To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / mk_limid.m @ 8:b5b38998ef3b

History | View | Annotate | Download (2.82 KB)

1
function bnet = mk_limid(dag, node_sizes, varargin)
2
% MK_LIMID Make a limited information influence diagram
3
%
4
% BNET = MK_LIMID(DAG, NODE_SIZES, ...) 
5
% DAG is the adjacency matrix for a directed acyclic graph.
6
% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
7
% For decision nodes, the parents must explicitely include all nodes
8
% on which it can depends, in contrast to the implicit no-forgetting assumption of influence diagrams.
9
% (For details, see "Representing and solving decision problems with limited information",
10
%    Lauritzen and Nilsson, Management Science, 2001.)
11
%
12
% node_sizes(i) is the number of values node i can take on,
13
%   or the length of node i if i is a continuous-valued vector.
14
% node_sizes(i) = 1 if i is a utility node.
15
% 
16
% The list below gives optional arguments [default value in brackets].
17
% 
18
% chance   - the list of nodes which are random variables [1:N]
19
% decision - the list of nodes which are decision nodes [ [] ]
20
% utility  - the list of nodes which are utility nodes [ [] ]
21
% equiv_class - equiv_class(i)=j  means node i gets its params from CPD{j} [1:N]
22
%
23
% e.g., limid = mk_limid(dag, ns, 'chance', [1 3], 'utility', [2])
24

    
25
n = length(dag);
26

    
27
% default values for parameters
28
bnet.chance_nodes = 1:n;
29
bnet.equiv_class = 1:n;
30
bnet.utility_nodes = [];
31
bnet.decision_nodes = [];
32
bnet.dnodes = 1:n; % discrete 
33

    
34
if nargin >= 3
35
  args = varargin;
36
  nargs = length(args);
37
  if ~isstr(args{1})
38
    if nargs >= 1, bnet.dnodes = args{1}; end
39
    if nargs >= 2, bnet.equiv_class = args{2}; end
40
  else    
41
    for i=1:2:nargs
42
      switch args{i},
43
       case 'equiv_class', bnet.equiv_class = args{i+1}; 
44
       case 'chance',      bnet.chance_nodes = args{i+1}; 
45
       case 'utility',     bnet.utility_nodes = args{i+1}; 
46
       case 'decision',    bnet.decision_nodes = args{i+1}; 
47
       case 'discrete',    bnet.dnodes = args{i+1}; 
48
        otherwise,  
49
	error(['invalid argument name ' args{i}]);       
50
      end
51
    end
52
  end
53
end
54
 
55
bnet.limid = 1;
56

    
57
bnet.dag = dag;
58
bnet.node_sizes = node_sizes(:)';
59

    
60
bnet.cnodes = mysetdiff(1:n, bnet.dnodes);
61
% too many functions refer to cnodes to rename it to cts_nodes - 
62
% We hope it won't be confused with chance nodes!
63

    
64
bnet.parents = cell(1,n);
65
for i=1:n
66
  bnet.parents{i} = parents(dag, i);
67
end
68

    
69
E = max(bnet.equiv_class);
70
mem = cell(1,E);
71
for i=1:n
72
  e = bnet.equiv_class(i);
73
  mem{e} = [mem{e} i];
74
end
75
bnet.members_of_equiv_class = mem;
76

    
77
bnet.CPD = cell(1, E);
78

    
79
% for e=1:E
80
%   i = bnet.members_of_equiv_class{e}(1); % pick arbitrary member
81
%   switch type{e}
82
%     case 'tabular',  bnet.CPD{e} = tabular_CPD(bnet, i);
83
%     case 'gaussian', bnet.CPD{e} = gaussian_CPD(bnet, i);
84
%     otherwise, error(['unrecognized CPD type ' type{e}]);
85
%   end
86
% end
87

    
88
directed = 1;
89
if ~acyclic(dag,directed)
90
  error('graph must be acyclic')
91
end
92

    
93
bnet.order = topological_sort(bnet.dag);