To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / graph / triangulate.c @ 8:b5b38998ef3b
History | View | Annotate | Download (4.16 KB)
| 1 |
/* triangulate.c written by Ilya Shpitser */
|
|---|---|
| 2 |
|
| 3 |
#include <stdlib.h> |
| 4 |
|
| 5 |
#ifdef UNIX
|
| 6 |
#include "matlab.h" |
| 7 |
#endif
|
| 8 |
|
| 9 |
#include "matrix.h" |
| 10 |
#include "mex.h" |
| 11 |
|
| 12 |
#include "elim.h" |
| 13 |
#include "map.h" |
| 14 |
#include "misc.h" |
| 15 |
|
| 16 |
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]){ |
| 17 |
|
| 18 |
int dims [2]; |
| 19 |
int i, j, k, m, n;
|
| 20 |
long index;
|
| 21 |
double * G_pr;
|
| 22 |
double * stage_pr;
|
| 23 |
double * answer_G_pr, * fill_ins_pr;
|
| 24 |
double * matlab_clique_pr;
|
| 25 |
mxArray * matlab_clique; |
| 26 |
Elimination e; |
| 27 |
float ** adj_mat;
|
| 28 |
int ** order = (int **) NULL; |
| 29 |
Iterator iter, iter2; |
| 30 |
word w, w2; |
| 31 |
int ** fill_ins;
|
| 32 |
Map cliques; |
| 33 |
Map clique; |
| 34 |
mxArray * fill_ins_mat; |
| 35 |
int * nodes;
|
| 36 |
mxArray * full; |
| 37 |
|
| 38 |
// (original) full = mlfFull((mxArray *) prhs[0]);
|
| 39 |
full = (mxArray *) mlfFull((mxArray *) prhs[0]); // added typecasting |
| 40 |
/* Obtain graph matrix information. */
|
| 41 |
m = mxGetM(full); |
| 42 |
n = mxGetN(full); |
| 43 |
G_pr = mxGetPr(full); |
| 44 |
|
| 45 |
if(n < 1 || m < 1){ |
| 46 |
return;
|
| 47 |
} |
| 48 |
|
| 49 |
/* Allocate and populate the log weight adjacency matrix corresponding
|
| 50 |
to the input graph. */
|
| 51 |
adj_mat = (float **) malloc(sizeof(float *) * m); |
| 52 |
adj_mat[0] = (float *) malloc(sizeof(float) * m * n); |
| 53 |
for(i = 1; i < m; i++){ |
| 54 |
adj_mat[i] = adj_mat[i - 1] + n;
|
| 55 |
} |
| 56 |
/* We no longer have log weight info, but we have a (total) ordering on
|
| 57 |
the nodes already, so we do not need this information. */
|
| 58 |
for(i = 0; i < m; i++){ |
| 59 |
for(j = 0; j < n; j++){ |
| 60 |
index = j * m + i; |
| 61 |
if(G_pr[index] > 0){ |
| 62 |
adj_mat[i][j] = 1;
|
| 63 |
} else {
|
| 64 |
adj_mat[i][j] = 0;
|
| 65 |
} |
| 66 |
} |
| 67 |
} |
| 68 |
|
| 69 |
/* Convert the total elimination ordering into a partial order argument
|
| 70 |
for the elimination routine. The elimination routine's purpose in this
|
| 71 |
mode of operation is to return cliques and fill-in edges. */
|
| 72 |
if(nrhs > 1){ |
| 73 |
order = (int **) malloc(sizeof(int *) * m); |
| 74 |
order[0] = (int *) malloc(sizeof(int) * m * n); |
| 75 |
for(i = 1; i < m; i++){ |
| 76 |
order[i] = order[i - 1] + n;
|
| 77 |
} |
| 78 |
for(i = 0; i < m; i++){ |
| 79 |
for(j = 0; j < n; j++){ |
| 80 |
order[i][j] = 0;
|
| 81 |
} |
| 82 |
} |
| 83 |
stage_pr = mxGetPr(prhs[1]);
|
| 84 |
for(i = 0; i < mxGetN(prhs[1]) - 1; i++){ |
| 85 |
order[(int) stage_pr[i] - 1][(int) stage_pr[i + 1] - 1] = 1; |
| 86 |
} |
| 87 |
} |
| 88 |
|
| 89 |
/* Find the elimination ordering. */
|
| 90 |
e = find_elim(n, adj_mat, order, -1);
|
| 91 |
|
| 92 |
/* Allocate memory for the answer, and set the answer. */
|
| 93 |
plhs[0] = mxCreateDoubleMatrix(m, n, mxREAL);
|
| 94 |
answer_G_pr = mxGetPr(plhs[0]);
|
| 95 |
cliques = get_cliques(e); |
| 96 |
/*
|
| 97 |
dims[0] = 1;
|
| 98 |
dims[1] = get_size_Map(cliques);
|
| 99 |
plhs[1] = mxCreateCellArray(2, (const int *) dims);*/
|
| 100 |
plhs[1] = mxCreateCellMatrix(get_size_Map(cliques), 1); |
| 101 |
fill_ins = get_fill_ins(e); |
| 102 |
fill_ins_mat = mxCreateDoubleMatrix(m, n, mxREAL); |
| 103 |
fill_ins_pr = mxGetPr(fill_ins_mat); |
| 104 |
|
| 105 |
for(i = 0; i < n; i++){ |
| 106 |
for(j = 0; j < m; j++){ |
| 107 |
index = j * m + i; |
| 108 |
answer_G_pr[index] = G_pr[index]; |
| 109 |
if(fill_ins[i][j] > 0){ |
| 110 |
answer_G_pr[index] = 1;
|
| 111 |
fill_ins_pr[index] = 1;
|
| 112 |
} |
| 113 |
} |
| 114 |
} |
| 115 |
mxDestroyArray(full); |
| 116 |
// (original) plhs[2] = mlfSparse(fill_ins_mat, NULL, NULL, NULL, NULL, NULL);
|
| 117 |
plhs[2] = (mxArray *) mlfSparse(fill_ins_mat, NULL, NULL, NULL, NULL, NULL); // added typecasting |
| 118 |
mxDestroyArray(fill_ins_mat); |
| 119 |
nodes = (int *) malloc(sizeof(int) * n); |
| 120 |
k = 0;
|
| 121 |
iter = get_Iterator(cliques); |
| 122 |
while(!is_empty(iter)){
|
| 123 |
w = next_key(iter); |
| 124 |
clique = (Map) w.v; |
| 125 |
matlab_clique = mxCreateDoubleMatrix(1, get_size_Map(clique), mxREAL);
|
| 126 |
matlab_clique_pr = mxGetPr(matlab_clique); |
| 127 |
for(i = 0; i < n; i++){ |
| 128 |
nodes[i] = 0;
|
| 129 |
} |
| 130 |
iter2 = get_Iterator(clique); |
| 131 |
while(!is_empty(iter2)){
|
| 132 |
w2 = next_key(iter2); |
| 133 |
nodes[w2.i] = w2.i + 1;
|
| 134 |
} |
| 135 |
j = 0;
|
| 136 |
for(i = 0; i < n; i++){ |
| 137 |
if(nodes[i] > 0){ |
| 138 |
matlab_clique_pr[j++] = nodes[i]; |
| 139 |
} |
| 140 |
} |
| 141 |
mxSetCell(plhs[1], k++, matlab_clique);
|
| 142 |
} |
| 143 |
free(nodes); |
| 144 |
|
| 145 |
/* Finally, free the allocated memory. */
|
| 146 |
destroy_Elimination(e); |
| 147 |
if(adj_mat){
|
| 148 |
if(adj_mat[0]){ |
| 149 |
free(adj_mat[0]);
|
| 150 |
} |
| 151 |
free(adj_mat); |
| 152 |
} |
| 153 |
if(order){
|
| 154 |
if(order[0]){ |
| 155 |
free(order[0]);
|
| 156 |
} |
| 157 |
free(order); |
| 158 |
} |
| 159 |
} |