To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / graph / Old / .svn / text-base / dag_to_jtree.m.svn-base @ 8:b5b38998ef3b

History | View | Annotate | Download (1.78 KB)

1
function [jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges, strong] = ...
2
    dag_to_jtree(dag, node_sizes, partial_order, stages, clusters)
3
% DAG_TO_JTREE Moralize and triangulate a DAG, and make a junction tree from its cliques.
4
% [jtree, root, cliques, B, w, elim_order, moral_edges, fill_in_edges, strong] = ...
5
%    dag_to_jtree(dag, node_sizes, partial_order, stages, clusters)
6
%
7
% Input:
8
% dag(i,j) 
9
% jtree(i,j) = 1 iff there is an arc between clique i and clique j 
10
% root = the root clique
11
% cliques{i} = the nodes in clique i
12
% B(i,j) = 1 iff node j occurs in clique i
13
% w(i) = weight of clique i
14

    
15
N = length(bnet.dag);
16
if nargin < 2, obs_nodes = []; end
17
if nargin < 3, stages = { 1:N }; end
18
if nargin < 4, clusters = {}; end
19

    
20
[MG, moral_edges]  = moralize(bnet.dag);
21

    
22
% Add extra arcs between nodes in each cluster to ensure they occur in the same clique
23
for i=1:length(clusters)
24
  c = clusters{i};
25
  MG(c,c) = 1;
26
end
27
MG = setdiag(MG, 0);
28

    
29
% Find an optimal elimination ordering (NP-hard problem!)
30
ns = bnet.node_sizes(:);
31
ns(obs_nodes) = 1; % observed nodes have only 1 possible value
32
partial_order = determine_elim_constraints(bnet, obs_nodes);
33

    
34
if isempty(partial_order)
35
  strong = 0;
36
  elim_order = best_first_elim_order(MG, ns, stages);
37
else
38
  strong = 1;
39
  elim_order = strong_elim_order(MG, ns, partial_order);
40
end
41

    
42
[MTG, cliques, fill_in_edges]  = triangulate(MG, elim_order);
43

    
44
% Connect the cliques up into a jtree,
45
[jtree, root, B, w] = cliques_to_jtree(cliques, ns);
46

    
47
if 0
48
  disp('testing dag to jtree');
49
  % Find the cliques containing each node, and check they form a connected subtree
50
  clqs_con_node = cell(1,N);
51
  for i=1:N
52
    clqs_con_node{i} = find(B(:,i))';
53
  end
54
  check_jtree_property(clqs_con_node, jtree);
55
end