1v; |
| 468 |
Tx = ri[WS(is, 17)];
|
| 469 |
Ty = ri[WS(is, 7)];
|
| 470 |
Tz = Tx + Ty; |
| 471 |
T19 = Tx - Ty; |
| 472 |
T1u = ii[WS(is, 17)];
|
| 473 |
T1v = ii[WS(is, 7)];
|
| 474 |
T1w = T1u - T1v; |
| 475 |
T2y = T1u + T1v; |
| 476 |
} |
| 477 |
Tt = Tp - Ts; |
| 478 |
TA = Tw - Tz; |
| 479 |
TB = Tt + TA; |
| 480 |
T2w = T2u - T2v; |
| 481 |
T2z = T2x - T2y; |
| 482 |
T2S = T2w + T2z; |
| 483 |
T35 = T2u + T2v; |
| 484 |
T36 = T2x + T2y; |
| 485 |
T3f = T35 + T36; |
| 486 |
TH = Tp + Ts; |
| 487 |
TI = Tw + Tz; |
| 488 |
TJ = TH + TI; |
| 489 |
T15 = T13 - T14; |
| 490 |
T1a = T18 - T19; |
| 491 |
T1b = T15 + T1a; |
| 492 |
T1s = T1o - T1r; |
| 493 |
T1x = T1t - T1w; |
| 494 |
T1W = T1s + T1x; |
| 495 |
T29 = T1o + T1r; |
| 496 |
T2a = T1t + T1w; |
| 497 |
T2j = T29 + T2a; |
| 498 |
T1h = T14 + T13; |
| 499 |
T1i = T19 + T18; |
| 500 |
T1j = T1h + T1i; |
| 501 |
} |
| 502 |
{
|
| 503 |
E Ta, T1z, TS, T2B, Td, TT, T1C, T2C, Th, T1E, TX, T2E, Tk, TY, T1H; |
| 504 |
E T2F; |
| 505 |
{
|
| 506 |
E T8, T9, TQ, TR; |
| 507 |
T8 = ri[WS(is, 4)];
|
| 508 |
T9 = ri[WS(is, 14)];
|
| 509 |
Ta = T8 + T9; |
| 510 |
T1z = T8 - T9; |
| 511 |
TQ = ii[WS(is, 4)];
|
| 512 |
TR = ii[WS(is, 14)];
|
| 513 |
TS = TQ - TR; |
| 514 |
T2B = TQ + TR; |
| 515 |
} |
| 516 |
{
|
| 517 |
E Tb, Tc, T1A, T1B; |
| 518 |
Tb = ri[WS(is, 9)];
|
| 519 |
Tc = ri[WS(is, 19)];
|
| 520 |
Td = Tb + Tc; |
| 521 |
TT = Tb - Tc; |
| 522 |
T1A = ii[WS(is, 9)];
|
| 523 |
T1B = ii[WS(is, 19)];
|
| 524 |
T1C = T1A - T1B; |
| 525 |
T2C = T1A + T1B; |
| 526 |
} |
| 527 |
{
|
| 528 |
E Tf, Tg, TV, TW; |
| 529 |
Tf = ri[WS(is, 16)];
|
| 530 |
Tg = ri[WS(is, 6)];
|
| 531 |
Th = Tf + Tg; |
| 532 |
T1E = Tf - Tg; |
| 533 |
TV = ii[WS(is, 16)];
|
| 534 |
TW = ii[WS(is, 6)];
|
| 535 |
TX = TV - TW; |
| 536 |
T2E = TV + TW; |
| 537 |
} |
| 538 |
{
|
| 539 |
E Ti, Tj, T1F, T1G; |
| 540 |
Ti = ri[WS(is, 1)];
|
| 541 |
Tj = ri[WS(is, 11)];
|
| 542 |
Tk = Ti + Tj; |
| 543 |
TY = Ti - Tj; |
| 544 |
T1F = ii[WS(is, 1)];
|
| 545 |
T1G = ii[WS(is, 11)];
|
| 546 |
T1H = T1F - T1G; |
| 547 |
T2F = T1F + T1G; |
| 548 |
} |
| 549 |
Te = Ta - Td; |
| 550 |
Tl = Th - Tk; |
| 551 |
Tm = Te + Tl; |
| 552 |
T2D = T2B - T2C; |
| 553 |
T2G = T2E - T2F; |
| 554 |
T2R = T2D + T2G; |
| 555 |
T32 = T2B + T2C; |
| 556 |
T33 = T2E + T2F; |
| 557 |
T3e = T32 + T33; |
| 558 |
TE = Ta + Td; |
| 559 |
TF = Th + Tk; |
| 560 |
TG = TE + TF; |
| 561 |
TU = TS - TT; |
| 562 |
TZ = TX - TY; |
| 563 |
T10 = TU + TZ; |
| 564 |
T1D = T1z - T1C; |
| 565 |
T1I = T1E - T1H; |
| 566 |
T1V = T1D + T1I; |
| 567 |
T26 = T1z + T1C; |
| 568 |
T27 = T1E + T1H; |
| 569 |
T2i = T26 + T27; |
| 570 |
T1e = TT + TS; |
| 571 |
T1f = TY + TX; |
| 572 |
T1g = T1e + T1f; |
| 573 |
} |
| 574 |
{
|
| 575 |
E T2s, TC, T2r, T2I, T2K, T2A, T2H, T2J, T2t; |
| 576 |
T2s = KP559016994 * (Tm - TB); |
| 577 |
TC = Tm + TB; |
| 578 |
T2r = FNMS(KP250000000, TC, T7); |
| 579 |
T2A = T2w - T2z; |
| 580 |
T2H = T2D - T2G; |
| 581 |
T2I = FNMS(KP587785252, T2H, KP951056516 * T2A); |
| 582 |
T2K = FMA(KP951056516, T2H, KP587785252 * T2A); |
| 583 |
ro[WS(os, 10)] = T7 + TC;
|
| 584 |
T2J = T2s + T2r; |
| 585 |
ro[WS(os, 14)] = T2J - T2K;
|
| 586 |
ro[WS(os, 6)] = T2J + T2K;
|
| 587 |
T2t = T2r - T2s; |
| 588 |
ro[WS(os, 2)] = T2t - T2I;
|
| 589 |
ro[WS(os, 18)] = T2t + T2I;
|
| 590 |
} |
| 591 |
{
|
| 592 |
E T2V, T2T, T2U, T2N, T2Y, T2L, T2M, T2X, T2W; |
| 593 |
T2V = KP559016994 * (T2R - T2S); |
| 594 |
T2T = T2R + T2S; |
| 595 |
T2U = FNMS(KP250000000, T2T, T2Q); |
| 596 |
T2L = Tt - TA; |
| 597 |
T2M = Te - Tl; |
| 598 |
T2N = FNMS(KP587785252, T2M, KP951056516 * T2L); |
| 599 |
T2Y = FMA(KP951056516, T2M, KP587785252 * T2L); |
| 600 |
io[WS(os, 10)] = T2Q + T2T;
|
| 601 |
T2X = T2V + T2U; |
| 602 |
io[WS(os, 6)] = T2X - T2Y;
|
| 603 |
io[WS(os, 14)] = T2Y + T2X;
|
| 604 |
T2W = T2U - T2V; |
| 605 |
io[WS(os, 2)] = T2N + T2W;
|
| 606 |
io[WS(os, 18)] = T2W - T2N;
|
| 607 |
} |
| 608 |
{
|
| 609 |
E T2Z, TK, T30, T38, T3a, T34, T37, T39, T31; |
| 610 |
T2Z = KP559016994 * (TG - TJ); |
| 611 |
TK = TG + TJ; |
| 612 |
T30 = FNMS(KP250000000, TK, TD); |
| 613 |
T34 = T32 - T33; |
| 614 |
T37 = T35 - T36; |
| 615 |
T38 = FMA(KP951056516, T34, KP587785252 * T37); |
| 616 |
T3a = FNMS(KP587785252, T34, KP951056516 * T37); |
| 617 |
ro[0] = TD + TK;
|
| 618 |
T39 = T30 - T2Z; |
| 619 |
ro[WS(os, 12)] = T39 - T3a;
|
| 620 |
ro[WS(os, 8)] = T39 + T3a;
|
| 621 |
T31 = T2Z + T30; |
| 622 |
ro[WS(os, 4)] = T31 - T38;
|
| 623 |
ro[WS(os, 16)] = T31 + T38;
|
| 624 |
} |
| 625 |
{
|
| 626 |
E T3g, T3i, T3j, T3d, T3m, T3b, T3c, T3l, T3k; |
| 627 |
T3g = KP559016994 * (T3e - T3f); |
| 628 |
T3i = T3e + T3f; |
| 629 |
T3j = FNMS(KP250000000, T3i, T3h); |
| 630 |
T3b = TE - TF; |
| 631 |
T3c = TH - TI; |
| 632 |
T3d = FMA(KP951056516, T3b, KP587785252 * T3c); |
| 633 |
T3m = FNMS(KP587785252, T3b, KP951056516 * T3c); |
| 634 |
io[0] = T3h + T3i;
|
| 635 |
T3l = T3j - T3g; |
| 636 |
io[WS(os, 8)] = T3l - T3m;
|
| 637 |
io[WS(os, 12)] = T3m + T3l;
|
| 638 |
T3k = T3g + T3j; |
| 639 |
io[WS(os, 4)] = T3d + T3k;
|
| 640 |
io[WS(os, 16)] = T3k - T3d;
|
| 641 |
} |
| 642 |
{
|
| 643 |
E T23, T1c, T24, T2c, T2e, T28, T2b, T2d, T25; |
| 644 |
T23 = KP559016994 * (T10 - T1b); |
| 645 |
T1c = T10 + T1b; |
| 646 |
T24 = FNMS(KP250000000, T1c, TP); |
| 647 |
T28 = T26 - T27; |
| 648 |
T2b = T29 - T2a; |
| 649 |
T2c = FMA(KP951056516, T28, KP587785252 * T2b); |
| 650 |
T2e = FNMS(KP587785252, T28, KP951056516 * T2b); |
| 651 |
io[WS(os, 5)] = TP + T1c;
|
| 652 |
T2d = T24 - T23; |
| 653 |
io[WS(os, 13)] = T2d - T2e;
|
| 654 |
io[WS(os, 17)] = T2d + T2e;
|
| 655 |
T25 = T23 + T24; |
| 656 |
io[WS(os, 1)] = T25 - T2c;
|
| 657 |
io[WS(os, 9)] = T25 + T2c;
|
| 658 |
} |
| 659 |
{
|
| 660 |
E T2k, T2m, T2n, T2h, T2p, T2f, T2g, T2q, T2o; |
| 661 |
T2k = KP559016994 * (T2i - T2j); |
| 662 |
T2m = T2i + T2j; |
| 663 |
T2n = FNMS(KP250000000, T2m, T2l); |
| 664 |
T2f = TU - TZ; |
| 665 |
T2g = T15 - T1a; |
| 666 |
T2h = FMA(KP951056516, T2f, KP587785252 * T2g); |
| 667 |
T2p = FNMS(KP587785252, T2f, KP951056516 * T2g); |
| 668 |
ro[WS(os, 5)] = T2l + T2m;
|
| 669 |
T2q = T2n - T2k; |
| 670 |
ro[WS(os, 13)] = T2p + T2q;
|
| 671 |
ro[WS(os, 17)] = T2q - T2p;
|
| 672 |
T2o = T2k + T2n; |
| 673 |
ro[WS(os, 1)] = T2h + T2o;
|
| 674 |
ro[WS(os, 9)] = T2o - T2h;
|
| 675 |
} |
| 676 |
{
|
| 677 |
E T1m, T1k, T1l, T1K, T1M, T1y, T1J, T1L, T1n; |
| 678 |
T1m = KP559016994 * (T1g - T1j); |
| 679 |
T1k = T1g + T1j; |
| 680 |
T1l = FNMS(KP250000000, T1k, T1d); |
| 681 |
T1y = T1s - T1x; |
| 682 |
T1J = T1D - T1I; |
| 683 |
T1K = FNMS(KP587785252, T1J, KP951056516 * T1y); |
| 684 |
T1M = FMA(KP951056516, T1J, KP587785252 * T1y); |
| 685 |
io[WS(os, 15)] = T1d + T1k;
|
| 686 |
T1L = T1m + T1l; |
| 687 |
io[WS(os, 11)] = T1L - T1M;
|
| 688 |
io[WS(os, 19)] = T1L + T1M;
|
| 689 |
T1n = T1l - T1m; |
| 690 |
io[WS(os, 3)] = T1n - T1K;
|
| 691 |
io[WS(os, 7)] = T1n + T1K;
|
| 692 |
} |
| 693 |
{
|
| 694 |
E T1Z, T1X, T1Y, T1P, T21, T1N, T1O, T22, T20; |
| 695 |
T1Z = KP559016994 * (T1V - T1W); |
| 696 |
T1X = T1V + T1W; |
| 697 |
T1Y = FNMS(KP250000000, T1X, T1U); |
| 698 |
T1N = T1h - T1i; |
| 699 |
T1O = T1e - T1f; |
| 700 |
T1P = FNMS(KP587785252, T1O, KP951056516 * T1N); |
| 701 |
T21 = FMA(KP951056516, T1O, KP587785252 * T1N); |
| 702 |
ro[WS(os, 15)] = T1U + T1X;
|
| 703 |
T22 = T1Z + T1Y; |
| 704 |
ro[WS(os, 11)] = T21 + T22;
|
| 705 |
ro[WS(os, 19)] = T22 - T21;
|
| 706 |
T20 = T1Y - T1Z; |
| 707 |
ro[WS(os, 3)] = T1P + T20;
|
| 708 |
ro[WS(os, 7)] = T20 - T1P;
|
| 709 |
} |
| 710 |
} |
| 711 |
} |
| 712 |
} |
| 713 |
|
| 714 |
static const kdft_desc desc = { 20, "n1_20", {184, 24, 24, 0}, &GENUS, 0, 0, 0, 0 }; |
| 715 |
|
| 716 |
void X(codelet_n1_20) (planner *p) {
|
| 717 |
X(kdft_register) (p, n1_20, &desc); |
| 718 |
} |
| 719 |
|
| 720 |
#endif
|