To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_16.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (14.5 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:11 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 144 FP additions, 40 FP multiplications,
|
| 32 |
* (or, 104 additions, 0 multiplications, 40 fused multiply/add),
|
| 33 |
* 50 stack variables, 3 constants, and 64 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 40 |
DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
| 41 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 42 |
{
|
| 43 |
INT i; |
| 44 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { |
| 45 |
E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; |
| 46 |
E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; |
| 47 |
E T1U, T1A; |
| 48 |
{
|
| 49 |
E T3, TL, Ty, T1k, T6, T1j, TB, TM; |
| 50 |
{
|
| 51 |
E T1, T2, Tw, Tx; |
| 52 |
T1 = ri[0];
|
| 53 |
T2 = ri[WS(is, 8)];
|
| 54 |
T3 = T1 + T2; |
| 55 |
TL = T1 - T2; |
| 56 |
Tw = ii[0];
|
| 57 |
Tx = ii[WS(is, 8)];
|
| 58 |
Ty = Tw + Tx; |
| 59 |
T1k = Tw - Tx; |
| 60 |
} |
| 61 |
{
|
| 62 |
E T4, T5, Tz, TA; |
| 63 |
T4 = ri[WS(is, 4)];
|
| 64 |
T5 = ri[WS(is, 12)];
|
| 65 |
T6 = T4 + T5; |
| 66 |
T1j = T4 - T5; |
| 67 |
Tz = ii[WS(is, 4)];
|
| 68 |
TA = ii[WS(is, 12)];
|
| 69 |
TB = Tz + TA; |
| 70 |
TM = Tz - TA; |
| 71 |
} |
| 72 |
T7 = T3 + T6; |
| 73 |
T1R = T3 - T6; |
| 74 |
T25 = Ty - TB; |
| 75 |
TC = Ty + TB; |
| 76 |
TN = TL - TM; |
| 77 |
T1x = TL + TM; |
| 78 |
T1H = T1k - T1j; |
| 79 |
T1l = T1j + T1k; |
| 80 |
} |
| 81 |
{
|
| 82 |
E Tp, T1c, T1a, T20, Ts, T17, T1f, T21; |
| 83 |
{
|
| 84 |
E Tn, To, T18, T19; |
| 85 |
Tn = ri[WS(is, 15)];
|
| 86 |
To = ri[WS(is, 7)];
|
| 87 |
Tp = Tn + To; |
| 88 |
T1c = Tn - To; |
| 89 |
T18 = ii[WS(is, 15)];
|
| 90 |
T19 = ii[WS(is, 7)];
|
| 91 |
T1a = T18 - T19; |
| 92 |
T20 = T18 + T19; |
| 93 |
} |
| 94 |
{
|
| 95 |
E Tq, Tr, T1d, T1e; |
| 96 |
Tq = ri[WS(is, 3)];
|
| 97 |
Tr = ri[WS(is, 11)];
|
| 98 |
Ts = Tq + Tr; |
| 99 |
T17 = Tq - Tr; |
| 100 |
T1d = ii[WS(is, 3)];
|
| 101 |
T1e = ii[WS(is, 11)];
|
| 102 |
T1f = T1d - T1e; |
| 103 |
T21 = T1d + T1e; |
| 104 |
} |
| 105 |
Tt = Tp + Ts; |
| 106 |
T22 = T20 - T21; |
| 107 |
T2h = T20 + T21; |
| 108 |
T1b = T17 + T1a; |
| 109 |
T1g = T1c - T1f; |
| 110 |
T1E = T1a - T17; |
| 111 |
T1Z = Tp - Ts; |
| 112 |
T1D = T1c + T1f; |
| 113 |
} |
| 114 |
{
|
| 115 |
E Ta, TP, TF, TO, Td, TR, TI, TS; |
| 116 |
{
|
| 117 |
E T8, T9, TD, TE; |
| 118 |
T8 = ri[WS(is, 2)];
|
| 119 |
T9 = ri[WS(is, 10)];
|
| 120 |
Ta = T8 + T9; |
| 121 |
TP = T8 - T9; |
| 122 |
TD = ii[WS(is, 2)];
|
| 123 |
TE = ii[WS(is, 10)];
|
| 124 |
TF = TD + TE; |
| 125 |
TO = TD - TE; |
| 126 |
} |
| 127 |
{
|
| 128 |
E Tb, Tc, TG, TH; |
| 129 |
Tb = ri[WS(is, 14)];
|
| 130 |
Tc = ri[WS(is, 6)];
|
| 131 |
Td = Tb + Tc; |
| 132 |
TR = Tb - Tc; |
| 133 |
TG = ii[WS(is, 14)];
|
| 134 |
TH = ii[WS(is, 6)];
|
| 135 |
TI = TG + TH; |
| 136 |
TS = TG - TH; |
| 137 |
} |
| 138 |
Te = Ta + Td; |
| 139 |
T1S = TF - TI; |
| 140 |
T26 = Td - Ta; |
| 141 |
TJ = TF + TI; |
| 142 |
TQ = TO - TP; |
| 143 |
T1m = TR - TS; |
| 144 |
T1n = TP + TO; |
| 145 |
TT = TR + TS; |
| 146 |
} |
| 147 |
{
|
| 148 |
E Ti, T11, TZ, T1V, Tl, TW, T14, T1W; |
| 149 |
{
|
| 150 |
E Tg, Th, TX, TY; |
| 151 |
Tg = ri[WS(is, 1)];
|
| 152 |
Th = ri[WS(is, 9)];
|
| 153 |
Ti = Tg + Th; |
| 154 |
T11 = Tg - Th; |
| 155 |
TX = ii[WS(is, 1)];
|
| 156 |
TY = ii[WS(is, 9)];
|
| 157 |
TZ = TX - TY; |
| 158 |
T1V = TX + TY; |
| 159 |
} |
| 160 |
{
|
| 161 |
E Tj, Tk, T12, T13; |
| 162 |
Tj = ri[WS(is, 5)];
|
| 163 |
Tk = ri[WS(is, 13)];
|
| 164 |
Tl = Tj + Tk; |
| 165 |
TW = Tj - Tk; |
| 166 |
T12 = ii[WS(is, 5)];
|
| 167 |
T13 = ii[WS(is, 13)];
|
| 168 |
T14 = T12 - T13; |
| 169 |
T1W = T12 + T13; |
| 170 |
} |
| 171 |
Tm = Ti + Tl; |
| 172 |
T1X = T1V - T1W; |
| 173 |
T2g = T1V + T1W; |
| 174 |
T10 = TW + TZ; |
| 175 |
T15 = T11 - T14; |
| 176 |
T1B = TZ - TW; |
| 177 |
T1U = Ti - Tl; |
| 178 |
T1A = T11 + T14; |
| 179 |
} |
| 180 |
{
|
| 181 |
E Tf, Tu, T2j, T2k; |
| 182 |
Tf = T7 + Te; |
| 183 |
Tu = Tm + Tt; |
| 184 |
ro[WS(os, 8)] = Tf - Tu;
|
| 185 |
ro[0] = Tf + Tu;
|
| 186 |
T2j = TC + TJ; |
| 187 |
T2k = T2g + T2h; |
| 188 |
io[WS(os, 8)] = T2j - T2k;
|
| 189 |
io[0] = T2j + T2k;
|
| 190 |
} |
| 191 |
{
|
| 192 |
E Tv, TK, T2f, T2i; |
| 193 |
Tv = Tt - Tm; |
| 194 |
TK = TC - TJ; |
| 195 |
io[WS(os, 4)] = Tv + TK;
|
| 196 |
io[WS(os, 12)] = TK - Tv;
|
| 197 |
T2f = T7 - Te; |
| 198 |
T2i = T2g - T2h; |
| 199 |
ro[WS(os, 12)] = T2f - T2i;
|
| 200 |
ro[WS(os, 4)] = T2f + T2i;
|
| 201 |
} |
| 202 |
{
|
| 203 |
E T1T, T27, T24, T28, T1Y, T23; |
| 204 |
T1T = T1R + T1S; |
| 205 |
T27 = T25 - T26; |
| 206 |
T1Y = T1U + T1X; |
| 207 |
T23 = T1Z - T22; |
| 208 |
T24 = T1Y + T23; |
| 209 |
T28 = T23 - T1Y; |
| 210 |
ro[WS(os, 10)] = FNMS(KP707106781, T24, T1T);
|
| 211 |
io[WS(os, 6)] = FMA(KP707106781, T28, T27);
|
| 212 |
ro[WS(os, 2)] = FMA(KP707106781, T24, T1T);
|
| 213 |
io[WS(os, 14)] = FNMS(KP707106781, T28, T27);
|
| 214 |
} |
| 215 |
{
|
| 216 |
E T29, T2d, T2c, T2e, T2a, T2b; |
| 217 |
T29 = T1R - T1S; |
| 218 |
T2d = T26 + T25; |
| 219 |
T2a = T1X - T1U; |
| 220 |
T2b = T1Z + T22; |
| 221 |
T2c = T2a - T2b; |
| 222 |
T2e = T2a + T2b; |
| 223 |
ro[WS(os, 14)] = FNMS(KP707106781, T2c, T29);
|
| 224 |
io[WS(os, 2)] = FMA(KP707106781, T2e, T2d);
|
| 225 |
ro[WS(os, 6)] = FMA(KP707106781, T2c, T29);
|
| 226 |
io[WS(os, 10)] = FNMS(KP707106781, T2e, T2d);
|
| 227 |
} |
| 228 |
{
|
| 229 |
E TV, T1v, T1p, T1r, T1i, T1q, T1u, T1w, TU, T1o; |
| 230 |
TU = TQ - TT; |
| 231 |
TV = FMA(KP707106781, TU, TN); |
| 232 |
T1v = FNMS(KP707106781, TU, TN); |
| 233 |
T1o = T1m - T1n; |
| 234 |
T1p = FNMS(KP707106781, T1o, T1l); |
| 235 |
T1r = FMA(KP707106781, T1o, T1l); |
| 236 |
{
|
| 237 |
E T16, T1h, T1s, T1t; |
| 238 |
T16 = FMA(KP414213562, T15, T10); |
| 239 |
T1h = FNMS(KP414213562, T1g, T1b); |
| 240 |
T1i = T16 - T1h; |
| 241 |
T1q = T16 + T1h; |
| 242 |
T1s = FMA(KP414213562, T1b, T1g); |
| 243 |
T1t = FNMS(KP414213562, T10, T15); |
| 244 |
T1u = T1s - T1t; |
| 245 |
T1w = T1t + T1s; |
| 246 |
} |
| 247 |
ro[WS(os, 11)] = FNMS(KP923879532, T1i, TV);
|
| 248 |
io[WS(os, 11)] = FNMS(KP923879532, T1u, T1r);
|
| 249 |
ro[WS(os, 3)] = FMA(KP923879532, T1i, TV);
|
| 250 |
io[WS(os, 3)] = FMA(KP923879532, T1u, T1r);
|
| 251 |
io[WS(os, 7)] = FNMS(KP923879532, T1q, T1p);
|
| 252 |
ro[WS(os, 7)] = FNMS(KP923879532, T1w, T1v);
|
| 253 |
io[WS(os, 15)] = FMA(KP923879532, T1q, T1p);
|
| 254 |
ro[WS(os, 15)] = FMA(KP923879532, T1w, T1v);
|
| 255 |
} |
| 256 |
{
|
| 257 |
E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; |
| 258 |
T1y = T1n + T1m; |
| 259 |
T1z = FMA(KP707106781, T1y, T1x); |
| 260 |
T1L = FNMS(KP707106781, T1y, T1x); |
| 261 |
T1I = TQ + TT; |
| 262 |
T1J = FNMS(KP707106781, T1I, T1H); |
| 263 |
T1P = FMA(KP707106781, T1I, T1H); |
| 264 |
{
|
| 265 |
E T1C, T1F, T1M, T1N; |
| 266 |
T1C = FMA(KP414213562, T1B, T1A); |
| 267 |
T1F = FNMS(KP414213562, T1E, T1D); |
| 268 |
T1G = T1C + T1F; |
| 269 |
T1K = T1F - T1C; |
| 270 |
T1M = FNMS(KP414213562, T1A, T1B); |
| 271 |
T1N = FMA(KP414213562, T1D, T1E); |
| 272 |
T1O = T1M - T1N; |
| 273 |
T1Q = T1M + T1N; |
| 274 |
} |
| 275 |
ro[WS(os, 9)] = FNMS(KP923879532, T1G, T1z);
|
| 276 |
io[WS(os, 9)] = FNMS(KP923879532, T1Q, T1P);
|
| 277 |
ro[WS(os, 1)] = FMA(KP923879532, T1G, T1z);
|
| 278 |
io[WS(os, 1)] = FMA(KP923879532, T1Q, T1P);
|
| 279 |
io[WS(os, 13)] = FNMS(KP923879532, T1K, T1J);
|
| 280 |
ro[WS(os, 13)] = FNMS(KP923879532, T1O, T1L);
|
| 281 |
io[WS(os, 5)] = FMA(KP923879532, T1K, T1J);
|
| 282 |
ro[WS(os, 5)] = FMA(KP923879532, T1O, T1L);
|
| 283 |
} |
| 284 |
} |
| 285 |
} |
| 286 |
} |
| 287 |
|
| 288 |
static const kdft_desc desc = { 16, "n1_16", {104, 0, 40, 0}, &GENUS, 0, 0, 0, 0 }; |
| 289 |
|
| 290 |
void X(codelet_n1_16) (planner *p) {
|
| 291 |
X(kdft_register) (p, n1_16, &desc); |
| 292 |
} |
| 293 |
|
| 294 |
#else
|
| 295 |
|
| 296 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 16 -name n1_16 -include dft/scalar/n.h */
|
| 297 |
|
| 298 |
/*
|
| 299 |
* This function contains 144 FP additions, 24 FP multiplications,
|
| 300 |
* (or, 136 additions, 16 multiplications, 8 fused multiply/add),
|
| 301 |
* 50 stack variables, 3 constants, and 64 memory accesses
|
| 302 |
*/
|
| 303 |
#include "dft/scalar/n.h" |
| 304 |
|
| 305 |
static void n1_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 306 |
{
|
| 307 |
DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
| 308 |
DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
| 309 |
DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
| 310 |
{
|
| 311 |
INT i; |
| 312 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(64, is), MAKE_VOLATILE_STRIDE(64, os)) { |
| 313 |
E T7, T1R, T25, TC, TN, T1x, T1H, T1l, Tt, T22, T2h, T1b, T1g, T1E, T1Z; |
| 314 |
E T1D, Te, T1S, T26, TJ, TQ, T1m, T1n, TT, Tm, T1X, T2g, T10, T15, T1B; |
| 315 |
E T1U, T1A; |
| 316 |
{
|
| 317 |
E T3, TL, Ty, T1k, T6, T1j, TB, TM; |
| 318 |
{
|
| 319 |
E T1, T2, Tw, Tx; |
| 320 |
T1 = ri[0];
|
| 321 |
T2 = ri[WS(is, 8)];
|
| 322 |
T3 = T1 + T2; |
| 323 |
TL = T1 - T2; |
| 324 |
Tw = ii[0];
|
| 325 |
Tx = ii[WS(is, 8)];
|
| 326 |
Ty = Tw + Tx; |
| 327 |
T1k = Tw - Tx; |
| 328 |
} |
| 329 |
{
|
| 330 |
E T4, T5, Tz, TA; |
| 331 |
T4 = ri[WS(is, 4)];
|
| 332 |
T5 = ri[WS(is, 12)];
|
| 333 |
T6 = T4 + T5; |
| 334 |
T1j = T4 - T5; |
| 335 |
Tz = ii[WS(is, 4)];
|
| 336 |
TA = ii[WS(is, 12)];
|
| 337 |
TB = Tz + TA; |
| 338 |
TM = Tz - TA; |
| 339 |
} |
| 340 |
T7 = T3 + T6; |
| 341 |
T1R = T3 - T6; |
| 342 |
T25 = Ty - TB; |
| 343 |
TC = Ty + TB; |
| 344 |
TN = TL - TM; |
| 345 |
T1x = TL + TM; |
| 346 |
T1H = T1k - T1j; |
| 347 |
T1l = T1j + T1k; |
| 348 |
} |
| 349 |
{
|
| 350 |
E Tp, T17, T1f, T20, Ts, T1c, T1a, T21; |
| 351 |
{
|
| 352 |
E Tn, To, T1d, T1e; |
| 353 |
Tn = ri[WS(is, 15)];
|
| 354 |
To = ri[WS(is, 7)];
|
| 355 |
Tp = Tn + To; |
| 356 |
T17 = Tn - To; |
| 357 |
T1d = ii[WS(is, 15)];
|
| 358 |
T1e = ii[WS(is, 7)];
|
| 359 |
T1f = T1d - T1e; |
| 360 |
T20 = T1d + T1e; |
| 361 |
} |
| 362 |
{
|
| 363 |
E Tq, Tr, T18, T19; |
| 364 |
Tq = ri[WS(is, 3)];
|
| 365 |
Tr = ri[WS(is, 11)];
|
| 366 |
Ts = Tq + Tr; |
| 367 |
T1c = Tq - Tr; |
| 368 |
T18 = ii[WS(is, 3)];
|
| 369 |
T19 = ii[WS(is, 11)];
|
| 370 |
T1a = T18 - T19; |
| 371 |
T21 = T18 + T19; |
| 372 |
} |
| 373 |
Tt = Tp + Ts; |
| 374 |
T22 = T20 - T21; |
| 375 |
T2h = T20 + T21; |
| 376 |
T1b = T17 - T1a; |
| 377 |
T1g = T1c + T1f; |
| 378 |
T1E = T1f - T1c; |
| 379 |
T1Z = Tp - Ts; |
| 380 |
T1D = T17 + T1a; |
| 381 |
} |
| 382 |
{
|
| 383 |
E Ta, TP, TF, TO, Td, TR, TI, TS; |
| 384 |
{
|
| 385 |
E T8, T9, TD, TE; |
| 386 |
T8 = ri[WS(is, 2)];
|
| 387 |
T9 = ri[WS(is, 10)];
|
| 388 |
Ta = T8 + T9; |
| 389 |
TP = T8 - T9; |
| 390 |
TD = ii[WS(is, 2)];
|
| 391 |
TE = ii[WS(is, 10)];
|
| 392 |
TF = TD + TE; |
| 393 |
TO = TD - TE; |
| 394 |
} |
| 395 |
{
|
| 396 |
E Tb, Tc, TG, TH; |
| 397 |
Tb = ri[WS(is, 14)];
|
| 398 |
Tc = ri[WS(is, 6)];
|
| 399 |
Td = Tb + Tc; |
| 400 |
TR = Tb - Tc; |
| 401 |
TG = ii[WS(is, 14)];
|
| 402 |
TH = ii[WS(is, 6)];
|
| 403 |
TI = TG + TH; |
| 404 |
TS = TG - TH; |
| 405 |
} |
| 406 |
Te = Ta + Td; |
| 407 |
T1S = TF - TI; |
| 408 |
T26 = Td - Ta; |
| 409 |
TJ = TF + TI; |
| 410 |
TQ = TO - TP; |
| 411 |
T1m = TR - TS; |
| 412 |
T1n = TP + TO; |
| 413 |
TT = TR + TS; |
| 414 |
} |
| 415 |
{
|
| 416 |
E Ti, T11, TZ, T1V, Tl, TW, T14, T1W; |
| 417 |
{
|
| 418 |
E Tg, Th, TX, TY; |
| 419 |
Tg = ri[WS(is, 1)];
|
| 420 |
Th = ri[WS(is, 9)];
|
| 421 |
Ti = Tg + Th; |
| 422 |
T11 = Tg - Th; |
| 423 |
TX = ii[WS(is, 1)];
|
| 424 |
TY = ii[WS(is, 9)];
|
| 425 |
TZ = TX - TY; |
| 426 |
T1V = TX + TY; |
| 427 |
} |
| 428 |
{
|
| 429 |
E Tj, Tk, T12, T13; |
| 430 |
Tj = ri[WS(is, 5)];
|
| 431 |
Tk = ri[WS(is, 13)];
|
| 432 |
Tl = Tj + Tk; |
| 433 |
TW = Tj - Tk; |
| 434 |
T12 = ii[WS(is, 5)];
|
| 435 |
T13 = ii[WS(is, 13)];
|
| 436 |
T14 = T12 - T13; |
| 437 |
T1W = T12 + T13; |
| 438 |
} |
| 439 |
Tm = Ti + Tl; |
| 440 |
T1X = T1V - T1W; |
| 441 |
T2g = T1V + T1W; |
| 442 |
T10 = TW + TZ; |
| 443 |
T15 = T11 - T14; |
| 444 |
T1B = T11 + T14; |
| 445 |
T1U = Ti - Tl; |
| 446 |
T1A = TZ - TW; |
| 447 |
} |
| 448 |
{
|
| 449 |
E Tf, Tu, T2j, T2k; |
| 450 |
Tf = T7 + Te; |
| 451 |
Tu = Tm + Tt; |
| 452 |
ro[WS(os, 8)] = Tf - Tu;
|
| 453 |
ro[0] = Tf + Tu;
|
| 454 |
T2j = TC + TJ; |
| 455 |
T2k = T2g + T2h; |
| 456 |
io[WS(os, 8)] = T2j - T2k;
|
| 457 |
io[0] = T2j + T2k;
|
| 458 |
} |
| 459 |
{
|
| 460 |
E Tv, TK, T2f, T2i; |
| 461 |
Tv = Tt - Tm; |
| 462 |
TK = TC - TJ; |
| 463 |
io[WS(os, 4)] = Tv + TK;
|
| 464 |
io[WS(os, 12)] = TK - Tv;
|
| 465 |
T2f = T7 - Te; |
| 466 |
T2i = T2g - T2h; |
| 467 |
ro[WS(os, 12)] = T2f - T2i;
|
| 468 |
ro[WS(os, 4)] = T2f + T2i;
|
| 469 |
} |
| 470 |
{
|
| 471 |
E T1T, T27, T24, T28, T1Y, T23; |
| 472 |
T1T = T1R + T1S; |
| 473 |
T27 = T25 - T26; |
| 474 |
T1Y = T1U + T1X; |
| 475 |
T23 = T1Z - T22; |
| 476 |
T24 = KP707106781 * (T1Y + T23); |
| 477 |
T28 = KP707106781 * (T23 - T1Y); |
| 478 |
ro[WS(os, 10)] = T1T - T24;
|
| 479 |
io[WS(os, 6)] = T27 + T28;
|
| 480 |
ro[WS(os, 2)] = T1T + T24;
|
| 481 |
io[WS(os, 14)] = T27 - T28;
|
| 482 |
} |
| 483 |
{
|
| 484 |
E T29, T2d, T2c, T2e, T2a, T2b; |
| 485 |
T29 = T1R - T1S; |
| 486 |
T2d = T26 + T25; |
| 487 |
T2a = T1X - T1U; |
| 488 |
T2b = T1Z + T22; |
| 489 |
T2c = KP707106781 * (T2a - T2b); |
| 490 |
T2e = KP707106781 * (T2a + T2b); |
| 491 |
ro[WS(os, 14)] = T29 - T2c;
|
| 492 |
io[WS(os, 2)] = T2d + T2e;
|
| 493 |
ro[WS(os, 6)] = T29 + T2c;
|
| 494 |
io[WS(os, 10)] = T2d - T2e;
|
| 495 |
} |
| 496 |
{
|
| 497 |
E TV, T1r, T1p, T1v, T1i, T1q, T1u, T1w, TU, T1o; |
| 498 |
TU = KP707106781 * (TQ - TT); |
| 499 |
TV = TN + TU; |
| 500 |
T1r = TN - TU; |
| 501 |
T1o = KP707106781 * (T1m - T1n); |
| 502 |
T1p = T1l - T1o; |
| 503 |
T1v = T1l + T1o; |
| 504 |
{
|
| 505 |
E T16, T1h, T1s, T1t; |
| 506 |
T16 = FMA(KP923879532, T10, KP382683432 * T15); |
| 507 |
T1h = FNMS(KP923879532, T1g, KP382683432 * T1b); |
| 508 |
T1i = T16 + T1h; |
| 509 |
T1q = T1h - T16; |
| 510 |
T1s = FNMS(KP923879532, T15, KP382683432 * T10); |
| 511 |
T1t = FMA(KP382683432, T1g, KP923879532 * T1b); |
| 512 |
T1u = T1s - T1t; |
| 513 |
T1w = T1s + T1t; |
| 514 |
} |
| 515 |
ro[WS(os, 11)] = TV - T1i;
|
| 516 |
io[WS(os, 11)] = T1v - T1w;
|
| 517 |
ro[WS(os, 3)] = TV + T1i;
|
| 518 |
io[WS(os, 3)] = T1v + T1w;
|
| 519 |
io[WS(os, 15)] = T1p - T1q;
|
| 520 |
ro[WS(os, 15)] = T1r - T1u;
|
| 521 |
io[WS(os, 7)] = T1p + T1q;
|
| 522 |
ro[WS(os, 7)] = T1r + T1u;
|
| 523 |
} |
| 524 |
{
|
| 525 |
E T1z, T1L, T1J, T1P, T1G, T1K, T1O, T1Q, T1y, T1I; |
| 526 |
T1y = KP707106781 * (T1n + T1m); |
| 527 |
T1z = T1x + T1y; |
| 528 |
T1L = T1x - T1y; |
| 529 |
T1I = KP707106781 * (TQ + TT); |
| 530 |
T1J = T1H - T1I; |
| 531 |
T1P = T1H + T1I; |
| 532 |
{
|
| 533 |
E T1C, T1F, T1M, T1N; |
| 534 |
T1C = FMA(KP382683432, T1A, KP923879532 * T1B); |
| 535 |
T1F = FNMS(KP382683432, T1E, KP923879532 * T1D); |
| 536 |
T1G = T1C + T1F; |
| 537 |
T1K = T1F - T1C; |
| 538 |
T1M = FNMS(KP382683432, T1B, KP923879532 * T1A); |
| 539 |
T1N = FMA(KP923879532, T1E, KP382683432 * T1D); |
| 540 |
T1O = T1M - T1N; |
| 541 |
T1Q = T1M + T1N; |
| 542 |
} |
| 543 |
ro[WS(os, 9)] = T1z - T1G;
|
| 544 |
io[WS(os, 9)] = T1P - T1Q;
|
| 545 |
ro[WS(os, 1)] = T1z + T1G;
|
| 546 |
io[WS(os, 1)] = T1P + T1Q;
|
| 547 |
io[WS(os, 13)] = T1J - T1K;
|
| 548 |
ro[WS(os, 13)] = T1L - T1O;
|
| 549 |
io[WS(os, 5)] = T1J + T1K;
|
| 550 |
ro[WS(os, 5)] = T1L + T1O;
|
| 551 |
} |
| 552 |
} |
| 553 |
} |
| 554 |
} |
| 555 |
|
| 556 |
static const kdft_desc desc = { 16, "n1_16", {136, 16, 8, 0}, &GENUS, 0, 0, 0, 0 }; |
| 557 |
|
| 558 |
void X(codelet_n1_16) (planner *p) {
|
| 559 |
X(kdft_register) (p, n1_16, &desc); |
| 560 |
} |
| 561 |
|
| 562 |
#endif
|