To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / mk_mutilated_samples.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.12 KB)
| 1 |
function [data, clamped] = mk_mutilated_samples(bnet, ncases, max_clamp, usecell) |
|---|---|
| 2 |
% GEN_MUTILATED_SAMPLES Do random interventions and then draw random samples |
| 3 |
% [data, clamped] = gen_mutilated_samples(bnet, ncases, max_clamp, usecell) |
| 4 |
% |
| 5 |
% At each step, we pick a random subset of size 0 .. max_clamp, and |
| 6 |
% clamp these nodes to random values. |
| 7 |
% |
| 8 |
% data(i,m) is the value of node i in case m. |
| 9 |
% clamped(i,m) = 1 if node i in case m was set by intervention. |
| 10 |
|
| 11 |
if nargin < 4, usecell = 1; end |
| 12 |
|
| 13 |
ns = bnet.node_sizes; |
| 14 |
n = length(bnet.dag); |
| 15 |
if usecell |
| 16 |
data = cell(n, ncases); |
| 17 |
else |
| 18 |
data = zeros(n, ncases); |
| 19 |
end |
| 20 |
clamped = zeros(n, ncases); |
| 21 |
|
| 22 |
csubsets = subsets(1:n, max_clamp, 0); % includes the empty set |
| 23 |
distrib_cset = normalise(ones(1, length(csubsets))); |
| 24 |
|
| 25 |
for m=1:ncases |
| 26 |
cset = csubsets{sample_discrete(distrib_cset)};
|
| 27 |
nvals = prod(ns(cset)); |
| 28 |
distrib_cvals = normalise(ones(1, nvals)); |
| 29 |
cvals = ind2subv(ns(cset), sample_discrete(distrib_cvals)); |
| 30 |
mutilated_bnet = do_intervention(bnet, cset, cvals); |
| 31 |
ev = sample_bnet(mutilated_bnet); |
| 32 |
if usecell |
| 33 |
data(:,m) = ev; |
| 34 |
else |
| 35 |
data(:,m) = cell2num(ev); |
| 36 |
end |
| 37 |
clamped(cset,m) = 1; |
| 38 |
end |