To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / graph / mk_nbrs_of_digraph_broken.m @ 8:b5b38998ef3b
History | View | Annotate | Download (2.77 KB)
| 1 |
function [Gs, op, nodes] = mk_nbrs_of_digraph(G0) |
|---|---|
| 2 |
% MK_NBRS_OF_DIGRAPH Make all digraphs that differ from G0 by a single edge deletion, addition or reversal |
| 3 |
% [Gs, op, nodes] = mk_nbrs_of_digraph(G0) |
| 4 |
% |
| 5 |
% Gs(:,:,i) is the i'th neighbor |
| 6 |
% op{i} = 'add', 'del', or 'rev' is the operation used to create the i'th neighbor.
|
| 7 |
% nodes(i,1:2) are the head and tail of the operated-on arc. |
| 8 |
|
| 9 |
debug = 0; % the vectorized version is about 3 to 10 times faster |
| 10 |
|
| 11 |
n = length(G0); |
| 12 |
[I,J] = find(G0); % I(k), J(k) is the k'th edge |
| 13 |
E = length(I); % num edges present in G0 |
| 14 |
|
| 15 |
% SINGLE EDGE DELETIONS |
| 16 |
|
| 17 |
Grep = repmat(G0(:), 1, E); % each column is a copy of G0 |
| 18 |
% edge_ndx(k) is the scalar location of the k'th edge |
| 19 |
edge_ndx = find(G0); |
| 20 |
% edge_ndx = subv2ind([n n], [I J]); % equivalent |
| 21 |
% We set (ndx(k), k) to 0 for k=1:E in Grep |
| 22 |
ndx = subv2ind(size(Grep), [edge_ndx(:) (1:E)']); |
| 23 |
G1 = Grep; |
| 24 |
G1(ndx) = 0; |
| 25 |
Gdel = reshape(G1, [n n E]); |
| 26 |
|
| 27 |
|
| 28 |
% if debug |
| 29 |
% % Non-vectorized version |
| 30 |
% ctr = 1; |
| 31 |
% for e=1:E |
| 32 |
% i = I(e); j = J(e); |
| 33 |
% Gdel2(:,:,ctr) = G0; |
| 34 |
% Gdel2(i,j,ctr) = 0; |
| 35 |
% ctr = ctr + 1; |
| 36 |
% end |
| 37 |
% assert(isequal(Gdel, Gdel2)); |
| 38 |
% end |
| 39 |
|
| 40 |
|
| 41 |
% SINGLE EDGE REVERSALS |
| 42 |
|
| 43 |
% rev_edge_ndx(k) is the scalar location of the k'th reversed edge |
| 44 |
%rev_edge_ndx = find(G0'); % different order to edge_ndx, which is bad |
| 45 |
rev_edge_ndx = subv2ind([n n], [J I]); |
| 46 |
% We set (rev_edge_ndx(k), k) to 1 for k=1:E in G1 |
| 47 |
% We have already deleted i->j in the previous step |
| 48 |
ndx = subv2ind(size(Grep), [rev_edge_ndx(:) (1:E)']); |
| 49 |
G1(ndx) = 1; |
| 50 |
Grev = reshape(G1, [n n E]); |
| 51 |
|
| 52 |
% if debug |
| 53 |
% % Non-vectorized version |
| 54 |
% ctr = 1; |
| 55 |
% for e=1:E |
| 56 |
% i = I(e); j = J(e); |
| 57 |
% Grev2(:,:,ctr) = G0; |
| 58 |
% Grev2(i,j,ctr) = 0; |
| 59 |
% Grev2(j,i,ctr) = 1; |
| 60 |
% ctr = ctr + 1; |
| 61 |
% end |
| 62 |
% assert(isequal(Grev, Grev2)); |
| 63 |
% end |
| 64 |
|
| 65 |
|
| 66 |
% SINGLE EDGE ADDITIONS |
| 67 |
|
| 68 |
Gbar = ~G0; % Gbar(i,j)=1 iff there is no i->j edge in G0 |
| 69 |
Gbar = setdiag(Gbar, 0); % turn off self loops |
| 70 |
[Ibar,Jbar] = find(Gbar); |
| 71 |
|
| 72 |
bar_edge_ndx = find(Gbar); |
| 73 |
Ebar = length(Ibar); % num edges present in Gbar |
| 74 |
Grep = repmat(G0(:), 1, Ebar); % each column is a copy of G0 |
| 75 |
ndx = subv2ind(size(Grep), [bar_edge_ndx(:) (1:Ebar)']); |
| 76 |
Grep(ndx) = 1; |
| 77 |
Gadd = reshape(Grep, [n n Ebar]); |
| 78 |
|
| 79 |
% if debug |
| 80 |
% % Non-vectorized version |
| 81 |
% ctr = 1; |
| 82 |
% for e=1:length(Ibar) |
| 83 |
% i = Ibar(e); j = Jbar(e); |
| 84 |
% Gadd2(:,:,ctr) = G0; |
| 85 |
% Gadd2(i,j,ctr) = 1; |
| 86 |
% ctr = ctr + 1; |
| 87 |
% end |
| 88 |
% assert(isequal(Gadd, Gadd2)); |
| 89 |
% end |
| 90 |
|
| 91 |
|
| 92 |
Gs = cat(3, Gdel, Grev, Gadd); |
| 93 |
|
| 94 |
nodes = [I J; |
| 95 |
I J; |
| 96 |
Ibar Jbar]; |
| 97 |
|
| 98 |
op = cell(1, E+E+Ebar); |
| 99 |
op(1:E) = {'del'};
|
| 100 |
op(E+1:2*E) = {'rev'};
|
| 101 |
op(2*E+1:end) = {'add'};
|
| 102 |
|
| 103 |
|
| 104 |
% numeric output: |
| 105 |
% op(i) = 1, 2, or 3, if the i'th neighbor was created by adding, deleting or reversing an arc. |
| 106 |
|
| 107 |
ADD = 1; |
| 108 |
DEL = 2; |
| 109 |
REV = 3; |
| 110 |
|
| 111 |
%op = [repmat(DEL, 1, E) repmat(REV, 1, E) repmat(ADD, 1, Ebar)]; |