To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _chroma / newdict.m @ 8:b5b38998ef3b
History | View | Annotate | Download (4.21 KB)
| 1 |
s = chunkspectrogram(filename,4096,4096*7/8,4096,inf); |
|---|---|
| 2 |
a = abs(s); |
| 3 |
T = size(s,2); |
| 4 |
%% |
| 5 |
zeroind = find(sum(a)==0 | sum(a)==-inf); |
| 6 |
a(:,zeroind) = randn(size(a,1),length(zeroind)).^2; |
| 7 |
|
| 8 |
wind_size = 6 * 3 + 1; |
| 9 |
pad_size = (wind_size-1)/2; |
| 10 |
wind = qnormalise(hamming(wind_size),1,1); |
| 11 |
|
| 12 |
atransf = wm' * qnormalise(a,2,1); |
| 13 |
|
| 14 |
nFbin = size(wm,2); |
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
% CHANGED: this is an equivalent formulation in terms of phase. |
| 20 |
fftr=fft(sum(atransf(3:end-2,:),2)); |
| 21 |
th = -angle(fftr((nFbin - 4)/3+1)) - 2*pi/3; |
| 22 |
th(th < -pi) = th(th < -pi) + 2*pi; |
| 23 |
disp(440*2.^(th/2/pi/12)) |
| 24 |
|
| 25 |
for iFrame = 1:T |
| 26 |
atransf(:,iFrame) = interp1(1:nFbin, atransf(:,iFrame), (1:nFbin) + th / (2 * pi) * 3,'spline',0); |
| 27 |
end |
| 28 |
|
| 29 |
|
| 30 |
% |
| 31 |
nFbin = size(atransf,1); |
| 32 |
T = size(atransf,2); |
| 33 |
|
| 34 |
% calculate running mean |
| 35 |
m = conv2(atransf,wind(:),'valid'); |
| 36 |
m = [repmat(m(1,:),pad_size,1); m ; repmat(m(end,:),pad_size,1)]; |
| 37 |
|
| 38 |
% calculate running standard deviation |
| 39 |
stdev = sqrt(conv2((atransf-m).^2,wind(:),'valid')); |
| 40 |
stdev = [repmat(stdev(1,:),pad_size,1); stdev ; repmat(stdev(end,:),pad_size,1)]; |
| 41 |
|
| 42 |
% loamp = logical(atransf < 1.5 * m); |
| 43 |
% atransf(loamp) = atransf(loamp)/5; |
| 44 |
atransf = (atransf - m)./stdev; |
| 45 |
atransf(atransf<0) = 0; |
| 46 |
|
| 47 |
% atransf = qnormalise(atransf,inf,2); |
| 48 |
% atransf(isnan(atransf)) = 0; |
| 49 |
|
| 50 |
%% generate dictionary |
| 51 |
nSBin = 3; |
| 52 |
fs = 11025; |
| 53 |
blocksize = 4096; |
| 54 |
minMidi = 20; |
| 55 |
maxMidi = 105; |
| 56 |
overs = 40; |
| 57 |
midiFrequencies = midinote2frequency(minMidi:1/nSBin:maxMidi); |
| 58 |
|
| 59 |
|
| 60 |
|
| 61 |
dx = fs/blocksize/overs; |
| 62 |
x = dx:dx:fs/2; |
| 63 |
nX = length(x); |
| 64 |
|
| 65 |
nMidi = length(midiFrequencies); |
| 66 |
% nFFT = length(fftFrequencies); |
| 67 |
|
| 68 |
midiWarp = semitonedistance(midiFrequencies,nSBin); |
| 69 |
% fftWarp = ones(size(x)) * fs / blocksize; |
| 70 |
|
| 71 |
B = zeros(256, 7*12); |
| 72 |
|
| 73 |
for iMidi = 1:7*12 |
| 74 |
f0 = midiFrequencies(3*iMidi+1); |
| 75 |
f = f0; |
| 76 |
factor = 1; |
| 77 |
help = (log(f0) - log(midiFrequencies(1)))/log(midiFrequencies(end)); |
| 78 |
factorred(iMidi) = 0.9 * (1 - help) + 0.9 * help; |
| 79 |
fprintf(1,'%3.2f %%\r',iMidi/nMidi*100*3) |
| 80 |
midiVector = cospuls_warped(midiFrequencies,f,midiWarp); |
| 81 |
while f < 11025/2; |
| 82 |
f = f + f0; |
| 83 |
factor = factor * factorred(iMidi); |
| 84 |
midiVector = midiVector + factor * cospuls_warped(midiFrequencies,f,midiWarp); |
| 85 |
end |
| 86 |
B(:,iMidi) = midiVector; |
| 87 |
end |
| 88 |
% %% |
| 89 |
|
| 90 |
%% |
| 91 |
B = qnormalise(B,1,1); |
| 92 |
% C = B(:,12:6*36+11)'; |
| 93 |
C=B; |
| 94 |
% atransf(atransf<0) = atransf(atransf<0)/5; |
| 95 |
% mys = mldivide(C,(atransf)); |
| 96 |
|
| 97 |
atransf = sparse(atransf); |
| 98 |
|
| 99 |
for t = 1:T |
| 100 |
fprintf('%0.1f %%\n',t/T*100)
|
| 101 |
mys(:,t) = lsqnonneg(C,atransf(:,t)); |
| 102 |
end |
| 103 |
|
| 104 |
% mys = qnormalise(mys,1,1); |
| 105 |
% mys(mys<0)=0; |
| 106 |
imagesc(mys.*(mys>0)) |
| 107 |
axis xy |
| 108 |
%% |
| 109 |
|
| 110 |
n = size(mys,1); |
| 111 |
|
| 112 |
bt_spacing = 1/4.5; |
| 113 |
|
| 114 |
basswindow = cospuls(1:n,n * bt_spacing +0.5,n * 2 * bt_spacing); |
| 115 |
% treblewindow = cospuls(1:n,2 * n * bt_spacing+0.5,n * 2 * bt_spacing) + cospuls(1:n,3*n * bt_spacing+0.5,n* 2 * bt_spacing); |
| 116 |
treblewindow = cospuls(1:n,n * 0.5 + 0.5,n * 2 * 0.5); |
| 117 |
% treblewindow = basswindow(12:6*36+11)/2 + treblewindow(12:6*36+11); |
| 118 |
% basswindow = basswindow(12:6*36+11); |
| 119 |
|
| 120 |
%% |
| 121 |
thirtysix2twelve = zeros(12,36); |
| 122 |
for iSemitone = 0:11 |
| 123 |
thirtysix2twelve(iSemitone+1,iSemitone*3+(1:3)) = 1; |
| 124 |
end |
| 125 |
if n == 256 |
| 126 |
toPC = repmat(eye(36),7,1); |
| 127 |
toPC = [toPC(end-1:end,:); toPC; toPC(1:2,:)]; |
| 128 |
bass_chromagram = mys' * diag(basswindow) * toPC * thirtysix2twelve'; |
| 129 |
treble_chromagram = mys' * diag(treblewindow) * toPC * thirtysix2twelve'; |
| 130 |
else |
| 131 |
toPC = repmat(eye(12),7,1); |
| 132 |
bass_chromagram = mys' * diag(basswindow) * toPC; |
| 133 |
treble_chromagram = mys' * diag(treblewindow) * toPC; |
| 134 |
end |
| 135 |
% chromagram = mys' * repmat(eye(36),6,1); |
| 136 |
thr_l = 0.0; |
| 137 |
thr_h = 3; |
| 138 |
treble_chromagram(treble_chromagram<thr)=thr_l; |
| 139 |
bass_chromagram(bass_chromagram<thr)=thr_l; |
| 140 |
|
| 141 |
treble_chromagram = circshift(treble_chromagram,[0 -3]); |
| 142 |
bass_chromagram = circshift(bass_chromagram,[0, -3]); |
| 143 |
|
| 144 |
% treble_chromagram = treble_chromagram + bass_chromagram/4; |
| 145 |
|
| 146 |
% bass_chromagram = medfilt1(bass_chromagram,10); |
| 147 |
% treble_chromagram = medfilt1(treble_chromagram,10); |
| 148 |
|
| 149 |
%% |
| 150 |
some = 100 * 0; |
| 151 |
% subplot(211) |
| 152 |
imagesc(qnormalise([(bass_chromagram');(treble_chromagram')],2,1)) |
| 153 |
hold on |
| 154 |
ax = axis; |
| 155 |
plot(ax(1:2),[12.5 12.5],'color',[0.7 0.7 0.7]) |
| 156 |
axis xy |
| 157 |
hold off |
| 158 |
% xlim([0 800] + some) |
| 159 |
% subplot(212) |
| 160 |
% imagesc() |
| 161 |
% xlim([0 800] + some) |
| 162 |
% axis xy |
| 163 |
%% |
| 164 |
dlmwrite('/Users/matthiasmauch/temptreble.csv',treble_chromagram, 'delimiter','\t');
|
| 165 |
dlmwrite('/Users/matthiasmauch/tempbass.csv',bass_chromagram, 'delimiter','\t');
|