To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / graph / dag_to_essential_graph.m @ 8:b5b38998ef3b
History | View | Annotate | Download (3.23 KB)
| 1 |
|
|---|---|
| 2 |
function [eg] = dag_to_essential_graph(dag) |
| 3 |
cpdag = dag_to_cpdag(dag); |
| 4 |
eg = dag + dag .* (cpdag + cpdag'); |
| 5 |
|
| 6 |
return; |
| 7 |
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
% Coverts a DAG into Essential Graph where edges are coded by 2 and 3, 2 is |
| 12 |
% directed edge and 3 is bidirected edge and is at one (the same as the original DAG) of the two |
| 13 |
% symetrical places. |
| 14 |
|
| 15 |
% Is implemented by the algorithm of Max Chickering in D.M.Chickering (1995). |
| 16 |
% A transformational characterization of equivalent Bayesian network structures. |
| 17 |
% In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, |
| 18 |
% pages 87-98. Morgan Kaufmann |
| 19 |
% http://research.microsoft.com/~dmax/publications/uai95.pdf |
| 20 |
|
| 21 |
% Implemented by Tomas Kocka, AAU. |
| 22 |
|
| 23 |
function [eg] = dag_to_essential_graph(dagx) |
| 24 |
|
| 25 |
%print_dag(dagx); % Just checking input |
| 26 |
|
| 27 |
order = topological_sort(dagx); % get the topological order of nodes and their number |
| 28 |
|
| 29 |
% fprintf('the topological order is: %d',order);
|
| 30 |
% fprintf('\n');
|
| 31 |
|
| 32 |
[nx,ny] = size(dagx); % gets the number of nodes, note that nx == ny |
| 33 |
[I,J] = find(dagx); % finds all nonzero elements in the adjacency matrix, i.e. arcs in the DAG - however we will overwrite it in a special order |
| 34 |
% we will sort the arcs from lowest possible y and highest possible x, arcs are x->y |
| 35 |
e = 1; |
| 36 |
for y = 1:ny |
| 37 |
for x = nx:-1:1 |
| 38 |
%fprintf('x %d ',order(x)); fprintf('y %d ',order(y));
|
| 39 |
if dagx(order(x),order(y)) == 1 |
| 40 |
I(e) = order(x); |
| 41 |
J(e) = order(y); |
| 42 |
e = e + 1; |
| 43 |
%fprintf('x order %d',x);
|
| 44 |
%fprintf('y order %d',y);
|
| 45 |
%fprintf('\n');
|
| 46 |
end |
| 47 |
end |
| 48 |
end |
| 49 |
|
| 50 |
|
| 51 |
% fprintf('the arcs are: %d',I);
|
| 52 |
% fprintf('\n');
|
| 53 |
% fprintf('the arcs are: %d',J);
|
| 54 |
% fprintf('\n');
|
| 55 |
|
| 56 |
|
| 57 |
% Now we have to decide which arcs are part of the essential graph and |
| 58 |
% which are undirected edges in the essential graph. |
| 59 |
% Undecided arc in the DAG are 1, directed in EG are 2 and undirected in EG |
| 60 |
% are 3. |
| 61 |
|
| 62 |
|
| 63 |
for e = 1:length(I) |
| 64 |
if dagx(I(e),J(e)) == 1 |
| 65 |
cont = true; |
| 66 |
for w = 1:nx |
| 67 |
if dagx(w,I(e)) == 2 |
| 68 |
if dagx(w,J(e)) ~= 0 |
| 69 |
dagx(w,J(e)) = 2; |
| 70 |
else |
| 71 |
for ww = 1:nx |
| 72 |
if dagx(ww,J(e)) ~= 0 |
| 73 |
dagx(ww,J(e)) = 2; |
| 74 |
end |
| 75 |
end % and now skip the rest and start with another arc from the list |
| 76 |
w = nx; |
| 77 |
cont = false; |
| 78 |
end |
| 79 |
end |
| 80 |
end |
| 81 |
if cont |
| 82 |
exists = false; |
| 83 |
for z = 1:nx |
| 84 |
%fprintf('test %d',dagx(z,J(e)));
|
| 85 |
if dagx(z,J(e)) ~= 0 & z ~= I(e) & dagx(z,I(e)) == 0 |
| 86 |
exists = true; |
| 87 |
for ww = 1:nx |
| 88 |
if dagx(ww,J(e)) == 1 |
| 89 |
dagx(ww,J(e)) = 2; |
| 90 |
end |
| 91 |
end |
| 92 |
end |
| 93 |
end |
| 94 |
if ~ exists |
| 95 |
for ww = 1:nx |
| 96 |
if dagx(ww,J(e)) == 1 |
| 97 |
dagx(ww,J(e)) = 3; |
| 98 |
end |
| 99 |
end |
| 100 |
end |
| 101 |
end |
| 102 |
end |
| 103 |
end |
| 104 |
|
| 105 |
%print_dag(dagx); % Just checking output |
| 106 |
|
| 107 |
|
| 108 |
|
| 109 |
|
| 110 |
|
| 111 |
|
| 112 |
|