To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / solve_limid.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.89 KB)
| 1 |
function [strategy, MEU, niter] = solve_limid(engine, varargin) |
|---|---|
| 2 |
% SOLVE_LIMID Find the (locally) optimal strategy for a LIMID |
| 3 |
% [strategy, MEU, niter] = solve_limid(inf_engine, ...) |
| 4 |
% |
| 5 |
% strategy{d} = stochastic policy for node d (a decision node)
|
| 6 |
% MEU = maximum expected utility |
| 7 |
% niter = num iterations used |
| 8 |
% |
| 9 |
% The following optional arguments can be specified in the form of name/value pairs: |
| 10 |
% [default in brackets] |
| 11 |
% |
| 12 |
% max_iter - max. num. iterations [ 1 ] |
| 13 |
% tol - tolerance required of consecutive MEU values, used to assess convergence [1e-3] |
| 14 |
% order - order in which decision nodes are optimized [ reverse numerical order ] |
| 15 |
% |
| 16 |
% e.g., solve_limid(engine, 'tol', 1e-2, 'max_iter', 10) |
| 17 |
|
| 18 |
bnet = bnet_from_engine(engine); |
| 19 |
|
| 20 |
% default values |
| 21 |
max_iter = 1; |
| 22 |
tol = 1e-3; |
| 23 |
D = bnet.decision_nodes; |
| 24 |
order = D(end:-1:1); |
| 25 |
|
| 26 |
args = varargin; |
| 27 |
nargs = length(args); |
| 28 |
for i=1:2:nargs |
| 29 |
switch args{i},
|
| 30 |
case 'max_iter', max_iter = args{i+1};
|
| 31 |
case 'tol', tol = args{i+1};
|
| 32 |
case 'order', order = args{i+1};
|
| 33 |
otherwise, |
| 34 |
error(['invalid argument name ' args{i}]);
|
| 35 |
end |
| 36 |
end |
| 37 |
|
| 38 |
CPDs = bnet.CPD; |
| 39 |
ns = bnet.node_sizes; |
| 40 |
N = length(ns); |
| 41 |
evidence = cell(1,N); |
| 42 |
strategy = cell(1, N); |
| 43 |
|
| 44 |
iter = 1; |
| 45 |
converged = 0; |
| 46 |
oldMEU = 0; |
| 47 |
while ~converged & (iter <= max_iter) |
| 48 |
for d=order(:)' |
| 49 |
engine = enter_evidence(engine, evidence, 'exclude', d); |
| 50 |
[m, pot] = marginal_family(engine, d); |
| 51 |
%pot = marginal_family_pot(engine, d); |
| 52 |
[policy, score] = upot_to_opt_policy(pot); |
| 53 |
e = bnet.equiv_class(d); |
| 54 |
CPDs{e} = set_fields(CPDs{e}, 'policy', policy);
|
| 55 |
engine = update_engine(engine, CPDs); |
| 56 |
strategy{d} = policy;
|
| 57 |
end |
| 58 |
engine = enter_evidence(engine, evidence); |
| 59 |
[m, pot] = marginal_nodes(engine, []); |
| 60 |
%pot = marginal_family_pot(engine, []); |
| 61 |
[dummy, MEU] = upot_to_opt_policy(pot); |
| 62 |
if approxeq(MEU, oldMEU, tol) |
| 63 |
converged = 1; |
| 64 |
end |
| 65 |
oldMEU = MEU; |
| 66 |
iter = iter + 1; |
| 67 |
end |
| 68 |
niter = iter - 1; |