To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / mk_mutilated_samples.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.12 KB)

1
function [data, clamped] = mk_mutilated_samples(bnet, ncases, max_clamp, usecell)
2
% GEN_MUTILATED_SAMPLES Do random interventions and then draw random samples
3
% [data, clamped] = gen_mutilated_samples(bnet, ncases, max_clamp, usecell)
4
%
5
% At each step, we pick a random subset of size 0 .. max_clamp, and 
6
% clamp these nodes to random values.
7
%
8
% data(i,m) is the value of node i in case m.
9
% clamped(i,m) = 1 if node i in case m was set by intervention.
10

    
11
if nargin < 4, usecell = 1; end
12

    
13
ns = bnet.node_sizes;
14
n = length(bnet.dag);
15
if usecell
16
  data = cell(n, ncases);
17
else
18
  data = zeros(n, ncases);
19
end
20
clamped = zeros(n, ncases);
21

    
22
csubsets = subsets(1:n, max_clamp, 0); % includes the empty set
23
distrib_cset = normalise(ones(1, length(csubsets)));
24

    
25
for m=1:ncases
26
  cset = csubsets{sample_discrete(distrib_cset)};
27
  nvals = prod(ns(cset));
28
  distrib_cvals = normalise(ones(1, nvals));
29
  cvals = ind2subv(ns(cset), sample_discrete(distrib_cvals));
30
  mutilated_bnet = do_intervention(bnet, cset, cvals);
31
  ev = sample_bnet(mutilated_bnet);
32
  if usecell
33
    data(:,m) = ev;
34
  else
35
    data(:,m) = cell2num(ev);
36
  end
37
  clamped(cset,m) = 1;
38
end