To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / graph / check_triangulated.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.2 KB)

1
function [triangulated, order] = check_triangulated(G)
2
% CHECK_TRIANGULATED Return 1 if G is a triangulated (chordal) graph, 0 otherwise.
3
% [triangulated, order] = check_triangulated(G)
4
% 
5
% A numbering alpha is perfect if Nbrs(alpha(i)) intersect {alpha(1)...alpha(i-1)} is complete.
6
% A graph is triangulated iff it has a perfect numbering.
7
% The Maximum Cardinality Search algorithm will create such a perfect numbering if possible.
8
% See Golumbic, "Algorithmic Graph Theory and Perfect Graphs", Cambridge Univ. Press, 1985, p85.
9
% or Castillo, Gutierrez and Hadi, "Expert systems and probabilistic network models", Springer 1997, p134.
10

    
11

    
12
G = setdiag(G, 1);
13
n = length(G);
14
order = zeros(1,n);
15
triangulated = 1;
16
numbered = [1];
17
order(1) = 1;
18
for i=2:n
19
  U = mysetdiff(1:n, numbered); % unnumbered nodes
20
  score = zeros(1, length(U));
21
  for ui=1:length(U)
22
    u = U(ui);
23
    score(ui) = length(myintersect(neighbors(G, u), numbered));
24
  end
25
  u = U(argmax(score));
26
  numbered = [numbered u];
27
  order(i) = u;
28
  nns = myintersect(neighbors(G,u), order(1:i-1)); % numbered neighbors
29
  if ~isequal(G(nns,nns), ones(length(nns))) % ~complete(G(nns,nns))
30
    triangulated = 0;
31
    break;
32
  end
33
end
34