To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_15.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (16.6 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:10 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name n1_15 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 156 FP additions, 84 FP multiplications,
|
| 32 |
* (or, 72 additions, 0 multiplications, 84 fused multiply/add),
|
| 33 |
* 69 stack variables, 6 constants, and 60 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 40 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 41 |
DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
| 42 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 43 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 44 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 45 |
{
|
| 46 |
INT i; |
| 47 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(60, is), MAKE_VOLATILE_STRIDE(60, os)) { |
| 48 |
E T5, T2l, Tx, TV, T1z, T1X, Tl, Tq, Tr, TN, TS, TT, T2c, T2d, T2n; |
| 49 |
E T1O, T1P, T1Z, T1l, T1q, T1B, TZ, T10, T11, Ta, Tf, Tg, TC, TH, TI; |
| 50 |
E T2f, T2g, T2m, T1R, T1S, T1Y, T1a, T1f, T1A, TW, TX, TY; |
| 51 |
{
|
| 52 |
E T1, T1v, T4, T1y, Tw, T1w, Tt, T1x; |
| 53 |
T1 = ri[0];
|
| 54 |
T1v = ii[0];
|
| 55 |
{
|
| 56 |
E T2, T3, Tu, Tv; |
| 57 |
T2 = ri[WS(is, 5)];
|
| 58 |
T3 = ri[WS(is, 10)];
|
| 59 |
T4 = T2 + T3; |
| 60 |
T1y = T3 - T2; |
| 61 |
Tu = ii[WS(is, 5)];
|
| 62 |
Tv = ii[WS(is, 10)];
|
| 63 |
Tw = Tu - Tv; |
| 64 |
T1w = Tu + Tv; |
| 65 |
} |
| 66 |
T5 = T1 + T4; |
| 67 |
T2l = T1v + T1w; |
| 68 |
Tt = FNMS(KP500000000, T4, T1); |
| 69 |
Tx = FNMS(KP866025403, Tw, Tt); |
| 70 |
TV = FMA(KP866025403, Tw, Tt); |
| 71 |
T1x = FNMS(KP500000000, T1w, T1v); |
| 72 |
T1z = FMA(KP866025403, T1y, T1x); |
| 73 |
T1X = FNMS(KP866025403, T1y, T1x); |
| 74 |
} |
| 75 |
{
|
| 76 |
E Th, Tk, TJ, T1k, T1h, T1i, TM, T1j, Tm, Tp, TO, T1p, T1m, T1n, TR; |
| 77 |
E T1o; |
| 78 |
{
|
| 79 |
E Ti, Tj, TK, TL; |
| 80 |
Th = ri[WS(is, 6)];
|
| 81 |
Ti = ri[WS(is, 11)];
|
| 82 |
Tj = ri[WS(is, 1)];
|
| 83 |
Tk = Ti + Tj; |
| 84 |
TJ = FNMS(KP500000000, Tk, Th); |
| 85 |
T1k = Tj - Ti; |
| 86 |
T1h = ii[WS(is, 6)];
|
| 87 |
TK = ii[WS(is, 11)];
|
| 88 |
TL = ii[WS(is, 1)];
|
| 89 |
T1i = TK + TL; |
| 90 |
TM = TK - TL; |
| 91 |
T1j = FNMS(KP500000000, T1i, T1h); |
| 92 |
} |
| 93 |
{
|
| 94 |
E Tn, To, TP, TQ; |
| 95 |
Tm = ri[WS(is, 9)];
|
| 96 |
Tn = ri[WS(is, 14)];
|
| 97 |
To = ri[WS(is, 4)];
|
| 98 |
Tp = Tn + To; |
| 99 |
TO = FNMS(KP500000000, Tp, Tm); |
| 100 |
T1p = To - Tn; |
| 101 |
T1m = ii[WS(is, 9)];
|
| 102 |
TP = ii[WS(is, 14)];
|
| 103 |
TQ = ii[WS(is, 4)];
|
| 104 |
T1n = TP + TQ; |
| 105 |
TR = TP - TQ; |
| 106 |
T1o = FNMS(KP500000000, T1n, T1m); |
| 107 |
} |
| 108 |
Tl = Th + Tk; |
| 109 |
Tq = Tm + Tp; |
| 110 |
Tr = Tl + Tq; |
| 111 |
TN = FNMS(KP866025403, TM, TJ); |
| 112 |
TS = FNMS(KP866025403, TR, TO); |
| 113 |
TT = TN + TS; |
| 114 |
T2c = T1h + T1i; |
| 115 |
T2d = T1m + T1n; |
| 116 |
T2n = T2c + T2d; |
| 117 |
T1O = FNMS(KP866025403, T1k, T1j); |
| 118 |
T1P = FNMS(KP866025403, T1p, T1o); |
| 119 |
T1Z = T1O + T1P; |
| 120 |
T1l = FMA(KP866025403, T1k, T1j); |
| 121 |
T1q = FMA(KP866025403, T1p, T1o); |
| 122 |
T1B = T1l + T1q; |
| 123 |
TZ = FMA(KP866025403, TM, TJ); |
| 124 |
T10 = FMA(KP866025403, TR, TO); |
| 125 |
T11 = TZ + T10; |
| 126 |
} |
| 127 |
{
|
| 128 |
E T6, T9, Ty, T19, T16, T17, TB, T18, Tb, Te, TD, T1e, T1b, T1c, TG; |
| 129 |
E T1d; |
| 130 |
{
|
| 131 |
E T7, T8, Tz, TA; |
| 132 |
T6 = ri[WS(is, 3)];
|
| 133 |
T7 = ri[WS(is, 8)];
|
| 134 |
T8 = ri[WS(is, 13)];
|
| 135 |
T9 = T7 + T8; |
| 136 |
Ty = FNMS(KP500000000, T9, T6); |
| 137 |
T19 = T8 - T7; |
| 138 |
T16 = ii[WS(is, 3)];
|
| 139 |
Tz = ii[WS(is, 8)];
|
| 140 |
TA = ii[WS(is, 13)];
|
| 141 |
T17 = Tz + TA; |
| 142 |
TB = Tz - TA; |
| 143 |
T18 = FNMS(KP500000000, T17, T16); |
| 144 |
} |
| 145 |
{
|
| 146 |
E Tc, Td, TE, TF; |
| 147 |
Tb = ri[WS(is, 12)];
|
| 148 |
Tc = ri[WS(is, 2)];
|
| 149 |
Td = ri[WS(is, 7)];
|
| 150 |
Te = Tc + Td; |
| 151 |
TD = FNMS(KP500000000, Te, Tb); |
| 152 |
T1e = Td - Tc; |
| 153 |
T1b = ii[WS(is, 12)];
|
| 154 |
TE = ii[WS(is, 2)];
|
| 155 |
TF = ii[WS(is, 7)];
|
| 156 |
T1c = TE + TF; |
| 157 |
TG = TE - TF; |
| 158 |
T1d = FNMS(KP500000000, T1c, T1b); |
| 159 |
} |
| 160 |
Ta = T6 + T9; |
| 161 |
Tf = Tb + Te; |
| 162 |
Tg = Ta + Tf; |
| 163 |
TC = FNMS(KP866025403, TB, Ty); |
| 164 |
TH = FNMS(KP866025403, TG, TD); |
| 165 |
TI = TC + TH; |
| 166 |
T2f = T16 + T17; |
| 167 |
T2g = T1b + T1c; |
| 168 |
T2m = T2f + T2g; |
| 169 |
T1R = FNMS(KP866025403, T19, T18); |
| 170 |
T1S = FNMS(KP866025403, T1e, T1d); |
| 171 |
T1Y = T1R + T1S; |
| 172 |
T1a = FMA(KP866025403, T19, T18); |
| 173 |
T1f = FMA(KP866025403, T1e, T1d); |
| 174 |
T1A = T1a + T1f; |
| 175 |
TW = FMA(KP866025403, TB, Ty); |
| 176 |
TX = FMA(KP866025403, TG, TD); |
| 177 |
TY = TW + TX; |
| 178 |
} |
| 179 |
{
|
| 180 |
E T2a, Ts, T29, T2i, T2k, T2e, T2h, T2j, T2b; |
| 181 |
T2a = Tg - Tr; |
| 182 |
Ts = Tg + Tr; |
| 183 |
T29 = FNMS(KP250000000, Ts, T5); |
| 184 |
T2e = T2c - T2d; |
| 185 |
T2h = T2f - T2g; |
| 186 |
T2i = FNMS(KP618033988, T2h, T2e); |
| 187 |
T2k = FMA(KP618033988, T2e, T2h); |
| 188 |
ro[0] = T5 + Ts;
|
| 189 |
T2j = FMA(KP559016994, T2a, T29); |
| 190 |
ro[WS(os, 9)] = FNMS(KP951056516, T2k, T2j);
|
| 191 |
ro[WS(os, 6)] = FMA(KP951056516, T2k, T2j);
|
| 192 |
T2b = FNMS(KP559016994, T2a, T29); |
| 193 |
ro[WS(os, 12)] = FNMS(KP951056516, T2i, T2b);
|
| 194 |
ro[WS(os, 3)] = FMA(KP951056516, T2i, T2b);
|
| 195 |
} |
| 196 |
{
|
| 197 |
E T2q, T2o, T2p, T2u, T2w, T2s, T2t, T2v, T2r; |
| 198 |
T2q = T2m - T2n; |
| 199 |
T2o = T2m + T2n; |
| 200 |
T2p = FNMS(KP250000000, T2o, T2l); |
| 201 |
T2s = Tl - Tq; |
| 202 |
T2t = Ta - Tf; |
| 203 |
T2u = FNMS(KP618033988, T2t, T2s); |
| 204 |
T2w = FMA(KP618033988, T2s, T2t); |
| 205 |
io[0] = T2l + T2o;
|
| 206 |
T2v = FMA(KP559016994, T2q, T2p); |
| 207 |
io[WS(os, 6)] = FNMS(KP951056516, T2w, T2v);
|
| 208 |
io[WS(os, 9)] = FMA(KP951056516, T2w, T2v);
|
| 209 |
T2r = FNMS(KP559016994, T2q, T2p); |
| 210 |
io[WS(os, 3)] = FNMS(KP951056516, T2u, T2r);
|
| 211 |
io[WS(os, 12)] = FMA(KP951056516, T2u, T2r);
|
| 212 |
} |
| 213 |
{
|
| 214 |
E T1M, TU, T1L, T1U, T1W, T1Q, T1T, T1V, T1N; |
| 215 |
T1M = TI - TT; |
| 216 |
TU = TI + TT; |
| 217 |
T1L = FNMS(KP250000000, TU, Tx); |
| 218 |
T1Q = T1O - T1P; |
| 219 |
T1T = T1R - T1S; |
| 220 |
T1U = FNMS(KP618033988, T1T, T1Q); |
| 221 |
T1W = FMA(KP618033988, T1Q, T1T); |
| 222 |
ro[WS(os, 5)] = Tx + TU;
|
| 223 |
T1V = FMA(KP559016994, T1M, T1L); |
| 224 |
ro[WS(os, 14)] = FNMS(KP951056516, T1W, T1V);
|
| 225 |
ro[WS(os, 11)] = FMA(KP951056516, T1W, T1V);
|
| 226 |
T1N = FNMS(KP559016994, T1M, T1L); |
| 227 |
ro[WS(os, 2)] = FNMS(KP951056516, T1U, T1N);
|
| 228 |
ro[WS(os, 8)] = FMA(KP951056516, T1U, T1N);
|
| 229 |
} |
| 230 |
{
|
| 231 |
E T22, T20, T21, T26, T28, T24, T25, T27, T23; |
| 232 |
T22 = T1Y - T1Z; |
| 233 |
T20 = T1Y + T1Z; |
| 234 |
T21 = FNMS(KP250000000, T20, T1X); |
| 235 |
T24 = TN - TS; |
| 236 |
T25 = TC - TH; |
| 237 |
T26 = FNMS(KP618033988, T25, T24); |
| 238 |
T28 = FMA(KP618033988, T24, T25); |
| 239 |
io[WS(os, 5)] = T1X + T20;
|
| 240 |
T27 = FMA(KP559016994, T22, T21); |
| 241 |
io[WS(os, 11)] = FNMS(KP951056516, T28, T27);
|
| 242 |
io[WS(os, 14)] = FMA(KP951056516, T28, T27);
|
| 243 |
T23 = FNMS(KP559016994, T22, T21); |
| 244 |
io[WS(os, 2)] = FMA(KP951056516, T26, T23);
|
| 245 |
io[WS(os, 8)] = FNMS(KP951056516, T26, T23);
|
| 246 |
} |
| 247 |
{
|
| 248 |
E T1E, T1C, T1D, T1I, T1K, T1G, T1H, T1J, T1F; |
| 249 |
T1E = T1A - T1B; |
| 250 |
T1C = T1A + T1B; |
| 251 |
T1D = FNMS(KP250000000, T1C, T1z); |
| 252 |
T1G = TW - TX; |
| 253 |
T1H = TZ - T10; |
| 254 |
T1I = FMA(KP618033988, T1H, T1G); |
| 255 |
T1K = FNMS(KP618033988, T1G, T1H); |
| 256 |
io[WS(os, 10)] = T1z + T1C;
|
| 257 |
T1J = FNMS(KP559016994, T1E, T1D); |
| 258 |
io[WS(os, 7)] = FMA(KP951056516, T1K, T1J);
|
| 259 |
io[WS(os, 13)] = FNMS(KP951056516, T1K, T1J);
|
| 260 |
T1F = FMA(KP559016994, T1E, T1D); |
| 261 |
io[WS(os, 1)] = FNMS(KP951056516, T1I, T1F);
|
| 262 |
io[WS(os, 4)] = FMA(KP951056516, T1I, T1F);
|
| 263 |
} |
| 264 |
{
|
| 265 |
E T14, T12, T13, T1s, T1u, T1g, T1r, T1t, T15; |
| 266 |
T14 = TY - T11; |
| 267 |
T12 = TY + T11; |
| 268 |
T13 = FNMS(KP250000000, T12, TV); |
| 269 |
T1g = T1a - T1f; |
| 270 |
T1r = T1l - T1q; |
| 271 |
T1s = FMA(KP618033988, T1r, T1g); |
| 272 |
T1u = FNMS(KP618033988, T1g, T1r); |
| 273 |
ro[WS(os, 10)] = TV + T12;
|
| 274 |
T1t = FNMS(KP559016994, T14, T13); |
| 275 |
ro[WS(os, 7)] = FNMS(KP951056516, T1u, T1t);
|
| 276 |
ro[WS(os, 13)] = FMA(KP951056516, T1u, T1t);
|
| 277 |
T15 = FMA(KP559016994, T14, T13); |
| 278 |
ro[WS(os, 4)] = FNMS(KP951056516, T1s, T15);
|
| 279 |
ro[WS(os, 1)] = FMA(KP951056516, T1s, T15);
|
| 280 |
} |
| 281 |
} |
| 282 |
} |
| 283 |
} |
| 284 |
|
| 285 |
static const kdft_desc desc = { 15, "n1_15", {72, 0, 84, 0}, &GENUS, 0, 0, 0, 0 }; |
| 286 |
|
| 287 |
void X(codelet_n1_15) (planner *p) {
|
| 288 |
X(kdft_register) (p, n1_15, &desc); |
| 289 |
} |
| 290 |
|
| 291 |
#else
|
| 292 |
|
| 293 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 15 -name n1_15 -include dft/scalar/n.h */
|
| 294 |
|
| 295 |
/*
|
| 296 |
* This function contains 156 FP additions, 56 FP multiplications,
|
| 297 |
* (or, 128 additions, 28 multiplications, 28 fused multiply/add),
|
| 298 |
* 69 stack variables, 6 constants, and 60 memory accesses
|
| 299 |
*/
|
| 300 |
#include "dft/scalar/n.h" |
| 301 |
|
| 302 |
static void n1_15(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 303 |
{
|
| 304 |
DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
| 305 |
DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
| 306 |
DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
| 307 |
DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
| 308 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 309 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 310 |
{
|
| 311 |
INT i; |
| 312 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(60, is), MAKE_VOLATILE_STRIDE(60, os)) { |
| 313 |
E T5, T2l, Tx, TV, T1C, T20, Tl, Tq, Tr, TN, TS, TT, T2c, T2d, T2n; |
| 314 |
E T1O, T1P, T22, T1l, T1q, T1w, TZ, T10, T11, Ta, Tf, Tg, TC, TH, TI; |
| 315 |
E T2f, T2g, T2m, T1R, T1S, T21, T1a, T1f, T1v, TW, TX, TY; |
| 316 |
{
|
| 317 |
E T1, T1z, T4, T1y, Tw, T1A, Tt, T1B; |
| 318 |
T1 = ri[0];
|
| 319 |
T1z = ii[0];
|
| 320 |
{
|
| 321 |
E T2, T3, Tu, Tv; |
| 322 |
T2 = ri[WS(is, 5)];
|
| 323 |
T3 = ri[WS(is, 10)];
|
| 324 |
T4 = T2 + T3; |
| 325 |
T1y = KP866025403 * (T3 - T2); |
| 326 |
Tu = ii[WS(is, 5)];
|
| 327 |
Tv = ii[WS(is, 10)];
|
| 328 |
Tw = KP866025403 * (Tu - Tv); |
| 329 |
T1A = Tu + Tv; |
| 330 |
} |
| 331 |
T5 = T1 + T4; |
| 332 |
T2l = T1z + T1A; |
| 333 |
Tt = FNMS(KP500000000, T4, T1); |
| 334 |
Tx = Tt - Tw; |
| 335 |
TV = Tt + Tw; |
| 336 |
T1B = FNMS(KP500000000, T1A, T1z); |
| 337 |
T1C = T1y + T1B; |
| 338 |
T20 = T1B - T1y; |
| 339 |
} |
| 340 |
{
|
| 341 |
E Th, Tk, TJ, T1h, T1i, T1j, TM, T1k, Tm, Tp, TO, T1m, T1n, T1o, TR; |
| 342 |
E T1p; |
| 343 |
{
|
| 344 |
E Ti, Tj, TK, TL; |
| 345 |
Th = ri[WS(is, 6)];
|
| 346 |
Ti = ri[WS(is, 11)];
|
| 347 |
Tj = ri[WS(is, 1)];
|
| 348 |
Tk = Ti + Tj; |
| 349 |
TJ = FNMS(KP500000000, Tk, Th); |
| 350 |
T1h = KP866025403 * (Tj - Ti); |
| 351 |
T1i = ii[WS(is, 6)];
|
| 352 |
TK = ii[WS(is, 11)];
|
| 353 |
TL = ii[WS(is, 1)];
|
| 354 |
T1j = TK + TL; |
| 355 |
TM = KP866025403 * (TK - TL); |
| 356 |
T1k = FNMS(KP500000000, T1j, T1i); |
| 357 |
} |
| 358 |
{
|
| 359 |
E Tn, To, TP, TQ; |
| 360 |
Tm = ri[WS(is, 9)];
|
| 361 |
Tn = ri[WS(is, 14)];
|
| 362 |
To = ri[WS(is, 4)];
|
| 363 |
Tp = Tn + To; |
| 364 |
TO = FNMS(KP500000000, Tp, Tm); |
| 365 |
T1m = KP866025403 * (To - Tn); |
| 366 |
T1n = ii[WS(is, 9)];
|
| 367 |
TP = ii[WS(is, 14)];
|
| 368 |
TQ = ii[WS(is, 4)];
|
| 369 |
T1o = TP + TQ; |
| 370 |
TR = KP866025403 * (TP - TQ); |
| 371 |
T1p = FNMS(KP500000000, T1o, T1n); |
| 372 |
} |
| 373 |
Tl = Th + Tk; |
| 374 |
Tq = Tm + Tp; |
| 375 |
Tr = Tl + Tq; |
| 376 |
TN = TJ - TM; |
| 377 |
TS = TO - TR; |
| 378 |
TT = TN + TS; |
| 379 |
T2c = T1i + T1j; |
| 380 |
T2d = T1n + T1o; |
| 381 |
T2n = T2c + T2d; |
| 382 |
T1O = T1k - T1h; |
| 383 |
T1P = T1p - T1m; |
| 384 |
T22 = T1O + T1P; |
| 385 |
T1l = T1h + T1k; |
| 386 |
T1q = T1m + T1p; |
| 387 |
T1w = T1l + T1q; |
| 388 |
TZ = TJ + TM; |
| 389 |
T10 = TO + TR; |
| 390 |
T11 = TZ + T10; |
| 391 |
} |
| 392 |
{
|
| 393 |
E T6, T9, Ty, T16, T17, T18, TB, T19, Tb, Te, TD, T1b, T1c, T1d, TG; |
| 394 |
E T1e; |
| 395 |
{
|
| 396 |
E T7, T8, Tz, TA; |
| 397 |
T6 = ri[WS(is, 3)];
|
| 398 |
T7 = ri[WS(is, 8)];
|
| 399 |
T8 = ri[WS(is, 13)];
|
| 400 |
T9 = T7 + T8; |
| 401 |
Ty = FNMS(KP500000000, T9, T6); |
| 402 |
T16 = KP866025403 * (T8 - T7); |
| 403 |
T17 = ii[WS(is, 3)];
|
| 404 |
Tz = ii[WS(is, 8)];
|
| 405 |
TA = ii[WS(is, 13)];
|
| 406 |
T18 = Tz + TA; |
| 407 |
TB = KP866025403 * (Tz - TA); |
| 408 |
T19 = FNMS(KP500000000, T18, T17); |
| 409 |
} |
| 410 |
{
|
| 411 |
E Tc, Td, TE, TF; |
| 412 |
Tb = ri[WS(is, 12)];
|
| 413 |
Tc = ri[WS(is, 2)];
|
| 414 |
Td = ri[WS(is, 7)];
|
| 415 |
Te = Tc + Td; |
| 416 |
TD = FNMS(KP500000000, Te, Tb); |
| 417 |
T1b = KP866025403 * (Td - Tc); |
| 418 |
T1c = ii[WS(is, 12)];
|
| 419 |
TE = ii[WS(is, 2)];
|
| 420 |
TF = ii[WS(is, 7)];
|
| 421 |
T1d = TE + TF; |
| 422 |
TG = KP866025403 * (TE - TF); |
| 423 |
T1e = FNMS(KP500000000, T1d, T1c); |
| 424 |
} |
| 425 |
Ta = T6 + T9; |
| 426 |
Tf = Tb + Te; |
| 427 |
Tg = Ta + Tf; |
| 428 |
TC = Ty - TB; |
| 429 |
TH = TD - TG; |
| 430 |
TI = TC + TH; |
| 431 |
T2f = T17 + T18; |
| 432 |
T2g = T1c + T1d; |
| 433 |
T2m = T2f + T2g; |
| 434 |
T1R = T19 - T16; |
| 435 |
T1S = T1e - T1b; |
| 436 |
T21 = T1R + T1S; |
| 437 |
T1a = T16 + T19; |
| 438 |
T1f = T1b + T1e; |
| 439 |
T1v = T1a + T1f; |
| 440 |
TW = Ty + TB; |
| 441 |
TX = TD + TG; |
| 442 |
TY = TW + TX; |
| 443 |
} |
| 444 |
{
|
| 445 |
E T2a, Ts, T29, T2i, T2k, T2e, T2h, T2j, T2b; |
| 446 |
T2a = KP559016994 * (Tg - Tr); |
| 447 |
Ts = Tg + Tr; |
| 448 |
T29 = FNMS(KP250000000, Ts, T5); |
| 449 |
T2e = T2c - T2d; |
| 450 |
T2h = T2f - T2g; |
| 451 |
T2i = FNMS(KP587785252, T2h, KP951056516 * T2e); |
| 452 |
T2k = FMA(KP951056516, T2h, KP587785252 * T2e); |
| 453 |
ro[0] = T5 + Ts;
|
| 454 |
T2j = T2a + T29; |
| 455 |
ro[WS(os, 9)] = T2j - T2k;
|
| 456 |
ro[WS(os, 6)] = T2j + T2k;
|
| 457 |
T2b = T29 - T2a; |
| 458 |
ro[WS(os, 12)] = T2b - T2i;
|
| 459 |
ro[WS(os, 3)] = T2b + T2i;
|
| 460 |
} |
| 461 |
{
|
| 462 |
E T2q, T2o, T2p, T2u, T2w, T2s, T2t, T2v, T2r; |
| 463 |
T2q = KP559016994 * (T2m - T2n); |
| 464 |
T2o = T2m + T2n; |
| 465 |
T2p = FNMS(KP250000000, T2o, T2l); |
| 466 |
T2s = Tl - Tq; |
| 467 |
T2t = Ta - Tf; |
| 468 |
T2u = FNMS(KP587785252, T2t, KP951056516 * T2s); |
| 469 |
T2w = FMA(KP951056516, T2t, KP587785252 * T2s); |
| 470 |
io[0] = T2l + T2o;
|
| 471 |
T2v = T2q + T2p; |
| 472 |
io[WS(os, 6)] = T2v - T2w;
|
| 473 |
io[WS(os, 9)] = T2w + T2v;
|
| 474 |
T2r = T2p - T2q; |
| 475 |
io[WS(os, 3)] = T2r - T2u;
|
| 476 |
io[WS(os, 12)] = T2u + T2r;
|
| 477 |
} |
| 478 |
{
|
| 479 |
E T1M, TU, T1L, T1U, T1W, T1Q, T1T, T1V, T1N; |
| 480 |
T1M = KP559016994 * (TI - TT); |
| 481 |
TU = TI + TT; |
| 482 |
T1L = FNMS(KP250000000, TU, Tx); |
| 483 |
T1Q = T1O - T1P; |
| 484 |
T1T = T1R - T1S; |
| 485 |
T1U = FNMS(KP587785252, T1T, KP951056516 * T1Q); |
| 486 |
T1W = FMA(KP951056516, T1T, KP587785252 * T1Q); |
| 487 |
ro[WS(os, 5)] = Tx + TU;
|
| 488 |
T1V = T1M + T1L; |
| 489 |
ro[WS(os, 14)] = T1V - T1W;
|
| 490 |
ro[WS(os, 11)] = T1V + T1W;
|
| 491 |
T1N = T1L - T1M; |
| 492 |
ro[WS(os, 2)] = T1N - T1U;
|
| 493 |
ro[WS(os, 8)] = T1N + T1U;
|
| 494 |
} |
| 495 |
{
|
| 496 |
E T25, T23, T24, T1Z, T28, T1X, T1Y, T27, T26; |
| 497 |
T25 = KP559016994 * (T21 - T22); |
| 498 |
T23 = T21 + T22; |
| 499 |
T24 = FNMS(KP250000000, T23, T20); |
| 500 |
T1X = TN - TS; |
| 501 |
T1Y = TC - TH; |
| 502 |
T1Z = FNMS(KP587785252, T1Y, KP951056516 * T1X); |
| 503 |
T28 = FMA(KP951056516, T1Y, KP587785252 * T1X); |
| 504 |
io[WS(os, 5)] = T20 + T23;
|
| 505 |
T27 = T25 + T24; |
| 506 |
io[WS(os, 11)] = T27 - T28;
|
| 507 |
io[WS(os, 14)] = T28 + T27;
|
| 508 |
T26 = T24 - T25; |
| 509 |
io[WS(os, 2)] = T1Z + T26;
|
| 510 |
io[WS(os, 8)] = T26 - T1Z;
|
| 511 |
} |
| 512 |
{
|
| 513 |
E T1x, T1D, T1E, T1I, T1J, T1G, T1H, T1K, T1F; |
| 514 |
T1x = KP559016994 * (T1v - T1w); |
| 515 |
T1D = T1v + T1w; |
| 516 |
T1E = FNMS(KP250000000, T1D, T1C); |
| 517 |
T1G = TW - TX; |
| 518 |
T1H = TZ - T10; |
| 519 |
T1I = FMA(KP951056516, T1G, KP587785252 * T1H); |
| 520 |
T1J = FNMS(KP587785252, T1G, KP951056516 * T1H); |
| 521 |
io[WS(os, 10)] = T1C + T1D;
|
| 522 |
T1K = T1E - T1x; |
| 523 |
io[WS(os, 7)] = T1J + T1K;
|
| 524 |
io[WS(os, 13)] = T1K - T1J;
|
| 525 |
T1F = T1x + T1E; |
| 526 |
io[WS(os, 1)] = T1F - T1I;
|
| 527 |
io[WS(os, 4)] = T1I + T1F;
|
| 528 |
} |
| 529 |
{
|
| 530 |
E T13, T12, T14, T1s, T1u, T1g, T1r, T1t, T15; |
| 531 |
T13 = KP559016994 * (TY - T11); |
| 532 |
T12 = TY + T11; |
| 533 |
T14 = FNMS(KP250000000, T12, TV); |
| 534 |
T1g = T1a - T1f; |
| 535 |
T1r = T1l - T1q; |
| 536 |
T1s = FMA(KP951056516, T1g, KP587785252 * T1r); |
| 537 |
T1u = FNMS(KP587785252, T1g, KP951056516 * T1r); |
| 538 |
ro[WS(os, 10)] = TV + T12;
|
| 539 |
T1t = T14 - T13; |
| 540 |
ro[WS(os, 7)] = T1t - T1u;
|
| 541 |
ro[WS(os, 13)] = T1t + T1u;
|
| 542 |
T15 = T13 + T14; |
| 543 |
ro[WS(os, 4)] = T15 - T1s;
|
| 544 |
ro[WS(os, 1)] = T15 + T1s;
|
| 545 |
} |
| 546 |
} |
| 547 |
} |
| 548 |
} |
| 549 |
|
| 550 |
static const kdft_desc desc = { 15, "n1_15", {128, 28, 28, 0}, &GENUS, 0, 0, 0, 0 }; |
| 551 |
|
| 552 |
void X(codelet_n1_15) (planner *p) {
|
| 553 |
X(kdft_register) (p, n1_15, &desc); |
| 554 |
} |
| 555 |
|
| 556 |
#endif
|