To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / graph / graph_to_jtree.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.84 KB)

1
function [jtree, root, cliques, B, w, elim_order] = graph_to_jtree(MG, ns, partial_order, stages, clusters)
2
% GRAPH_TO_JTREE Triangulate a graph and make a junction tree from its cliques.
3
% [jtree, root, cliques, B, w, elim_order] = ...
4
%    graph_to_jtree(graph, node_sizes, partial_order, stages, clusters)
5
%
6
% INPUT:
7
% graph(i,j) = 1 iff there is an edge between i,j
8
% node_weights(i) = num discrete values node i can take on [1 if observed]
9
% partial_order = {} if no constraints on elimination ordering
10
% stages{i} = nodes that must be eliminated at i'th stage (if porder is empty)
11
% clusters{i} = list of nodes that must get connected together in the moral graph
12
%
13
% OUTPUT:
14
% jtree(i,j) = 1 iff there is an arc between clique i and clique j 
15
% root = the root clique
16
% cliques{i} = the nodes in clique i
17
% B(i,j) = 1 iff node j occurs in clique i
18
% w(i) = weight of clique i
19

    
20
N = length(MG);
21

    
22
if nargin >= 5
23
  % Add extra arcs between nodes in each cluster to ensure they occur in the same clique
24
  for i=1:length(clusters)
25
    c = clusters{i};
26
    MG(c,c) = 1;
27
  end
28
end
29
MG = setdiag(MG, 0);
30

    
31
% Find an optimal elimination ordering (NP-hard problem!)
32
if nargin < 4
33
  stages = {1:N};
34
end
35
if nargin < 3
36
  partial_order = {};
37
end
38
if isempty(partial_order)
39
  strong = 0;
40
  elim_order = best_first_elim_order(MG, ns, stages);
41
else
42
  strong = 1;
43
  elim_order = strong_elim_order(MG, ns, partial_order);
44
end
45

    
46
[MTG, cliques, fill_in_edges]  = triangulate(MG, elim_order);
47

    
48
% Connect the cliques up into a jtree,
49
[jtree, root, B, w] = cliques_to_jtree(cliques, ns);
50

    
51
if 0
52
  disp('testing dag to jtree');
53
  % Find the cliques containing each node, and check they form a connected subtree
54
  clqs_con_node = cell(1,N);
55
  for i=1:N
56
    clqs_con_node{i} = find(B(:,i))';
57
  end
58
  check_jtree_property(clqs_con_node, jtree);
59
end