To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / graph / mk_adj_mat.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.38 KB)
| 1 |
function [A, names] = mk_adj_mat(connections, names, topological) |
|---|---|
| 2 |
% MK_ADJ_MAT Make a directed adjacency matrix from a list of connections between named nodes. |
| 3 |
% |
| 4 |
% A = mk_adj_mat(connections, name) |
| 5 |
% This is best explaine by an example: |
| 6 |
% names = {'WetGrass', 'Sprinkler', 'Cloudy', 'Rain'};
|
| 7 |
% connections = {'Cloudy', 'Sprinkler'; 'Cloudy', 'Rain'; 'Sprinkler', 'WetGrass'; 'Rain', 'WetGrass'};
|
| 8 |
% adds the arcs C -> S, C -> R, S -> W, R -> W. Node 1 is W, 2 is S, 3 is C, 4 is R. |
| 9 |
% |
| 10 |
% [A, names] = mk_adj_mat(connections, name, 1) |
| 11 |
% The last argument of 1 indicates that we should topologically sort the nodes (parents before children). |
| 12 |
% In the example, the numbering becomes: node 1 is C, 2 is R, 3 is S, 4 is W |
| 13 |
% and the return value of names gets permuted to {'Cloudy', 'Rain', 'Sprinkler', 'WetGrass'}.
|
| 14 |
% Note that topological sorting the graph is only possible if it has no directed cycles. |
| 15 |
|
| 16 |
if nargin < 3, topological = 0; end |
| 17 |
|
| 18 |
n=length(names); |
| 19 |
A=zeros(n); |
| 20 |
[nr nc] = size(connections); |
| 21 |
for r=1:nr |
| 22 |
from = strmatch(connections{r,1}, names, 'exact');
|
| 23 |
assert(~isempty(from)); |
| 24 |
to = strmatch(connections{r,2}, names, 'exact');
|
| 25 |
assert(~isempty(to)); |
| 26 |
%fprintf(1, 'from %s %d to %s %d\n', connections{r,1}, from, connections{r,2}, to);
|
| 27 |
A(from,to) = 1; |
| 28 |
end |
| 29 |
|
| 30 |
if topological |
| 31 |
order = topological_sort(A); |
| 32 |
A = A(order, order); |
| 33 |
names = names(order); |
| 34 |
end |
| 35 |
|
| 36 |
|