To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / mk_limid.m @ 8:b5b38998ef3b
History | View | Annotate | Download (2.82 KB)
| 1 |
function bnet = mk_limid(dag, node_sizes, varargin) |
|---|---|
| 2 |
% MK_LIMID Make a limited information influence diagram |
| 3 |
% |
| 4 |
% BNET = MK_LIMID(DAG, NODE_SIZES, ...) |
| 5 |
% DAG is the adjacency matrix for a directed acyclic graph. |
| 6 |
% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. |
| 7 |
% For decision nodes, the parents must explicitely include all nodes |
| 8 |
% on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams. |
| 9 |
% (For details, see "Representing and solving decision problems with limited information", |
| 10 |
% Lauritzen and Nilsson, Management Science, 2001.) |
| 11 |
% |
| 12 |
% node_sizes(i) is the number of values node i can take on, |
| 13 |
% or the length of node i if i is a continuous-valued vector. |
| 14 |
% node_sizes(i) = 1 if i is a utility node. |
| 15 |
% |
| 16 |
% The list below gives optional arguments [default value in brackets]. |
| 17 |
% |
| 18 |
% chance - the list of nodes which are random variables [1:N] |
| 19 |
% decision - the list of nodes which are decision nodes [ [] ] |
| 20 |
% utility - the list of nodes which are utility nodes [ [] ] |
| 21 |
% equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N]
|
| 22 |
% |
| 23 |
% e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2]) |
| 24 |
|
| 25 |
n = length(dag); |
| 26 |
|
| 27 |
% default values for parameters |
| 28 |
bnet.chance_nodes = 1:n; |
| 29 |
bnet.equiv_class = 1:n; |
| 30 |
bnet.utility_nodes = []; |
| 31 |
bnet.decision_nodes = []; |
| 32 |
bnet.dnodes = 1:n; % discrete |
| 33 |
|
| 34 |
if nargin >= 3 |
| 35 |
args = varargin; |
| 36 |
nargs = length(args); |
| 37 |
if ~isstr(args{1})
|
| 38 |
if nargs >= 1, bnet.dnodes = args{1}; end
|
| 39 |
if nargs >= 2, bnet.equiv_class = args{2}; end
|
| 40 |
else |
| 41 |
for i=1:2:nargs |
| 42 |
switch args{i},
|
| 43 |
case 'equiv_class', bnet.equiv_class = args{i+1};
|
| 44 |
case 'chance', bnet.chance_nodes = args{i+1};
|
| 45 |
case 'utility', bnet.utility_nodes = args{i+1};
|
| 46 |
case 'decision', bnet.decision_nodes = args{i+1};
|
| 47 |
case 'discrete', bnet.dnodes = args{i+1};
|
| 48 |
otherwise, |
| 49 |
error(['invalid argument name ' args{i}]);
|
| 50 |
end |
| 51 |
end |
| 52 |
end |
| 53 |
end |
| 54 |
|
| 55 |
bnet.limid = 1; |
| 56 |
|
| 57 |
bnet.dag = dag; |
| 58 |
bnet.node_sizes = node_sizes(:)'; |
| 59 |
|
| 60 |
bnet.cnodes = mysetdiff(1:n, bnet.dnodes); |
| 61 |
% too many functions refer to cnodes to rename it to cts_nodes - |
| 62 |
% We hope it won't be confused with chance nodes! |
| 63 |
|
| 64 |
bnet.parents = cell(1,n); |
| 65 |
for i=1:n |
| 66 |
bnet.parents{i} = parents(dag, i);
|
| 67 |
end |
| 68 |
|
| 69 |
E = max(bnet.equiv_class); |
| 70 |
mem = cell(1,E); |
| 71 |
for i=1:n |
| 72 |
e = bnet.equiv_class(i); |
| 73 |
mem{e} = [mem{e} i];
|
| 74 |
end |
| 75 |
bnet.members_of_equiv_class = mem; |
| 76 |
|
| 77 |
bnet.CPD = cell(1, E); |
| 78 |
|
| 79 |
% for e=1:E |
| 80 |
% i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member
|
| 81 |
% switch type{e}
|
| 82 |
% case 'tabular', bnet.CPD{e} = tabular_CPD(bnet, i);
|
| 83 |
% case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i);
|
| 84 |
% otherwise, error(['unrecognized CPD type ' type{e}]);
|
| 85 |
% end |
| 86 |
% end |
| 87 |
|
| 88 |
directed = 1; |
| 89 |
if ~acyclic(dag,directed) |
| 90 |
error('graph must be acyclic')
|
| 91 |
end |
| 92 |
|
| 93 |
bnet.order = topological_sort(bnet.dag); |