To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / graph / Old / mk_2D_lattice_slow.m @ 8:b5b38998ef3b
History | View | Annotate | Download (2.9 KB)
| 1 |
function G = mk_2D_lattice(nrows, ncols, wrap_around) |
|---|---|
| 2 |
% MK_2D_LATTICE Return adjacency matrix for 4-nearest neighbor connected 2D lattice |
| 3 |
% G = mk_2D_lattice(nrows, ncols, wrap_around) |
| 4 |
% G(k1, k2) = 1 iff k1=(i1,j1) is connected to k2=(i2,j2) |
| 5 |
% |
| 6 |
% If wrap_around = 1, we use toroidal boundary conditions (default = 0) |
| 7 |
% |
| 8 |
% Nodes are assumed numbered as in the following 3x3 lattice |
| 9 |
% 1 4 7 |
| 10 |
% 2 5 8 |
| 11 |
% 3 6 9 |
| 12 |
% |
| 13 |
% e.g., G = mk_2D_lattice(3, 3, 0) returns |
| 14 |
% 0 1 0 1 0 0 0 0 0 |
| 15 |
% 1 0 1 0 1 0 0 0 0 |
| 16 |
% 0 1 0 0 0 1 0 0 0 |
| 17 |
% 1 0 0 0 1 0 1 0 0 |
| 18 |
% 0 1 0 1 0 1 0 1 0 |
| 19 |
% 0 0 1 0 1 0 0 0 1 |
| 20 |
% 0 0 0 1 0 0 0 1 0 |
| 21 |
% 0 0 0 0 1 0 1 0 1 |
| 22 |
% 0 0 0 0 0 1 0 1 0 |
| 23 |
% so find(G(5,:)) = [2 4 6 8] |
| 24 |
% but find(G(1,:)) = [2 4] |
| 25 |
% |
| 26 |
% Using wrap around, G = mk_2D_lattice(3, 3, 1), we get |
| 27 |
% 0 1 1 1 0 0 1 0 0 |
| 28 |
% 1 0 1 0 1 0 0 1 0 |
| 29 |
% 1 1 0 0 0 1 0 0 1 |
| 30 |
% 1 0 0 0 1 1 1 0 0 |
| 31 |
% 0 1 0 1 0 1 0 1 0 |
| 32 |
% 0 0 1 1 1 0 0 0 1 |
| 33 |
% 1 0 0 1 0 0 0 1 1 |
| 34 |
% 0 1 0 0 1 0 1 0 1 |
| 35 |
% 0 0 1 0 0 1 1 1 0 |
| 36 |
% so find(G(5,:)) = [2 4 6 8] |
| 37 |
% and find(G(1,:)) = [2 3 4 7] |
| 38 |
|
| 39 |
if nargin < 3, wrap_around = 0; end |
| 40 |
|
| 41 |
% M contains the number of each cell e.g. |
| 42 |
% 1 4 7 |
| 43 |
% 2 5 8 |
| 44 |
% 3 6 9 |
| 45 |
% North neighbors (assuming wrap around) are |
| 46 |
% 3 6 9 |
| 47 |
% 1 4 7 |
| 48 |
% 2 5 8 |
| 49 |
% Without wrap around, they are |
| 50 |
% 1 4 7 |
| 51 |
% 1 4 7 |
| 52 |
% 2 5 8 |
| 53 |
% The first row is arbitrary, since pixels at the top have no north neighbor. |
| 54 |
|
| 55 |
npixels = nrows*ncols; |
| 56 |
|
| 57 |
N = 1; E = 2; S = 3; W = 4; |
| 58 |
if wrap_around |
| 59 |
rows{N} = [nrows 1:nrows-1]; cols{N} = 1:ncols;
|
| 60 |
rows{E} = 1:nrows; cols{E} = [2:ncols 1];
|
| 61 |
rows{S} = [2:nrows 1]; cols{S} = 1:ncols;
|
| 62 |
rows{W} = 1:nrows; cols{W} = [ncols 1:ncols-1];
|
| 63 |
else |
| 64 |
rows{N} = [1 1:nrows-1]; cols{N} = 1:ncols;
|
| 65 |
rows{E} = 1:nrows; cols{E} = [2:ncols 2];
|
| 66 |
rows{S} = [2:nrows 2]; cols{S} = 1:ncols;
|
| 67 |
rows{W} = 1:nrows; cols{W} = [1 1:ncols-1];
|
| 68 |
end |
| 69 |
|
| 70 |
M = reshape(1:npixels, [nrows ncols]); |
| 71 |
nbrs = cell(1, 4); |
| 72 |
for i=1:4 |
| 73 |
nbrs{i} = M(rows{i}, cols{i});
|
| 74 |
end |
| 75 |
|
| 76 |
|
| 77 |
G = zeros(npixels, npixels); |
| 78 |
if wrap_around |
| 79 |
for i=1:4 |
| 80 |
if 0 |
| 81 |
% naive |
| 82 |
for p=1:npixels |
| 83 |
G(p, nbrs{i}(p)) = 1;
|
| 84 |
end |
| 85 |
else |
| 86 |
% vectorized |
| 87 |
ndx2 = sub2ind([npixels npixels], 1:npixels, nbrs{i}(:)');
|
| 88 |
G(ndx2) = 1; |
| 89 |
end |
| 90 |
end |
| 91 |
else |
| 92 |
i = N; |
| 93 |
mask = ones(nrows, ncols); |
| 94 |
mask(1,:) = 0; % pixels in row 1 have no nbr to the north |
| 95 |
ndx = find(mask); |
| 96 |
ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx));
|
| 97 |
G(ndx2) = 1; |
| 98 |
|
| 99 |
i = E; |
| 100 |
mask = ones(nrows, ncols); |
| 101 |
mask(:,ncols) = 0; |
| 102 |
ndx = find(mask); |
| 103 |
ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx));
|
| 104 |
G(ndx2) = 1; |
| 105 |
|
| 106 |
i = S; |
| 107 |
mask = ones(nrows, ncols); |
| 108 |
mask(nrows,:)=0; |
| 109 |
ndx = find(mask); |
| 110 |
ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx));
|
| 111 |
G(ndx2) = 1; |
| 112 |
|
| 113 |
i = W; |
| 114 |
mask = ones(nrows, ncols); |
| 115 |
mask(:,1)=0; |
| 116 |
ndx = find(mask); |
| 117 |
ndx2 = sub2ind([npixels npixels], ndx, nbrs{i}(ndx));
|
| 118 |
G(ndx2) = 1; |
| 119 |
end |
| 120 |
|
| 121 |
G = setdiag(G, 0); |