To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_14.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (15.6 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:10 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 148 FP additions, 84 FP multiplications,
|
| 32 |
* (or, 64 additions, 0 multiplications, 84 fused multiply/add),
|
| 33 |
* 67 stack variables, 6 constants, and 56 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
| 40 |
DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
| 41 |
DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
| 42 |
DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
| 43 |
DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
| 44 |
DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
| 45 |
{
|
| 46 |
INT i; |
| 47 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { |
| 48 |
E T3, Tp, T1b, T1x, T1i, T1L, T1M, T1j, T1k, T1K, Ta, To, Th, Tz, T14; |
| 49 |
E TZ, Ts, Ty, Tv, T1Z, T2c, T27, TI, T23, T24, TP, TW, T22, T1c, T1e; |
| 50 |
E T1d, T1f, T1s, T1n, T1A, T1G, T1D, T1H, T1U, T1P; |
| 51 |
{
|
| 52 |
E T1, T2, T19, T1a; |
| 53 |
T1 = ri[0];
|
| 54 |
T2 = ri[WS(is, 7)];
|
| 55 |
T3 = T1 - T2; |
| 56 |
Tp = T1 + T2; |
| 57 |
T19 = ii[0];
|
| 58 |
T1a = ii[WS(is, 7)];
|
| 59 |
T1b = T19 - T1a; |
| 60 |
T1x = T19 + T1a; |
| 61 |
} |
| 62 |
{
|
| 63 |
E T6, Tq, T9, Tr, Tn, Tx, Tk, Tw, Tg, Tu, Td, Tt; |
| 64 |
{
|
| 65 |
E T4, T5, Ti, Tj; |
| 66 |
T4 = ri[WS(is, 2)];
|
| 67 |
T5 = ri[WS(is, 9)];
|
| 68 |
T6 = T4 - T5; |
| 69 |
Tq = T4 + T5; |
| 70 |
{
|
| 71 |
E T7, T8, Tl, Tm; |
| 72 |
T7 = ri[WS(is, 12)];
|
| 73 |
T8 = ri[WS(is, 5)];
|
| 74 |
T9 = T7 - T8; |
| 75 |
Tr = T7 + T8; |
| 76 |
Tl = ri[WS(is, 8)];
|
| 77 |
Tm = ri[WS(is, 1)];
|
| 78 |
Tn = Tl - Tm; |
| 79 |
Tx = Tl + Tm; |
| 80 |
} |
| 81 |
Ti = ri[WS(is, 6)];
|
| 82 |
Tj = ri[WS(is, 13)];
|
| 83 |
Tk = Ti - Tj; |
| 84 |
Tw = Ti + Tj; |
| 85 |
{
|
| 86 |
E Te, Tf, Tb, Tc; |
| 87 |
Te = ri[WS(is, 10)];
|
| 88 |
Tf = ri[WS(is, 3)];
|
| 89 |
Tg = Te - Tf; |
| 90 |
Tu = Te + Tf; |
| 91 |
Tb = ri[WS(is, 4)];
|
| 92 |
Tc = ri[WS(is, 11)];
|
| 93 |
Td = Tb - Tc; |
| 94 |
Tt = Tb + Tc; |
| 95 |
} |
| 96 |
} |
| 97 |
T1i = Tn - Tk; |
| 98 |
T1L = Tt - Tu; |
| 99 |
T1M = Tr - Tq; |
| 100 |
T1j = Tg - Td; |
| 101 |
T1k = T9 - T6; |
| 102 |
T1K = Tw - Tx; |
| 103 |
Ta = T6 + T9; |
| 104 |
To = Tk + Tn; |
| 105 |
Th = Td + Tg; |
| 106 |
Tz = FNMS(KP356895867, Th, Ta); |
| 107 |
T14 = FNMS(KP356895867, To, Th); |
| 108 |
TZ = FNMS(KP356895867, Ta, To); |
| 109 |
Ts = Tq + Tr; |
| 110 |
Ty = Tw + Tx; |
| 111 |
Tv = Tt + Tu; |
| 112 |
T1Z = FNMS(KP356895867, Ts, Ty); |
| 113 |
T2c = FNMS(KP356895867, Ty, Tv); |
| 114 |
T27 = FNMS(KP356895867, Tv, Ts); |
| 115 |
} |
| 116 |
{
|
| 117 |
E TE, T1B, TH, T1C, TV, T1F, TS, T1E, TO, T1z, TL, T1y; |
| 118 |
{
|
| 119 |
E TC, TD, TQ, TR; |
| 120 |
TC = ii[WS(is, 4)];
|
| 121 |
TD = ii[WS(is, 11)];
|
| 122 |
TE = TC - TD; |
| 123 |
T1B = TC + TD; |
| 124 |
{
|
| 125 |
E TF, TG, TT, TU; |
| 126 |
TF = ii[WS(is, 10)];
|
| 127 |
TG = ii[WS(is, 3)];
|
| 128 |
TH = TF - TG; |
| 129 |
T1C = TF + TG; |
| 130 |
TT = ii[WS(is, 8)];
|
| 131 |
TU = ii[WS(is, 1)];
|
| 132 |
TV = TT - TU; |
| 133 |
T1F = TT + TU; |
| 134 |
} |
| 135 |
TQ = ii[WS(is, 6)];
|
| 136 |
TR = ii[WS(is, 13)];
|
| 137 |
TS = TQ - TR; |
| 138 |
T1E = TQ + TR; |
| 139 |
{
|
| 140 |
E TM, TN, TJ, TK; |
| 141 |
TM = ii[WS(is, 12)];
|
| 142 |
TN = ii[WS(is, 5)];
|
| 143 |
TO = TM - TN; |
| 144 |
T1z = TM + TN; |
| 145 |
TJ = ii[WS(is, 2)];
|
| 146 |
TK = ii[WS(is, 9)];
|
| 147 |
TL = TJ - TK; |
| 148 |
T1y = TJ + TK; |
| 149 |
} |
| 150 |
} |
| 151 |
TI = TE - TH; |
| 152 |
T23 = T1F - T1E; |
| 153 |
T24 = T1C - T1B; |
| 154 |
TP = TL - TO; |
| 155 |
TW = TS - TV; |
| 156 |
T22 = T1y - T1z; |
| 157 |
T1c = TL + TO; |
| 158 |
T1e = TS + TV; |
| 159 |
T1d = TE + TH; |
| 160 |
T1f = FNMS(KP356895867, T1e, T1d); |
| 161 |
T1s = FNMS(KP356895867, T1d, T1c); |
| 162 |
T1n = FNMS(KP356895867, T1c, T1e); |
| 163 |
T1A = T1y + T1z; |
| 164 |
T1G = T1E + T1F; |
| 165 |
T1D = T1B + T1C; |
| 166 |
T1H = FNMS(KP356895867, T1G, T1D); |
| 167 |
T1U = FNMS(KP356895867, T1D, T1A); |
| 168 |
T1P = FNMS(KP356895867, T1A, T1G); |
| 169 |
} |
| 170 |
ro[WS(os, 7)] = T3 + Ta + Th + To;
|
| 171 |
io[WS(os, 7)] = T1b + T1c + T1d + T1e;
|
| 172 |
ro[0] = Tp + Ts + Tv + Ty;
|
| 173 |
io[0] = T1x + T1A + T1D + T1G;
|
| 174 |
{
|
| 175 |
E TB, TY, TA, TX; |
| 176 |
TA = FNMS(KP692021471, Tz, To); |
| 177 |
TB = FNMS(KP900968867, TA, T3); |
| 178 |
TX = FMA(KP554958132, TW, TP); |
| 179 |
TY = FMA(KP801937735, TX, TI); |
| 180 |
ro[WS(os, 13)] = FNMS(KP974927912, TY, TB);
|
| 181 |
ro[WS(os, 1)] = FMA(KP974927912, TY, TB);
|
| 182 |
} |
| 183 |
{
|
| 184 |
E T1u, T1w, T1t, T1v; |
| 185 |
T1t = FNMS(KP692021471, T1s, T1e); |
| 186 |
T1u = FNMS(KP900968867, T1t, T1b); |
| 187 |
T1v = FMA(KP554958132, T1i, T1k); |
| 188 |
T1w = FMA(KP801937735, T1v, T1j); |
| 189 |
io[WS(os, 1)] = FMA(KP974927912, T1w, T1u);
|
| 190 |
io[WS(os, 13)] = FNMS(KP974927912, T1w, T1u);
|
| 191 |
} |
| 192 |
{
|
| 193 |
E T11, T13, T10, T12; |
| 194 |
T10 = FNMS(KP692021471, TZ, Th); |
| 195 |
T11 = FNMS(KP900968867, T10, T3); |
| 196 |
T12 = FMA(KP554958132, TI, TW); |
| 197 |
T13 = FNMS(KP801937735, T12, TP); |
| 198 |
ro[WS(os, 5)] = FNMS(KP974927912, T13, T11);
|
| 199 |
ro[WS(os, 9)] = FMA(KP974927912, T13, T11);
|
| 200 |
} |
| 201 |
{
|
| 202 |
E T1p, T1r, T1o, T1q; |
| 203 |
T1o = FNMS(KP692021471, T1n, T1d); |
| 204 |
T1p = FNMS(KP900968867, T1o, T1b); |
| 205 |
T1q = FMA(KP554958132, T1j, T1i); |
| 206 |
T1r = FNMS(KP801937735, T1q, T1k); |
| 207 |
io[WS(os, 5)] = FNMS(KP974927912, T1r, T1p);
|
| 208 |
io[WS(os, 9)] = FMA(KP974927912, T1r, T1p);
|
| 209 |
} |
| 210 |
{
|
| 211 |
E T16, T18, T15, T17; |
| 212 |
T15 = FNMS(KP692021471, T14, Ta); |
| 213 |
T16 = FNMS(KP900968867, T15, T3); |
| 214 |
T17 = FNMS(KP554958132, TP, TI); |
| 215 |
T18 = FNMS(KP801937735, T17, TW); |
| 216 |
ro[WS(os, 11)] = FNMS(KP974927912, T18, T16);
|
| 217 |
ro[WS(os, 3)] = FMA(KP974927912, T18, T16);
|
| 218 |
} |
| 219 |
{
|
| 220 |
E T1h, T1m, T1g, T1l; |
| 221 |
T1g = FNMS(KP692021471, T1f, T1c); |
| 222 |
T1h = FNMS(KP900968867, T1g, T1b); |
| 223 |
T1l = FNMS(KP554958132, T1k, T1j); |
| 224 |
T1m = FNMS(KP801937735, T1l, T1i); |
| 225 |
io[WS(os, 3)] = FMA(KP974927912, T1m, T1h);
|
| 226 |
io[WS(os, 11)] = FNMS(KP974927912, T1m, T1h);
|
| 227 |
} |
| 228 |
{
|
| 229 |
E T1J, T1O, T1I, T1N; |
| 230 |
T1I = FNMS(KP692021471, T1H, T1A); |
| 231 |
T1J = FNMS(KP900968867, T1I, T1x); |
| 232 |
T1N = FMA(KP554958132, T1M, T1L); |
| 233 |
T1O = FNMS(KP801937735, T1N, T1K); |
| 234 |
io[WS(os, 4)] = FMA(KP974927912, T1O, T1J);
|
| 235 |
io[WS(os, 10)] = FNMS(KP974927912, T1O, T1J);
|
| 236 |
} |
| 237 |
{
|
| 238 |
E T2e, T2g, T2d, T2f; |
| 239 |
T2d = FNMS(KP692021471, T2c, Ts); |
| 240 |
T2e = FNMS(KP900968867, T2d, Tp); |
| 241 |
T2f = FMA(KP554958132, T22, T24); |
| 242 |
T2g = FNMS(KP801937735, T2f, T23); |
| 243 |
ro[WS(os, 10)] = FNMS(KP974927912, T2g, T2e);
|
| 244 |
ro[WS(os, 4)] = FMA(KP974927912, T2g, T2e);
|
| 245 |
} |
| 246 |
{
|
| 247 |
E T1R, T1T, T1Q, T1S; |
| 248 |
T1Q = FNMS(KP692021471, T1P, T1D); |
| 249 |
T1R = FNMS(KP900968867, T1Q, T1x); |
| 250 |
T1S = FMA(KP554958132, T1L, T1K); |
| 251 |
T1T = FMA(KP801937735, T1S, T1M); |
| 252 |
io[WS(os, 2)] = FMA(KP974927912, T1T, T1R);
|
| 253 |
io[WS(os, 12)] = FNMS(KP974927912, T1T, T1R);
|
| 254 |
} |
| 255 |
{
|
| 256 |
E T21, T26, T20, T25; |
| 257 |
T20 = FNMS(KP692021471, T1Z, Tv); |
| 258 |
T21 = FNMS(KP900968867, T20, Tp); |
| 259 |
T25 = FMA(KP554958132, T24, T23); |
| 260 |
T26 = FMA(KP801937735, T25, T22); |
| 261 |
ro[WS(os, 12)] = FNMS(KP974927912, T26, T21);
|
| 262 |
ro[WS(os, 2)] = FMA(KP974927912, T26, T21);
|
| 263 |
} |
| 264 |
{
|
| 265 |
E T1W, T1Y, T1V, T1X; |
| 266 |
T1V = FNMS(KP692021471, T1U, T1G); |
| 267 |
T1W = FNMS(KP900968867, T1V, T1x); |
| 268 |
T1X = FNMS(KP554958132, T1K, T1M); |
| 269 |
T1Y = FNMS(KP801937735, T1X, T1L); |
| 270 |
io[WS(os, 6)] = FMA(KP974927912, T1Y, T1W);
|
| 271 |
io[WS(os, 8)] = FNMS(KP974927912, T1Y, T1W);
|
| 272 |
} |
| 273 |
{
|
| 274 |
E T29, T2b, T28, T2a; |
| 275 |
T28 = FNMS(KP692021471, T27, Ty); |
| 276 |
T29 = FNMS(KP900968867, T28, Tp); |
| 277 |
T2a = FNMS(KP554958132, T23, T22); |
| 278 |
T2b = FNMS(KP801937735, T2a, T24); |
| 279 |
ro[WS(os, 8)] = FNMS(KP974927912, T2b, T29);
|
| 280 |
ro[WS(os, 6)] = FMA(KP974927912, T2b, T29);
|
| 281 |
} |
| 282 |
} |
| 283 |
} |
| 284 |
} |
| 285 |
|
| 286 |
static const kdft_desc desc = { 14, "n1_14", {64, 0, 84, 0}, &GENUS, 0, 0, 0, 0 }; |
| 287 |
|
| 288 |
void X(codelet_n1_14) (planner *p) {
|
| 289 |
X(kdft_register) (p, n1_14, &desc); |
| 290 |
} |
| 291 |
|
| 292 |
#else
|
| 293 |
|
| 294 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 14 -name n1_14 -include dft/scalar/n.h */
|
| 295 |
|
| 296 |
/*
|
| 297 |
* This function contains 148 FP additions, 72 FP multiplications,
|
| 298 |
* (or, 100 additions, 24 multiplications, 48 fused multiply/add),
|
| 299 |
* 43 stack variables, 6 constants, and 56 memory accesses
|
| 300 |
*/
|
| 301 |
#include "dft/scalar/n.h" |
| 302 |
|
| 303 |
static void n1_14(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 304 |
{
|
| 305 |
DK(KP222520933, +0.222520933956314404288902564496794759466355569); |
| 306 |
DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
| 307 |
DK(KP623489801, +0.623489801858733530525004884004239810632274731); |
| 308 |
DK(KP433883739, +0.433883739117558120475768332848358754609990728); |
| 309 |
DK(KP781831482, +0.781831482468029808708444526674057750232334519); |
| 310 |
DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
| 311 |
{
|
| 312 |
INT i; |
| 313 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(56, is), MAKE_VOLATILE_STRIDE(56, os)) { |
| 314 |
E T3, Tp, T16, T1f, Ta, T1q, Ts, T10, TG, T1z, T19, T1i, Th, T1s, Tv; |
| 315 |
E T12, TU, T1B, T17, T1o, To, T1r, Ty, T11, TN, T1A, T18, T1l; |
| 316 |
{
|
| 317 |
E T1, T2, T14, T15; |
| 318 |
T1 = ri[0];
|
| 319 |
T2 = ri[WS(is, 7)];
|
| 320 |
T3 = T1 - T2; |
| 321 |
Tp = T1 + T2; |
| 322 |
T14 = ii[0];
|
| 323 |
T15 = ii[WS(is, 7)];
|
| 324 |
T16 = T14 - T15; |
| 325 |
T1f = T14 + T15; |
| 326 |
} |
| 327 |
{
|
| 328 |
E T6, Tq, T9, Tr; |
| 329 |
{
|
| 330 |
E T4, T5, T7, T8; |
| 331 |
T4 = ri[WS(is, 2)];
|
| 332 |
T5 = ri[WS(is, 9)];
|
| 333 |
T6 = T4 - T5; |
| 334 |
Tq = T4 + T5; |
| 335 |
T7 = ri[WS(is, 12)];
|
| 336 |
T8 = ri[WS(is, 5)];
|
| 337 |
T9 = T7 - T8; |
| 338 |
Tr = T7 + T8; |
| 339 |
} |
| 340 |
Ta = T6 + T9; |
| 341 |
T1q = Tr - Tq; |
| 342 |
Ts = Tq + Tr; |
| 343 |
T10 = T9 - T6; |
| 344 |
} |
| 345 |
{
|
| 346 |
E TC, T1g, TF, T1h; |
| 347 |
{
|
| 348 |
E TA, TB, TD, TE; |
| 349 |
TA = ii[WS(is, 2)];
|
| 350 |
TB = ii[WS(is, 9)];
|
| 351 |
TC = TA - TB; |
| 352 |
T1g = TA + TB; |
| 353 |
TD = ii[WS(is, 12)];
|
| 354 |
TE = ii[WS(is, 5)];
|
| 355 |
TF = TD - TE; |
| 356 |
T1h = TD + TE; |
| 357 |
} |
| 358 |
TG = TC - TF; |
| 359 |
T1z = T1g - T1h; |
| 360 |
T19 = TC + TF; |
| 361 |
T1i = T1g + T1h; |
| 362 |
} |
| 363 |
{
|
| 364 |
E Td, Tt, Tg, Tu; |
| 365 |
{
|
| 366 |
E Tb, Tc, Te, Tf; |
| 367 |
Tb = ri[WS(is, 4)];
|
| 368 |
Tc = ri[WS(is, 11)];
|
| 369 |
Td = Tb - Tc; |
| 370 |
Tt = Tb + Tc; |
| 371 |
Te = ri[WS(is, 10)];
|
| 372 |
Tf = ri[WS(is, 3)];
|
| 373 |
Tg = Te - Tf; |
| 374 |
Tu = Te + Tf; |
| 375 |
} |
| 376 |
Th = Td + Tg; |
| 377 |
T1s = Tt - Tu; |
| 378 |
Tv = Tt + Tu; |
| 379 |
T12 = Tg - Td; |
| 380 |
} |
| 381 |
{
|
| 382 |
E TQ, T1m, TT, T1n; |
| 383 |
{
|
| 384 |
E TO, TP, TR, TS; |
| 385 |
TO = ii[WS(is, 4)];
|
| 386 |
TP = ii[WS(is, 11)];
|
| 387 |
TQ = TO - TP; |
| 388 |
T1m = TO + TP; |
| 389 |
TR = ii[WS(is, 10)];
|
| 390 |
TS = ii[WS(is, 3)];
|
| 391 |
TT = TR - TS; |
| 392 |
T1n = TR + TS; |
| 393 |
} |
| 394 |
TU = TQ - TT; |
| 395 |
T1B = T1n - T1m; |
| 396 |
T17 = TQ + TT; |
| 397 |
T1o = T1m + T1n; |
| 398 |
} |
| 399 |
{
|
| 400 |
E Tk, Tw, Tn, Tx; |
| 401 |
{
|
| 402 |
E Ti, Tj, Tl, Tm; |
| 403 |
Ti = ri[WS(is, 6)];
|
| 404 |
Tj = ri[WS(is, 13)];
|
| 405 |
Tk = Ti - Tj; |
| 406 |
Tw = Ti + Tj; |
| 407 |
Tl = ri[WS(is, 8)];
|
| 408 |
Tm = ri[WS(is, 1)];
|
| 409 |
Tn = Tl - Tm; |
| 410 |
Tx = Tl + Tm; |
| 411 |
} |
| 412 |
To = Tk + Tn; |
| 413 |
T1r = Tw - Tx; |
| 414 |
Ty = Tw + Tx; |
| 415 |
T11 = Tn - Tk; |
| 416 |
} |
| 417 |
{
|
| 418 |
E TJ, T1j, TM, T1k; |
| 419 |
{
|
| 420 |
E TH, TI, TK, TL; |
| 421 |
TH = ii[WS(is, 6)];
|
| 422 |
TI = ii[WS(is, 13)];
|
| 423 |
TJ = TH - TI; |
| 424 |
T1j = TH + TI; |
| 425 |
TK = ii[WS(is, 8)];
|
| 426 |
TL = ii[WS(is, 1)];
|
| 427 |
TM = TK - TL; |
| 428 |
T1k = TK + TL; |
| 429 |
} |
| 430 |
TN = TJ - TM; |
| 431 |
T1A = T1k - T1j; |
| 432 |
T18 = TJ + TM; |
| 433 |
T1l = T1j + T1k; |
| 434 |
} |
| 435 |
ro[WS(os, 7)] = T3 + Ta + Th + To;
|
| 436 |
io[WS(os, 7)] = T16 + T19 + T17 + T18;
|
| 437 |
ro[0] = Tp + Ts + Tv + Ty;
|
| 438 |
io[0] = T1f + T1i + T1o + T1l;
|
| 439 |
{
|
| 440 |
E TV, Tz, T1e, T1d; |
| 441 |
TV = FNMS(KP781831482, TN, KP974927912 * TG) - (KP433883739 * TU); |
| 442 |
Tz = FMA(KP623489801, To, T3) + FNMA(KP900968867, Th, KP222520933 * Ta); |
| 443 |
ro[WS(os, 5)] = Tz - TV;
|
| 444 |
ro[WS(os, 9)] = Tz + TV;
|
| 445 |
T1e = FNMS(KP781831482, T11, KP974927912 * T10) - (KP433883739 * T12); |
| 446 |
T1d = FMA(KP623489801, T18, T16) + FNMA(KP900968867, T17, KP222520933 * T19); |
| 447 |
io[WS(os, 5)] = T1d - T1e;
|
| 448 |
io[WS(os, 9)] = T1e + T1d;
|
| 449 |
} |
| 450 |
{
|
| 451 |
E TX, TW, T1b, T1c; |
| 452 |
TX = FMA(KP781831482, TG, KP974927912 * TU) + (KP433883739 * TN); |
| 453 |
TW = FMA(KP623489801, Ta, T3) + FNMA(KP900968867, To, KP222520933 * Th); |
| 454 |
ro[WS(os, 13)] = TW - TX;
|
| 455 |
ro[WS(os, 1)] = TW + TX;
|
| 456 |
T1b = FMA(KP781831482, T10, KP974927912 * T12) + (KP433883739 * T11); |
| 457 |
T1c = FMA(KP623489801, T19, T16) + FNMA(KP900968867, T18, KP222520933 * T17); |
| 458 |
io[WS(os, 1)] = T1b + T1c;
|
| 459 |
io[WS(os, 13)] = T1c - T1b;
|
| 460 |
} |
| 461 |
{
|
| 462 |
E TZ, TY, T13, T1a; |
| 463 |
TZ = FMA(KP433883739, TG, KP974927912 * TN) - (KP781831482 * TU); |
| 464 |
TY = FMA(KP623489801, Th, T3) + FNMA(KP222520933, To, KP900968867 * Ta); |
| 465 |
ro[WS(os, 11)] = TY - TZ;
|
| 466 |
ro[WS(os, 3)] = TY + TZ;
|
| 467 |
T13 = FMA(KP433883739, T10, KP974927912 * T11) - (KP781831482 * T12); |
| 468 |
T1a = FMA(KP623489801, T17, T16) + FNMA(KP222520933, T18, KP900968867 * T19); |
| 469 |
io[WS(os, 3)] = T13 + T1a;
|
| 470 |
io[WS(os, 11)] = T1a - T13;
|
| 471 |
} |
| 472 |
{
|
| 473 |
E T1t, T1p, T1C, T1y; |
| 474 |
T1t = FNMS(KP433883739, T1r, KP781831482 * T1q) - (KP974927912 * T1s); |
| 475 |
T1p = FMA(KP623489801, T1i, T1f) + FNMA(KP900968867, T1l, KP222520933 * T1o); |
| 476 |
io[WS(os, 6)] = T1p - T1t;
|
| 477 |
io[WS(os, 8)] = T1t + T1p;
|
| 478 |
T1C = FNMS(KP433883739, T1A, KP781831482 * T1z) - (KP974927912 * T1B); |
| 479 |
T1y = FMA(KP623489801, Ts, Tp) + FNMA(KP900968867, Ty, KP222520933 * Tv); |
| 480 |
ro[WS(os, 6)] = T1y - T1C;
|
| 481 |
ro[WS(os, 8)] = T1y + T1C;
|
| 482 |
} |
| 483 |
{
|
| 484 |
E T1v, T1u, T1E, T1D; |
| 485 |
T1v = FMA(KP433883739, T1q, KP781831482 * T1s) - (KP974927912 * T1r); |
| 486 |
T1u = FMA(KP623489801, T1o, T1f) + FNMA(KP222520933, T1l, KP900968867 * T1i); |
| 487 |
io[WS(os, 4)] = T1u - T1v;
|
| 488 |
io[WS(os, 10)] = T1v + T1u;
|
| 489 |
T1E = FMA(KP433883739, T1z, KP781831482 * T1B) - (KP974927912 * T1A); |
| 490 |
T1D = FMA(KP623489801, Tv, Tp) + FNMA(KP222520933, Ty, KP900968867 * Ts); |
| 491 |
ro[WS(os, 4)] = T1D - T1E;
|
| 492 |
ro[WS(os, 10)] = T1D + T1E;
|
| 493 |
} |
| 494 |
{
|
| 495 |
E T1w, T1x, T1G, T1F; |
| 496 |
T1w = FMA(KP974927912, T1q, KP433883739 * T1s) + (KP781831482 * T1r); |
| 497 |
T1x = FMA(KP623489801, T1l, T1f) + FNMA(KP900968867, T1o, KP222520933 * T1i); |
| 498 |
io[WS(os, 2)] = T1w + T1x;
|
| 499 |
io[WS(os, 12)] = T1x - T1w;
|
| 500 |
T1G = FMA(KP974927912, T1z, KP433883739 * T1B) + (KP781831482 * T1A); |
| 501 |
T1F = FMA(KP623489801, Ty, Tp) + FNMA(KP900968867, Tv, KP222520933 * Ts); |
| 502 |
ro[WS(os, 12)] = T1F - T1G;
|
| 503 |
ro[WS(os, 2)] = T1F + T1G;
|
| 504 |
} |
| 505 |
} |
| 506 |
} |
| 507 |
} |
| 508 |
|
| 509 |
static const kdft_desc desc = { 14, "n1_14", {100, 24, 48, 0}, &GENUS, 0, 0, 0, 0 }; |
| 510 |
|
| 511 |
void X(codelet_n1_14) (planner *p) {
|
| 512 |
X(kdft_register) (p, n1_14, &desc); |
| 513 |
} |
| 514 |
|
| 515 |
#endif
|