To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / mk_fgraph_given_ev.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.65 KB)
| 1 |
function fg = mk_fgraph_given_ev(G, node_sizes, factors, ev_CPD, evidence, varargin) |
|---|---|
| 2 |
% MK_FGRAPH_GIVEN_EV Make a factor graph where each node has its own private evidence term |
| 3 |
% fg = mk_fgraph(G, node_sizes, factors, ev_CPD, evidence, ...) |
| 4 |
% |
| 5 |
% G, node_sizes and factors are as in mk_fgraph, but they refer to the hidden nodes. |
| 6 |
% ev_CPD{i} is a CPD for the i'th hidden node; this will be converted into a factor
|
| 7 |
% for node i using evidence{i}.
|
| 8 |
% We currently assume all hidden nodes are discrete, for simplicity. |
| 9 |
% |
| 10 |
% The list below gives optional arguments [default value in brackets]. |
| 11 |
% |
| 12 |
% equiv_class - equiv_class(i)=j means factor node i gets its params from factors{j} [1:F]
|
| 13 |
% ev_equiv_class - ev_equiv_class(i)=j means evidence node i gets its params from ev_CPD{j} [1:N]
|
| 14 |
|
| 15 |
|
| 16 |
N = length(node_sizes); |
| 17 |
nfactors = length(factors); |
| 18 |
|
| 19 |
% default values for parameters |
| 20 |
eclass = 1:nfactors; |
| 21 |
ev_eclass = 1:N; |
| 22 |
|
| 23 |
if nargin >= 6 |
| 24 |
args = varargin; |
| 25 |
nargs = length(args); |
| 26 |
for i=1:2:nargs |
| 27 |
switch args{i},
|
| 28 |
case 'equiv_class', eclass = args{i+1};
|
| 29 |
case 'ev_equiv_class', ev_eclass = args{i+1};
|
| 30 |
otherwise, |
| 31 |
error(['invalid argument name ' args{i}]);
|
| 32 |
end |
| 33 |
end |
| 34 |
end |
| 35 |
|
| 36 |
pot_type = 'd'; |
| 37 |
for x=1:N |
| 38 |
ev = cell(1,2); % cell 1 is the hidden parent, cell 2 is the observed child |
| 39 |
ev(2) = evidence(x); |
| 40 |
dom = 1:2; |
| 41 |
F = convert_to_pot(ev_CPD{ev_eclass(x)}, pot_type, dom(:), ev);
|
| 42 |
M = pot_to_marginal(F); |
| 43 |
%factors{end+1} = tabular_CPD('self', 1, 'ps', [], 'sz', node_sizes(x), 'CPT', M.T);
|
| 44 |
factors{end+1} = mk_isolated_tabular_CPD(node_sizes(x), {'CPT', M.T});
|
| 45 |
end |
| 46 |
|
| 47 |
E = max(eclass); |
| 48 |
fg = mk_fgraph([G eye(N)], node_sizes, factors, 'equiv_class', [eclass E+1:E+N]); |