To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Tag: | Revision:

root / CollidoscopeApp / include / PGranular.h @ 4:ab6db404403a

History | View | Annotate | Download (13.6 KB)

1
#pragma once
2

    
3
#include <array>
4
#include <type_traits>
5

    
6
#include "EnvASR.h"
7

    
8

    
9
namespace collidoscope {
10

    
11
using std::size_t;
12

    
13
/**
14
 * The very core of the Collidoscope audio engine: the granular synthesizer.
15
 * Based on SuperCollider's TGrains and Ross Becina's "Implementing Real-Time Granular Synthesis" 
16
 *
17
 * It implements Collidoscope's selection-based approach to granular synthesis. 
18
 * A grain is basically a selection of a recorded sample of audio. 
19
 * Grains are played in a loop: they are retriggered each time they reach the end of the selection.
20
 * However, if the duration coefficient is greater than one, a new grain is re-triggered before the previous one is done. 
21
 * The grains start to overlap with each other and create the typical eerie sound of grnular synthesis.
22
 * Also every time a new grain is triggered, it is offset of a few samples from the initial position to make the timbre more interesting.
23
 *
24
 *
25
 * PGranular uses a linear ASR envelope with 10 milliseconds attack and 50 milliseconds release.
26
 *
27
 * Note that PGranular is header based and only depends on std library and on "EnvASR.h" (also header based).
28
 * This means you can embedd it in two your project just by copying these two files over.
29
 *
30
 * Template arguments: 
31
 * T: type of the audio samples (normally float or double) 
32
 * RandOffsetFunc: type of the callable passed as argument to the contructor
33
 * TriggerCallbackFunc: type of the callable passed as argument to the contructor
34
 *
35
 */ 
36
template <typename T, typename RandOffsetFunc, typename TriggerCallbackFunc>
37
class PGranular
38
{
39

    
40
public:
41
    static const size_t kMaxGrains = 32;
42
    static const size_t kMinGrainsDuration = 640;
43

    
44
    static inline T interpolateLin( double xn, double xn_1, double decimal )
45
    {
46
        /* weighted sum interpolation */
47
        return static_cast<T> ((1 - decimal) * xn + decimal * xn_1);
48
    }
49

    
50
    /**
51
     * A single grain of the granular synthesis 
52
     */ 
53
    struct PGrain
54
    {
55
        double phase;    // read pointer to mBuffer of this grain 
56
        double rate;     // rate of the grain. e.g. rate = 2 the grain will play twice as fast
57
        bool alive;      // whether this grain is alive. Not alive means it has been processed and can be replanced by another grain
58
        size_t age;      // age of this grain in samples 
59
        size_t duration; // duration of this grain in samples. minimum = 4
60

    
61
        double b1;       // hann envelope from Ross Becina's "Implementing real time Granular Synthesis"
62
        double y1;
63
        double y2;
64
    };
65

    
66

    
67

    
68
    /**
69
     * Constructor.
70
     *
71
     * \param buffer a pointer to an array of T that contains the original sample that will be granulized
72
     * \param bufferLen length of buffer in samples 
73
     * \rand function returning of type size_t ()(void) that is called back each time a new grain is generated. The returned value is used 
74
     * to offset the starting sample of the grain. This adds more colour to the sound especially with small selections. 
75
     * \triggerCallback function of type void ()(char, int) that is called back each time a new grain is triggered.
76
     *      The function is passed the character 't' as first parameter when a new grain is triggered and the characted 't' when the synths becomes idle.
77
     * \ID id of this PGrain is passed to the triggerCallback function as second parameter to identify this PGranular as the caller.
78
     */ 
79
    PGranular( const T* buffer, size_t bufferLen, size_t sampleRate, RandOffsetFunc & rand, TriggerCallbackFunc & triggerCallback, int ID ) :
80
        mBuffer( buffer ),
81
        mBufferLen( bufferLen ),
82
        mNumAliveGrains( 0 ),
83
        mGrainsRate( 1.0 ),
84
        mTrigger( 0 ),
85
        mTriggerRate( 0 ), // start silent 
86
        mGrainsStart( 0 ),
87
        mGrainsDuration( kMinGrainsDuration ),
88
        mGrainsDurationCoeff( 1 ),
89
        mRand( rand ),
90
        mTriggerCallback( triggerCallback ),
91
        mEnvASR( 1.0f, 0.01f, 0.05f, sampleRate ),
92
        mAttenuation( T(0.25118864315096) ),
93
        mID( ID )
94
    {
95
        static_assert(std::is_pod<PGrain>::value, "PGrain must be POD");
96
#ifdef _WINDOW
97
        static_assert(std::is_same<std::result_of<RandOffsetFunc()>::type, size_t>::value, "Rand must return a size_t");
98
#endif
99
        /* init the grains */
100
        for ( size_t grainIdx = 0; grainIdx < kMaxGrains; grainIdx++ ){
101
            mGrains[grainIdx].phase = 0;
102
            mGrains[grainIdx].rate = 1;
103
            mGrains[grainIdx].alive = false;
104
            mGrains[grainIdx].age = 0;
105
            mGrains[grainIdx].duration = 1;
106
        }
107
    }
108

    
109
    ~PGranular(){}
110

    
111
    /** Sets multiplier of duration of grains in seconds */
112
    void setGrainsDurationCoeff( double coeff )
113
    {
114
        mGrainsDurationCoeff = coeff;
115

    
116
        mGrainsDuration = std::lround( mTriggerRate * coeff ); 
117

    
118
        if ( mGrainsDuration < kMinGrainsDuration )
119
            mGrainsDuration = kMinGrainsDuration;
120
    }
121

    
122
    /** Sets rate of grains. e.g rate = 2 means one octave higer */
123
    void setGrainsRate( double rate )
124
    {
125
        mGrainsRate = rate;
126
    }
127

    
128
    /** sets the selection start in samples */
129
    void setSelectionStart( size_t start )
130
    {
131
        mGrainsStart = start;
132
    }
133

    
134
    /** Sets the selection size ( and therefore the trigger rate) in samples */
135
    void setSelectionSize( size_t size )
136
    {
137

    
138
        if ( size < kMinGrainsDuration )
139
            size = kMinGrainsDuration;
140

    
141
        mTriggerRate = size;
142

    
143
        mGrainsDuration = std::lround( size * mGrainsDurationCoeff );
144

    
145

    
146
    }
147

    
148
    /** Sets the attenuation of the grains with respect to the level of the recorded sample
149
     *  attenuation is in amp value and defaule value is 0.25118864315096 (-12dB) */
150
    void setAttenuation( T attenuation )
151
    {
152
        mAttenuation = attenuation;
153
    }
154

    
155
    /** Starts the synthesis engine */
156
    void noteOn( double rate )
157
    {
158
        if ( mEnvASR.getState() == EnvASR<T>::State::eIdle ){
159
            // note on sets triggering top the min value 
160
            if ( mTriggerRate < kMinGrainsDuration ){
161
                mTriggerRate = kMinGrainsDuration;
162
            }
163

    
164
            setGrainsRate( rate );
165
            mEnvASR.setState( EnvASR<T>::State::eAttack );
166
        }
167
    }
168

    
169
    /** Stops the synthesis engine */
170
    void noteOff()
171
    {
172
        if ( mEnvASR.getState() != EnvASR<T>::State::eIdle ){
173
            mEnvASR.setState( EnvASR<T>::State::eRelease );
174
        }
175
    }
176

    
177
    /** Whether the synthesis engine is active or not. After noteOff is called the synth stays active until the envelope decays to 0 */
178
    bool isIdle()
179
    {
180
        return mEnvASR.getState() == EnvASR<T>::State::eIdle;
181
    }
182

    
183
    /**
184
     * Runs the granular engine and stores the output in \a audioOut
185
     * 
186
     * \param pointer to an array of T. This will be filled with the output of PGranular. It needs to be at least \a numSamples lond
187
     * \param tempBuffer a temporary buffer used to store the envelope value. It needs to be at leas \a numSamples long
188
     * \param numSamples number of samples to be processed 
189
     */ 
190
    void process( T* audioOut, T* tempBuffer, size_t numSamples )
191
    {
192
        
193
        // num samples worth of sound ( due to envelope possibly finishing )
194
        size_t envSamples = 0;
195
        bool becameIdle = false;
196

    
197
        // process the envelope first and store it in the tempBuffer 
198
        for ( size_t i = 0; i < numSamples; i++ ){
199
            tempBuffer[i] = mEnvASR.tick();
200
            envSamples++;
201

    
202
            if ( isIdle() ){
203
                // means that the envelope has stopped 
204
                becameIdle = true;
205
                break;
206
            }
207
        }
208

    
209
        // does the actual grains processing 
210
        processGrains( audioOut, tempBuffer, envSamples );
211

    
212
        // becomes idle if the envelope goes to idle state 
213
        if ( becameIdle ){
214
            mTriggerCallback( 'e', mID );
215
            reset();
216
        }
217
    }
218

    
219
private:
220

    
221
    void processGrains( T* audioOut, T* envelopeValues, size_t numSamples )
222
    {
223

    
224
        /* process all existing alive grains */
225
        for ( size_t grainIdx = 0; grainIdx < mNumAliveGrains;  ){
226
            synthesizeGrain( mGrains[grainIdx], audioOut, envelopeValues, numSamples );
227

    
228
            if ( !mGrains[grainIdx].alive ){
229
                // this grain is dead so copy the last of the active grains here 
230
                // so as to keep all active grains at the beginning of the array 
231
                // don't increment grainIdx so the last active grain is processed next cycle
232
                // if this grain is the last active grain then mNumAliveGrains is decremented 
233
                // and grainIdx = mNumAliveGrains so the loop stops 
234
                copyGrain( mNumAliveGrains - 1, grainIdx );
235
                mNumAliveGrains--;
236
            }
237
            else{
238
                // go to next grain 
239
                grainIdx++;
240
            }
241
        }
242

    
243
        if ( mTriggerRate == 0 ){
244
            return;
245
        }
246

    
247
        size_t randOffset =  mRand();
248
        bool newGrainWasTriggered = false;
249

    
250
        // trigger new grain and synthesize them as well 
251
        while ( mTrigger < numSamples ){
252
            
253
            // if there is room to accommodate new grains 
254
            if ( mNumAliveGrains < kMaxGrains ){
255
                // get next grain will be placed at the end of the alive ones 
256
                size_t grainIdx = mNumAliveGrains;
257
                mNumAliveGrains++;
258

    
259
                // initialize and synthesise the grain 
260
                PGrain &grain = mGrains[grainIdx];
261
                
262
                double phase = mGrainsStart + double( randOffset );
263
                if ( phase >= mBufferLen )
264
                    phase -= mBufferLen;
265

    
266
                grain.phase = phase;
267
                grain.rate = mGrainsRate;
268
                grain.alive = true;
269
                grain.age = 0;
270
                grain.duration = mGrainsDuration;
271

    
272
                const double w = 3.14159265358979323846 / mGrainsDuration;
273
                grain.b1 = 2.0 * std::cos( w );
274
                grain.y1 = std::sin( w );
275
                grain.y2 = 0.0;
276

    
277
                synthesizeGrain( grain, audioOut + mTrigger, envelopeValues + mTrigger, numSamples - mTrigger );
278

    
279
                if ( grain.alive == false ) {
280
                    mNumAliveGrains--;
281
                }
282

    
283
                newGrainWasTriggered = true;
284
            }
285

    
286
            // update trigger even if no new grain was started 
287
            mTrigger += mTriggerRate;
288
        }
289

    
290
        // prepare trigger for next cycle: init mTrigger with the reminder of the samples from this cycle 
291
        mTrigger -= numSamples;
292

    
293
        if ( newGrainWasTriggered ){
294
            mTriggerCallback( 't', mID );
295
        }
296
    }
297

    
298
    // synthesize a single grain 
299
    // audioOut = pointer to audio block to fill 
300
    // numSamples = numpber of samples to process for this block
301
    void synthesizeGrain( PGrain &grain, T* audioOut, T* envelopeValues, size_t numSamples )
302
    {
303

    
304
        // copy all grain data into local variable for faster porcessing
305
        const auto rate = grain.rate;
306
        auto phase = grain.phase;
307
        auto age = grain.age;
308
        auto duration = grain.duration;
309

    
310

    
311
        auto b1 = grain.b1;
312
        auto y1 = grain.y1;
313
        auto y2 = grain.y2;
314

    
315
        // only process minimum between samples of this block and time left to leave for this grain 
316
        auto numSamplesToOut = std::min( numSamples, duration - age );
317

    
318
        for ( size_t sampleIdx = 0; sampleIdx < numSamplesToOut; sampleIdx++ ){
319

    
320
            const size_t readIndex = (size_t)phase;
321
            const size_t nextReadIndex = (readIndex == mBufferLen - 1) ? 0 : readIndex + 1; // wrap on the read buffer if needed 
322

    
323
            const double decimal = phase - readIndex;
324

    
325
            T out = interpolateLin( mBuffer[readIndex], mBuffer[nextReadIndex], decimal );
326
            
327
            // apply raised cosine bell envelope 
328
            auto y0 = b1 * y1 - y2;
329
            y2 = y1;
330
            y1 = y0;
331
            out *= T(y0);
332

    
333
            audioOut[sampleIdx] += out * envelopeValues[sampleIdx] * mAttenuation;
334

    
335
            // increment age one sample 
336
            age++;
337
            // increment the phase according to the rate of this grain 
338
            phase += rate;
339

    
340
            if ( phase >= mBufferLen ){   // wrap the phase if needed 
341
                phase -= mBufferLen;
342
            }
343
        }
344

    
345
        if ( age == duration ){
346
            // if it porocessed all the samples left to leave ( numSamplesToOut = duration-age)
347
            // then the grain is had finished 
348
            grain.alive = false;
349
        }
350
        else{
351
            grain.phase = phase;
352
            grain.age = age;
353
            grain.y1 = y1;
354
            grain.y2 = y2;
355
        }
356
    }
357

    
358
    void copyGrain( size_t from, size_t to)
359
    {
360
        mGrains[to] = mGrains[from];
361
    }
362

    
363
    void reset()
364
    {
365
        mTrigger = 0;
366
        for ( size_t i = 0; i < mNumAliveGrains; i++ ){
367
            mGrains[i].alive = false;
368
        }
369

    
370
        mNumAliveGrains = 0;
371
    }
372

    
373
    int mID;
374

    
375
    // pointer to (mono) buffer, where the underlying sample is recorder 
376
    const T* mBuffer;
377
    // length of mBuffer in samples 
378
    const size_t mBufferLen;
379

    
380
    // offset in the buffer where the grains start. a.k.a. seleciton start 
381
    size_t mGrainsStart;
382

    
383
    // attenuates signal prevents clipping of grains 
384
    T mAttenuation;
385

    
386
    // grain duration in samples 
387
    double mGrainsDurationCoeff;
388
    // duration of grains is selcection size * duration coeff
389
    size_t mGrainsDuration;
390
    // rate of grain, affects pitch 
391
    double mGrainsRate;
392

    
393
    size_t mTrigger;       // next onset
394
    size_t mTriggerRate;   // inter onset
395

    
396
    // the array of grains 
397
    std::array<PGrain, kMaxGrains> mGrains;
398
    // number of alive grains 
399
    size_t mNumAliveGrains;
400

    
401
    RandOffsetFunc &mRand;
402
    TriggerCallbackFunc &mTriggerCallback;
403

    
404
    EnvASR<T> mEnvASR;
405
};
406

    
407

    
408

    
409

    
410
} // namespace collidoscope
411

    
412