To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
The primary repository for this project is hosted at https://github.com/sonic-visualiser/sv-dependency-builds .
This repository is a read-only copy which is updated automatically every hour.
root / src / fftw-3.3.8 / dft / scalar / codelets / n1_13.c @ 167:bd3cc4d1df30
History | View | Annotate | Download (20.8 KB)
| 1 |
/*
|
|---|---|
| 2 |
* Copyright (c) 2003, 2007-14 Matteo Frigo
|
| 3 |
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
|
| 4 |
*
|
| 5 |
* This program is free software; you can redistribute it and/or modify
|
| 6 |
* it under the terms of the GNU General Public License as published by
|
| 7 |
* the Free Software Foundation; either version 2 of the License, or
|
| 8 |
* (at your option) any later version.
|
| 9 |
*
|
| 10 |
* This program is distributed in the hope that it will be useful,
|
| 11 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 12 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 13 |
* GNU General Public License for more details.
|
| 14 |
*
|
| 15 |
* You should have received a copy of the GNU General Public License
|
| 16 |
* along with this program; if not, write to the Free Software
|
| 17 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
| 18 |
*
|
| 19 |
*/
|
| 20 |
|
| 21 |
/* This file was automatically generated --- DO NOT EDIT */
|
| 22 |
/* Generated on Thu May 24 08:04:10 EDT 2018 */
|
| 23 |
|
| 24 |
#include "dft/codelet-dft.h" |
| 25 |
|
| 26 |
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
|
| 27 |
|
| 28 |
/* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */
|
| 29 |
|
| 30 |
/*
|
| 31 |
* This function contains 176 FP additions, 114 FP multiplications,
|
| 32 |
* (or, 62 additions, 0 multiplications, 114 fused multiply/add),
|
| 33 |
* 76 stack variables, 25 constants, and 52 memory accesses
|
| 34 |
*/
|
| 35 |
#include "dft/scalar/n.h" |
| 36 |
|
| 37 |
static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 38 |
{
|
| 39 |
DK(KP875502302, +0.875502302409147941146295545768755143177842006); |
| 40 |
DK(KP520028571, +0.520028571888864619117130500499232802493238139); |
| 41 |
DK(KP968287244, +0.968287244361984016049539446938120421179794516); |
| 42 |
DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
| 43 |
DK(KP600477271, +0.600477271932665282925769253334763009352012849); |
| 44 |
DK(KP957805992, +0.957805992594665126462521754605754580515587217); |
| 45 |
DK(KP516520780, +0.516520780623489722840901288569017135705033622); |
| 46 |
DK(KP581704778, +0.581704778510515730456870384989698884939833902); |
| 47 |
DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
| 48 |
DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
| 49 |
DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
| 50 |
DK(KP301479260, +0.301479260047709873958013540496673347309208464); |
| 51 |
DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
| 52 |
DK(KP859542535, +0.859542535098774820163672132761689612766401925); |
| 53 |
DK(KP514918778, +0.514918778086315755491789696138117261566051239); |
| 54 |
DK(KP522026385, +0.522026385161275033714027226654165028300441940); |
| 55 |
DK(KP853480001, +0.853480001859823990758994934970528322872359049); |
| 56 |
DK(KP612264650, +0.612264650376756543746494474777125408779395514); |
| 57 |
DK(KP038632954, +0.038632954644348171955506895830342264440241080); |
| 58 |
DK(KP302775637, +0.302775637731994646559610633735247973125648287); |
| 59 |
DK(KP769338817, +0.769338817572980603471413688209101117038278899); |
| 60 |
DK(KP686558370, +0.686558370781754340655719594850823015421401653); |
| 61 |
DK(KP226109445, +0.226109445035782405468510155372505010481906348); |
| 62 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 63 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 64 |
{
|
| 65 |
INT i; |
| 66 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) { |
| 67 |
E T1, T1P, T2n, T2o, To, TH, T2h, T2k, TB, TE, Tw, TF, T2c, T2j, T1j; |
| 68 |
E T1m, T12, T1f, T21, T24, T1U, T27, T1d, T1g, T1Y, T25; |
| 69 |
T1 = ri[0];
|
| 70 |
T1P = ii[0];
|
| 71 |
{
|
| 72 |
E Tf, T2d, Tb, Ty, Tq, T6, Tx, Tr, Ti, Tt, Tl, Tu, Tm, T2e, Td; |
| 73 |
E Te, Tc, Tn; |
| 74 |
Td = ri[WS(is, 8)];
|
| 75 |
Te = ri[WS(is, 5)];
|
| 76 |
Tf = Td + Te; |
| 77 |
T2d = Td - Te; |
| 78 |
{
|
| 79 |
E T7, T8, T9, Ta; |
| 80 |
T7 = ri[WS(is, 12)];
|
| 81 |
T8 = ri[WS(is, 10)];
|
| 82 |
T9 = ri[WS(is, 4)];
|
| 83 |
Ta = T8 + T9; |
| 84 |
Tb = T7 + Ta; |
| 85 |
Ty = FMS(KP500000000, Ta, T7); |
| 86 |
Tq = T8 - T9; |
| 87 |
} |
| 88 |
{
|
| 89 |
E T2, T3, T4, T5; |
| 90 |
T2 = ri[WS(is, 1)];
|
| 91 |
T3 = ri[WS(is, 3)];
|
| 92 |
T4 = ri[WS(is, 9)];
|
| 93 |
T5 = T3 + T4; |
| 94 |
T6 = T2 + T5; |
| 95 |
Tx = FNMS(KP500000000, T5, T2); |
| 96 |
Tr = T4 - T3; |
| 97 |
} |
| 98 |
{
|
| 99 |
E Tg, Th, Tj, Tk; |
| 100 |
Tg = ri[WS(is, 11)];
|
| 101 |
Th = ri[WS(is, 6)];
|
| 102 |
Ti = Tg + Th; |
| 103 |
Tt = Tg - Th; |
| 104 |
Tj = ri[WS(is, 7)];
|
| 105 |
Tk = ri[WS(is, 2)];
|
| 106 |
Tl = Tj + Tk; |
| 107 |
Tu = Tj - Tk; |
| 108 |
} |
| 109 |
Tm = Ti + Tl; |
| 110 |
T2e = Tt + Tu; |
| 111 |
T2n = T6 - Tb; |
| 112 |
T2o = T2d + T2e; |
| 113 |
Tc = T6 + Tb; |
| 114 |
Tn = Tf + Tm; |
| 115 |
To = Tc + Tn; |
| 116 |
TH = Tc - Tn; |
| 117 |
{
|
| 118 |
E T2f, T2g, Tz, TA; |
| 119 |
T2f = FNMS(KP500000000, T2e, T2d); |
| 120 |
T2g = Tr + Tq; |
| 121 |
T2h = FMA(KP866025403, T2g, T2f); |
| 122 |
T2k = FNMS(KP866025403, T2g, T2f); |
| 123 |
Tz = Tx - Ty; |
| 124 |
TA = FNMS(KP500000000, Tm, Tf); |
| 125 |
TB = Tz + TA; |
| 126 |
TE = Tz - TA; |
| 127 |
} |
| 128 |
{
|
| 129 |
E Ts, Tv, T2a, T2b; |
| 130 |
Ts = Tq - Tr; |
| 131 |
Tv = Tt - Tu; |
| 132 |
Tw = Ts + Tv; |
| 133 |
TF = Ts - Tv; |
| 134 |
T2a = Tx + Ty; |
| 135 |
T2b = Ti - Tl; |
| 136 |
T2c = FMA(KP866025403, T2b, T2a); |
| 137 |
T2j = FNMS(KP866025403, T2b, T2a); |
| 138 |
} |
| 139 |
} |
| 140 |
{
|
| 141 |
E TM, T1R, T10, T1l, T18, TX, T1k, T15, TP, T1a, TS, T1b, TT, T1S, TK; |
| 142 |
E TL, TU, T11; |
| 143 |
TK = ii[WS(is, 8)];
|
| 144 |
TL = ii[WS(is, 5)];
|
| 145 |
TM = TK - TL; |
| 146 |
T1R = TK + TL; |
| 147 |
{
|
| 148 |
E T16, TY, TZ, T17; |
| 149 |
T16 = ii[WS(is, 12)];
|
| 150 |
TY = ii[WS(is, 10)];
|
| 151 |
TZ = ii[WS(is, 4)];
|
| 152 |
T17 = TY + TZ; |
| 153 |
T10 = TY - TZ; |
| 154 |
T1l = T16 + T17; |
| 155 |
T18 = FMS(KP500000000, T17, T16); |
| 156 |
} |
| 157 |
{
|
| 158 |
E T13, TV, TW, T14; |
| 159 |
T13 = ii[WS(is, 1)];
|
| 160 |
TV = ii[WS(is, 9)];
|
| 161 |
TW = ii[WS(is, 3)];
|
| 162 |
T14 = TW + TV; |
| 163 |
TX = TV - TW; |
| 164 |
T1k = T13 + T14; |
| 165 |
T15 = FNMS(KP500000000, T14, T13); |
| 166 |
} |
| 167 |
{
|
| 168 |
E TN, TO, TQ, TR; |
| 169 |
TN = ii[WS(is, 11)];
|
| 170 |
TO = ii[WS(is, 6)];
|
| 171 |
TP = TN - TO; |
| 172 |
T1a = TN + TO; |
| 173 |
TQ = ii[WS(is, 7)];
|
| 174 |
TR = ii[WS(is, 2)];
|
| 175 |
TS = TQ - TR; |
| 176 |
T1b = TQ + TR; |
| 177 |
} |
| 178 |
TT = TP + TS; |
| 179 |
T1S = T1a + T1b; |
| 180 |
T1j = TM + TT; |
| 181 |
T1m = T1k - T1l; |
| 182 |
TU = FNMS(KP500000000, TT, TM); |
| 183 |
T11 = TX + T10; |
| 184 |
T12 = FMA(KP866025403, T11, TU); |
| 185 |
T1f = FNMS(KP866025403, T11, TU); |
| 186 |
{
|
| 187 |
E T1Z, T20, T1Q, T1T; |
| 188 |
T1Z = T15 - T18; |
| 189 |
T20 = FNMS(KP500000000, T1S, T1R); |
| 190 |
T21 = T1Z + T20; |
| 191 |
T24 = T1Z - T20; |
| 192 |
T1Q = T1k + T1l; |
| 193 |
T1T = T1R + T1S; |
| 194 |
T1U = T1Q + T1T; |
| 195 |
T27 = T1Q - T1T; |
| 196 |
} |
| 197 |
{
|
| 198 |
E T19, T1c, T1W, T1X; |
| 199 |
T19 = T15 + T18; |
| 200 |
T1c = T1a - T1b; |
| 201 |
T1d = FMA(KP866025403, T1c, T19); |
| 202 |
T1g = FNMS(KP866025403, T1c, T19); |
| 203 |
T1W = T10 - TX; |
| 204 |
T1X = TP - TS; |
| 205 |
T1Y = T1W + T1X; |
| 206 |
T25 = T1W - T1X; |
| 207 |
} |
| 208 |
} |
| 209 |
ro[0] = T1 + To;
|
| 210 |
io[0] = T1P + T1U;
|
| 211 |
{
|
| 212 |
E T1z, T1J, T1G, T1H, T1w, T1I, T1n, T1i, T1s, T1E, TD, T1D, TI, T1r, T1e; |
| 213 |
E T1h; |
| 214 |
{
|
| 215 |
E T1x, T1y, T1u, T1v; |
| 216 |
T1x = FNMS(KP226109445, Tw, TB); |
| 217 |
T1y = FMA(KP686558370, TE, TF); |
| 218 |
T1z = FNMS(KP769338817, T1y, T1x); |
| 219 |
T1J = FMA(KP769338817, T1y, T1x); |
| 220 |
T1G = FMA(KP302775637, T1j, T1m); |
| 221 |
T1u = FNMS(KP038632954, T12, T1d); |
| 222 |
T1v = FNMS(KP612264650, T1f, T1g); |
| 223 |
T1H = FNMS(KP853480001, T1v, T1u); |
| 224 |
T1w = FMA(KP853480001, T1v, T1u); |
| 225 |
T1I = FNMS(KP522026385, T1H, T1G); |
| 226 |
} |
| 227 |
T1n = FNMS(KP302775637, T1m, T1j); |
| 228 |
T1e = FMA(KP038632954, T1d, T12); |
| 229 |
T1h = FMA(KP612264650, T1g, T1f); |
| 230 |
T1i = FNMS(KP853480001, T1h, T1e); |
| 231 |
T1s = FNMS(KP522026385, T1i, T1n); |
| 232 |
T1E = FMA(KP853480001, T1h, T1e); |
| 233 |
{
|
| 234 |
E TG, T1q, Tp, TC, T1p; |
| 235 |
TG = FNMS(KP514918778, TF, TE); |
| 236 |
T1q = FNMS(KP859542535, TG, TH); |
| 237 |
Tp = FNMS(KP083333333, To, T1); |
| 238 |
TC = FMA(KP301479260, TB, Tw); |
| 239 |
T1p = FNMS(KP251768516, TC, Tp); |
| 240 |
TD = FMA(KP503537032, TC, Tp); |
| 241 |
T1D = FNMS(KP300462606, T1q, T1p); |
| 242 |
TI = FMA(KP581704778, TH, TG); |
| 243 |
T1r = FMA(KP300462606, T1q, T1p); |
| 244 |
} |
| 245 |
{
|
| 246 |
E TJ, T1o, T1L, T1M; |
| 247 |
TJ = FMA(KP516520780, TI, TD); |
| 248 |
T1o = FMA(KP957805992, T1n, T1i); |
| 249 |
ro[WS(os, 1)] = FNMS(KP600477271, T1o, TJ);
|
| 250 |
ro[WS(os, 12)] = FMA(KP600477271, T1o, TJ);
|
| 251 |
{
|
| 252 |
E T1t, T1A, T1N, T1O; |
| 253 |
T1t = FNMS(KP575140729, T1s, T1r); |
| 254 |
T1A = FMA(KP968287244, T1z, T1w); |
| 255 |
ro[WS(os, 9)] = FNMS(KP520028571, T1A, T1t);
|
| 256 |
ro[WS(os, 3)] = FMA(KP520028571, T1A, T1t);
|
| 257 |
T1N = FNMS(KP516520780, TI, TD); |
| 258 |
T1O = FMA(KP957805992, T1G, T1H); |
| 259 |
ro[WS(os, 8)] = FNMS(KP600477271, T1O, T1N);
|
| 260 |
ro[WS(os, 5)] = FMA(KP600477271, T1O, T1N);
|
| 261 |
} |
| 262 |
T1L = FNMS(KP520028571, T1E, T1D); |
| 263 |
T1M = FNMS(KP875502302, T1J, T1I); |
| 264 |
ro[WS(os, 11)] = FNMS(KP575140729, T1M, T1L);
|
| 265 |
ro[WS(os, 6)] = FMA(KP575140729, T1M, T1L);
|
| 266 |
{
|
| 267 |
E T1F, T1K, T1B, T1C; |
| 268 |
T1F = FMA(KP520028571, T1E, T1D); |
| 269 |
T1K = FMA(KP875502302, T1J, T1I); |
| 270 |
ro[WS(os, 7)] = FNMS(KP575140729, T1K, T1F);
|
| 271 |
ro[WS(os, 2)] = FMA(KP575140729, T1K, T1F);
|
| 272 |
T1B = FMA(KP575140729, T1s, T1r); |
| 273 |
T1C = FNMS(KP968287244, T1z, T1w); |
| 274 |
ro[WS(os, 10)] = FNMS(KP520028571, T1C, T1B);
|
| 275 |
ro[WS(os, 4)] = FMA(KP520028571, T1C, T1B);
|
| 276 |
} |
| 277 |
} |
| 278 |
} |
| 279 |
{
|
| 280 |
E T2F, T2N, T2v, T2u, T2A, T2K, T2p, T2m, T2C, T2M, T23, T2J, T28, T2z, T2i; |
| 281 |
E T2l; |
| 282 |
{
|
| 283 |
E T2D, T2E, T2s, T2t; |
| 284 |
T2D = FNMS(KP226109445, T1Y, T21); |
| 285 |
T2E = FMA(KP686558370, T24, T25); |
| 286 |
T2F = FNMS(KP769338817, T2E, T2D); |
| 287 |
T2N = FMA(KP769338817, T2E, T2D); |
| 288 |
T2v = FNMS(KP302775637, T2n, T2o); |
| 289 |
T2s = FMA(KP038632954, T2c, T2h); |
| 290 |
T2t = FMA(KP612264650, T2j, T2k); |
| 291 |
T2u = FNMS(KP853480001, T2t, T2s); |
| 292 |
T2A = FNMS(KP522026385, T2u, T2v); |
| 293 |
T2K = FMA(KP853480001, T2t, T2s); |
| 294 |
} |
| 295 |
T2p = FMA(KP302775637, T2o, T2n); |
| 296 |
T2i = FNMS(KP038632954, T2h, T2c); |
| 297 |
T2l = FNMS(KP612264650, T2k, T2j); |
| 298 |
T2m = FNMS(KP853480001, T2l, T2i); |
| 299 |
T2C = FMA(KP853480001, T2l, T2i); |
| 300 |
T2M = FNMS(KP522026385, T2m, T2p); |
| 301 |
{
|
| 302 |
E T26, T2y, T1V, T22, T2x; |
| 303 |
T26 = FNMS(KP514918778, T25, T24); |
| 304 |
T2y = FNMS(KP859542535, T26, T27); |
| 305 |
T1V = FNMS(KP083333333, T1U, T1P); |
| 306 |
T22 = FMA(KP301479260, T21, T1Y); |
| 307 |
T2x = FNMS(KP251768516, T22, T1V); |
| 308 |
T23 = FMA(KP503537032, T22, T1V); |
| 309 |
T2J = FNMS(KP300462606, T2y, T2x); |
| 310 |
T28 = FMA(KP581704778, T27, T26); |
| 311 |
T2z = FMA(KP300462606, T2y, T2x); |
| 312 |
} |
| 313 |
{
|
| 314 |
E T29, T2q, T2L, T2O; |
| 315 |
T29 = FNMS(KP516520780, T28, T23); |
| 316 |
T2q = FMA(KP957805992, T2p, T2m); |
| 317 |
io[WS(os, 5)] = FNMS(KP600477271, T2q, T29);
|
| 318 |
io[WS(os, 8)] = FMA(KP600477271, T2q, T29);
|
| 319 |
{
|
| 320 |
E T2r, T2w, T2P, T2Q; |
| 321 |
T2r = FMA(KP516520780, T28, T23); |
| 322 |
T2w = FMA(KP957805992, T2v, T2u); |
| 323 |
io[WS(os, 1)] = FMA(KP600477271, T2w, T2r);
|
| 324 |
io[WS(os, 12)] = FNMS(KP600477271, T2w, T2r);
|
| 325 |
T2P = FMA(KP520028571, T2K, T2J); |
| 326 |
T2Q = FMA(KP875502302, T2N, T2M); |
| 327 |
io[WS(os, 6)] = FNMS(KP575140729, T2Q, T2P);
|
| 328 |
io[WS(os, 11)] = FMA(KP575140729, T2Q, T2P);
|
| 329 |
} |
| 330 |
T2L = FNMS(KP520028571, T2K, T2J); |
| 331 |
T2O = FNMS(KP875502302, T2N, T2M); |
| 332 |
io[WS(os, 2)] = FNMS(KP575140729, T2O, T2L);
|
| 333 |
io[WS(os, 7)] = FMA(KP575140729, T2O, T2L);
|
| 334 |
{
|
| 335 |
E T2H, T2I, T2B, T2G; |
| 336 |
T2H = FNMS(KP575140729, T2A, T2z); |
| 337 |
T2I = FMA(KP968287244, T2F, T2C); |
| 338 |
io[WS(os, 4)] = FNMS(KP520028571, T2I, T2H);
|
| 339 |
io[WS(os, 10)] = FMA(KP520028571, T2I, T2H);
|
| 340 |
T2B = FMA(KP575140729, T2A, T2z); |
| 341 |
T2G = FNMS(KP968287244, T2F, T2C); |
| 342 |
io[WS(os, 3)] = FNMS(KP520028571, T2G, T2B);
|
| 343 |
io[WS(os, 9)] = FMA(KP520028571, T2G, T2B);
|
| 344 |
} |
| 345 |
} |
| 346 |
} |
| 347 |
} |
| 348 |
} |
| 349 |
} |
| 350 |
|
| 351 |
static const kdft_desc desc = { 13, "n1_13", {62, 0, 114, 0}, &GENUS, 0, 0, 0, 0 }; |
| 352 |
|
| 353 |
void X(codelet_n1_13) (planner *p) {
|
| 354 |
X(kdft_register) (p, n1_13, &desc); |
| 355 |
} |
| 356 |
|
| 357 |
#else
|
| 358 |
|
| 359 |
/* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 13 -name n1_13 -include dft/scalar/n.h */
|
| 360 |
|
| 361 |
/*
|
| 362 |
* This function contains 176 FP additions, 68 FP multiplications,
|
| 363 |
* (or, 138 additions, 30 multiplications, 38 fused multiply/add),
|
| 364 |
* 71 stack variables, 20 constants, and 52 memory accesses
|
| 365 |
*/
|
| 366 |
#include "dft/scalar/n.h" |
| 367 |
|
| 368 |
static void n1_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
| 369 |
{
|
| 370 |
DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
| 371 |
DK(KP083333333, +0.083333333333333333333333333333333333333333333); |
| 372 |
DK(KP251768516, +0.251768516431883313623436926934233488546674281); |
| 373 |
DK(KP075902986, +0.075902986037193865983102897245103540356428373); |
| 374 |
DK(KP132983124, +0.132983124607418643793760531921092974399165133); |
| 375 |
DK(KP258260390, +0.258260390311744861420450644284508567852516811); |
| 376 |
DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
| 377 |
DK(KP300238635, +0.300238635966332641462884626667381504676006424); |
| 378 |
DK(KP011599105, +0.011599105605768290721655456654083252189827041); |
| 379 |
DK(KP156891391, +0.156891391051584611046832726756003269660212636); |
| 380 |
DK(KP256247671, +0.256247671582936600958684654061725059144125175); |
| 381 |
DK(KP174138601, +0.174138601152135905005660794929264742616964676); |
| 382 |
DK(KP575140729, +0.575140729474003121368385547455453388461001608); |
| 383 |
DK(KP503537032, +0.503537032863766627246873853868466977093348562); |
| 384 |
DK(KP113854479, +0.113854479055790798974654345867655310534642560); |
| 385 |
DK(KP265966249, +0.265966249214837287587521063842185948798330267); |
| 386 |
DK(KP387390585, +0.387390585467617292130675966426762851778775217); |
| 387 |
DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
| 388 |
DK(KP300462606, +0.300462606288665774426601772289207995520941381); |
| 389 |
DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
| 390 |
{
|
| 391 |
INT i; |
| 392 |
for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(52, is), MAKE_VOLATILE_STRIDE(52, os)) { |
| 393 |
E T1, T1q, Tt, Tu, To, T22, T20, T24, TF, TH, TA, TI, T1X, T25, T2a; |
| 394 |
E T2d, T18, T1n, T2k, T2n, T1l, T1r, T1f, T1o, T2h, T2m; |
| 395 |
T1 = ri[0];
|
| 396 |
T1q = ii[0];
|
| 397 |
{
|
| 398 |
E Tf, Tp, Tb, TC, Tx, T6, TB, Tw, Ti, Tq, Tl, Tr, Tm, Ts, Td; |
| 399 |
E Te, Tc, Tn; |
| 400 |
Td = ri[WS(is, 8)];
|
| 401 |
Te = ri[WS(is, 5)];
|
| 402 |
Tf = Td + Te; |
| 403 |
Tp = Td - Te; |
| 404 |
{
|
| 405 |
E T7, T8, T9, Ta; |
| 406 |
T7 = ri[WS(is, 12)];
|
| 407 |
T8 = ri[WS(is, 10)];
|
| 408 |
T9 = ri[WS(is, 4)];
|
| 409 |
Ta = T8 + T9; |
| 410 |
Tb = T7 + Ta; |
| 411 |
TC = T8 - T9; |
| 412 |
Tx = FNMS(KP500000000, Ta, T7); |
| 413 |
} |
| 414 |
{
|
| 415 |
E T2, T3, T4, T5; |
| 416 |
T2 = ri[WS(is, 1)];
|
| 417 |
T3 = ri[WS(is, 3)];
|
| 418 |
T4 = ri[WS(is, 9)];
|
| 419 |
T5 = T3 + T4; |
| 420 |
T6 = T2 + T5; |
| 421 |
TB = T3 - T4; |
| 422 |
Tw = FNMS(KP500000000, T5, T2); |
| 423 |
} |
| 424 |
{
|
| 425 |
E Tg, Th, Tj, Tk; |
| 426 |
Tg = ri[WS(is, 11)];
|
| 427 |
Th = ri[WS(is, 6)];
|
| 428 |
Ti = Tg + Th; |
| 429 |
Tq = Tg - Th; |
| 430 |
Tj = ri[WS(is, 7)];
|
| 431 |
Tk = ri[WS(is, 2)];
|
| 432 |
Tl = Tj + Tk; |
| 433 |
Tr = Tj - Tk; |
| 434 |
} |
| 435 |
Tm = Ti + Tl; |
| 436 |
Ts = Tq + Tr; |
| 437 |
Tt = Tp + Ts; |
| 438 |
Tu = T6 - Tb; |
| 439 |
Tc = T6 + Tb; |
| 440 |
Tn = Tf + Tm; |
| 441 |
To = Tc + Tn; |
| 442 |
T22 = KP300462606 * (Tc - Tn); |
| 443 |
{
|
| 444 |
E T1Y, T1Z, TD, TE; |
| 445 |
T1Y = TB + TC; |
| 446 |
T1Z = Tq - Tr; |
| 447 |
T20 = T1Y - T1Z; |
| 448 |
T24 = T1Y + T1Z; |
| 449 |
TD = KP866025403 * (TB - TC); |
| 450 |
TE = FNMS(KP500000000, Ts, Tp); |
| 451 |
TF = TD - TE; |
| 452 |
TH = TD + TE; |
| 453 |
} |
| 454 |
{
|
| 455 |
E Ty, Tz, T1V, T1W; |
| 456 |
Ty = Tw - Tx; |
| 457 |
Tz = KP866025403 * (Ti - Tl); |
| 458 |
TA = Ty + Tz; |
| 459 |
TI = Ty - Tz; |
| 460 |
T1V = Tw + Tx; |
| 461 |
T1W = FNMS(KP500000000, Tm, Tf); |
| 462 |
T1X = T1V - T1W; |
| 463 |
T25 = T1V + T1W; |
| 464 |
} |
| 465 |
} |
| 466 |
{
|
| 467 |
E TZ, T2b, TV, T1i, T1a, TQ, T1h, T19, T12, T1d, T15, T1c, T16, T2c, TX; |
| 468 |
E TY, TW, T17; |
| 469 |
TX = ii[WS(is, 8)];
|
| 470 |
TY = ii[WS(is, 5)];
|
| 471 |
TZ = TX + TY; |
| 472 |
T2b = TX - TY; |
| 473 |
{
|
| 474 |
E TR, TS, TT, TU; |
| 475 |
TR = ii[WS(is, 12)];
|
| 476 |
TS = ii[WS(is, 10)];
|
| 477 |
TT = ii[WS(is, 4)];
|
| 478 |
TU = TS + TT; |
| 479 |
TV = FNMS(KP500000000, TU, TR); |
| 480 |
T1i = TR + TU; |
| 481 |
T1a = TS - TT; |
| 482 |
} |
| 483 |
{
|
| 484 |
E TM, TN, TO, TP; |
| 485 |
TM = ii[WS(is, 1)];
|
| 486 |
TN = ii[WS(is, 3)];
|
| 487 |
TO = ii[WS(is, 9)];
|
| 488 |
TP = TN + TO; |
| 489 |
TQ = FNMS(KP500000000, TP, TM); |
| 490 |
T1h = TM + TP; |
| 491 |
T19 = TN - TO; |
| 492 |
} |
| 493 |
{
|
| 494 |
E T10, T11, T13, T14; |
| 495 |
T10 = ii[WS(is, 11)];
|
| 496 |
T11 = ii[WS(is, 6)];
|
| 497 |
T12 = T10 + T11; |
| 498 |
T1d = T10 - T11; |
| 499 |
T13 = ii[WS(is, 7)];
|
| 500 |
T14 = ii[WS(is, 2)];
|
| 501 |
T15 = T13 + T14; |
| 502 |
T1c = T13 - T14; |
| 503 |
} |
| 504 |
T16 = T12 + T15; |
| 505 |
T2c = T1d + T1c; |
| 506 |
T2a = T1h - T1i; |
| 507 |
T2d = T2b + T2c; |
| 508 |
TW = TQ + TV; |
| 509 |
T17 = FNMS(KP500000000, T16, TZ); |
| 510 |
T18 = TW - T17; |
| 511 |
T1n = TW + T17; |
| 512 |
{
|
| 513 |
E T2i, T2j, T1j, T1k; |
| 514 |
T2i = TQ - TV; |
| 515 |
T2j = KP866025403 * (T15 - T12); |
| 516 |
T2k = T2i + T2j; |
| 517 |
T2n = T2i - T2j; |
| 518 |
T1j = T1h + T1i; |
| 519 |
T1k = TZ + T16; |
| 520 |
T1l = KP300462606 * (T1j - T1k); |
| 521 |
T1r = T1j + T1k; |
| 522 |
} |
| 523 |
{
|
| 524 |
E T1b, T1e, T2f, T2g; |
| 525 |
T1b = T19 + T1a; |
| 526 |
T1e = T1c - T1d; |
| 527 |
T1f = T1b + T1e; |
| 528 |
T1o = T1e - T1b; |
| 529 |
T2f = FNMS(KP500000000, T2c, T2b); |
| 530 |
T2g = KP866025403 * (T1a - T19); |
| 531 |
T2h = T2f - T2g; |
| 532 |
T2m = T2g + T2f; |
| 533 |
} |
| 534 |
} |
| 535 |
ro[0] = T1 + To;
|
| 536 |
io[0] = T1q + T1r;
|
| 537 |
{
|
| 538 |
E T1D, T1N, T1y, T1x, T1E, T1O, Tv, TK, T1J, T1Q, T1m, T1R, T1t, T1I, TG; |
| 539 |
E TJ; |
| 540 |
{
|
| 541 |
E T1B, T1C, T1v, T1w; |
| 542 |
T1B = FMA(KP387390585, T1f, KP265966249 * T18); |
| 543 |
T1C = FMA(KP113854479, T1o, KP503537032 * T1n); |
| 544 |
T1D = T1B + T1C; |
| 545 |
T1N = T1C - T1B; |
| 546 |
T1y = FMA(KP575140729, Tu, KP174138601 * Tt); |
| 547 |
T1v = FNMS(KP156891391, TH, KP256247671 * TI); |
| 548 |
T1w = FMA(KP011599105, TF, KP300238635 * TA); |
| 549 |
T1x = T1v - T1w; |
| 550 |
T1E = T1y + T1x; |
| 551 |
T1O = KP1_732050807 * (T1v + T1w); |
| 552 |
} |
| 553 |
Tv = FNMS(KP174138601, Tu, KP575140729 * Tt); |
| 554 |
TG = FNMS(KP300238635, TF, KP011599105 * TA); |
| 555 |
TJ = FMA(KP256247671, TH, KP156891391 * TI); |
| 556 |
TK = TG - TJ; |
| 557 |
T1J = KP1_732050807 * (TJ + TG); |
| 558 |
T1Q = Tv - TK; |
| 559 |
{
|
| 560 |
E T1g, T1H, T1p, T1s, T1G; |
| 561 |
T1g = FNMS(KP132983124, T1f, KP258260390 * T18); |
| 562 |
T1H = T1l - T1g; |
| 563 |
T1p = FNMS(KP251768516, T1o, KP075902986 * T1n); |
| 564 |
T1s = FNMS(KP083333333, T1r, T1q); |
| 565 |
T1G = T1s - T1p; |
| 566 |
T1m = FMA(KP2_000000000, T1g, T1l); |
| 567 |
T1R = T1H + T1G; |
| 568 |
T1t = FMA(KP2_000000000, T1p, T1s); |
| 569 |
T1I = T1G - T1H; |
| 570 |
} |
| 571 |
{
|
| 572 |
E TL, T1u, T1P, T1S; |
| 573 |
TL = FMA(KP2_000000000, TK, Tv); |
| 574 |
T1u = T1m + T1t; |
| 575 |
io[WS(os, 1)] = TL + T1u;
|
| 576 |
io[WS(os, 12)] = T1u - TL;
|
| 577 |
{
|
| 578 |
E T1z, T1A, T1T, T1U; |
| 579 |
T1z = FMS(KP2_000000000, T1x, T1y); |
| 580 |
T1A = T1t - T1m; |
| 581 |
io[WS(os, 5)] = T1z + T1A;
|
| 582 |
io[WS(os, 8)] = T1A - T1z;
|
| 583 |
T1T = T1R - T1Q; |
| 584 |
T1U = T1O + T1N; |
| 585 |
io[WS(os, 4)] = T1T - T1U;
|
| 586 |
io[WS(os, 10)] = T1U + T1T;
|
| 587 |
} |
| 588 |
T1P = T1N - T1O; |
| 589 |
T1S = T1Q + T1R; |
| 590 |
io[WS(os, 3)] = T1P + T1S;
|
| 591 |
io[WS(os, 9)] = T1S - T1P;
|
| 592 |
{
|
| 593 |
E T1L, T1M, T1F, T1K; |
| 594 |
T1L = T1J + T1I; |
| 595 |
T1M = T1E + T1D; |
| 596 |
io[WS(os, 6)] = T1L - T1M;
|
| 597 |
io[WS(os, 11)] = T1M + T1L;
|
| 598 |
T1F = T1D - T1E; |
| 599 |
T1K = T1I - T1J; |
| 600 |
io[WS(os, 2)] = T1F + T1K;
|
| 601 |
io[WS(os, 7)] = T1K - T1F;
|
| 602 |
} |
| 603 |
} |
| 604 |
} |
| 605 |
{
|
| 606 |
E T2y, T2I, T2J, T2K, T2B, T2L, T2e, T2p, T2u, T2G, T23, T2F, T28, T2t, T2l; |
| 607 |
E T2o; |
| 608 |
{
|
| 609 |
E T2w, T2x, T2z, T2A; |
| 610 |
T2w = FMA(KP387390585, T20, KP265966249 * T1X); |
| 611 |
T2x = FNMS(KP503537032, T25, KP113854479 * T24); |
| 612 |
T2y = T2w + T2x; |
| 613 |
T2I = T2w - T2x; |
| 614 |
T2J = FMA(KP575140729, T2a, KP174138601 * T2d); |
| 615 |
T2z = FNMS(KP300238635, T2n, KP011599105 * T2m); |
| 616 |
T2A = FNMS(KP156891391, T2h, KP256247671 * T2k); |
| 617 |
T2K = T2z + T2A; |
| 618 |
T2B = KP1_732050807 * (T2z - T2A); |
| 619 |
T2L = T2J + T2K; |
| 620 |
} |
| 621 |
T2e = FNMS(KP575140729, T2d, KP174138601 * T2a); |
| 622 |
T2l = FMA(KP256247671, T2h, KP156891391 * T2k); |
| 623 |
T2o = FMA(KP300238635, T2m, KP011599105 * T2n); |
| 624 |
T2p = T2l - T2o; |
| 625 |
T2u = T2e - T2p; |
| 626 |
T2G = KP1_732050807 * (T2o + T2l); |
| 627 |
{
|
| 628 |
E T21, T2r, T26, T27, T2s; |
| 629 |
T21 = FNMS(KP132983124, T20, KP258260390 * T1X); |
| 630 |
T2r = T22 - T21; |
| 631 |
T26 = FMA(KP251768516, T24, KP075902986 * T25); |
| 632 |
T27 = FNMS(KP083333333, To, T1); |
| 633 |
T2s = T27 - T26; |
| 634 |
T23 = FMA(KP2_000000000, T21, T22); |
| 635 |
T2F = T2s - T2r; |
| 636 |
T28 = FMA(KP2_000000000, T26, T27); |
| 637 |
T2t = T2r + T2s; |
| 638 |
} |
| 639 |
{
|
| 640 |
E T29, T2q, T2N, T2O; |
| 641 |
T29 = T23 + T28; |
| 642 |
T2q = FMA(KP2_000000000, T2p, T2e); |
| 643 |
ro[WS(os, 12)] = T29 - T2q;
|
| 644 |
ro[WS(os, 1)] = T29 + T2q;
|
| 645 |
{
|
| 646 |
E T2v, T2C, T2P, T2Q; |
| 647 |
T2v = T2t - T2u; |
| 648 |
T2C = T2y - T2B; |
| 649 |
ro[WS(os, 10)] = T2v - T2C;
|
| 650 |
ro[WS(os, 4)] = T2v + T2C;
|
| 651 |
T2P = T28 - T23; |
| 652 |
T2Q = FMS(KP2_000000000, T2K, T2J); |
| 653 |
ro[WS(os, 5)] = T2P - T2Q;
|
| 654 |
ro[WS(os, 8)] = T2P + T2Q;
|
| 655 |
} |
| 656 |
T2N = T2F - T2G; |
| 657 |
T2O = T2L - T2I; |
| 658 |
ro[WS(os, 11)] = T2N - T2O;
|
| 659 |
ro[WS(os, 6)] = T2N + T2O;
|
| 660 |
{
|
| 661 |
E T2H, T2M, T2D, T2E; |
| 662 |
T2H = T2F + T2G; |
| 663 |
T2M = T2I + T2L; |
| 664 |
ro[WS(os, 7)] = T2H - T2M;
|
| 665 |
ro[WS(os, 2)] = T2H + T2M;
|
| 666 |
T2D = T2t + T2u; |
| 667 |
T2E = T2y + T2B; |
| 668 |
ro[WS(os, 3)] = T2D - T2E;
|
| 669 |
ro[WS(os, 9)] = T2D + T2E;
|
| 670 |
} |
| 671 |
} |
| 672 |
} |
| 673 |
} |
| 674 |
} |
| 675 |
} |
| 676 |
|
| 677 |
static const kdft_desc desc = { 13, "n1_13", {138, 30, 38, 0}, &GENUS, 0, 0, 0, 0 }; |
| 678 |
|
| 679 |
void X(codelet_n1_13) (planner *p) {
|
| 680 |
X(kdft_register) (p, n1_13, &desc); |
| 681 |
} |
| 682 |
|
| 683 |
#endif
|