To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / mk_fgraph_given_ev.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.65 KB)

1
function fg = mk_fgraph_given_ev(G, node_sizes, factors, ev_CPD, evidence, varargin)
2
% MK_FGRAPH_GIVEN_EV Make a factor graph where each node has its own private evidence term
3
% fg = mk_fgraph(G, node_sizes, factors, ev_CPD, evidence, ...)
4
%
5
% G, node_sizes and factors are as in mk_fgraph, but they refer to the hidden nodes.
6
% ev_CPD{i} is a CPD for the i'th hidden node; this will be converted into a factor
7
% for node i using evidence{i}.
8
% We currently assume all hidden nodes are discrete, for simplicity.
9
%
10
% The list below gives optional arguments [default value in brackets].
11
% 
12
% equiv_class - equiv_class(i)=j  means factor node i gets its params from factors{j} [1:F]
13
% ev_equiv_class - ev_equiv_class(i)=j  means evidence node i gets its params from ev_CPD{j} [1:N]
14

    
15

    
16
N = length(node_sizes);
17
nfactors = length(factors);
18

    
19
% default values for parameters
20
eclass = 1:nfactors;
21
ev_eclass = 1:N;
22

    
23
if nargin >= 6
24
  args = varargin;
25
  nargs = length(args);
26
  for i=1:2:nargs
27
    switch args{i},
28
     case 'equiv_class', eclass = args{i+1}; 
29
     case 'ev_equiv_class', ev_eclass = args{i+1}; 
30
     otherwise,  
31
      error(['invalid argument name ' args{i}]);       
32
    end
33
  end
34
end
35

    
36
pot_type = 'd';
37
for x=1:N
38
  ev = cell(1,2); % cell 1 is the hidden parent, cell 2 is the observed child
39
  ev(2) = evidence(x); 
40
  dom = 1:2;
41
  F = convert_to_pot(ev_CPD{ev_eclass(x)}, pot_type, dom(:), ev);
42
  M = pot_to_marginal(F);
43
  %factors{end+1} = tabular_CPD('self', 1, 'ps', [], 'sz', node_sizes(x), 'CPT', M.T);
44
  factors{end+1} = mk_isolated_tabular_CPD(node_sizes(x), {'CPT', M.T});
45
end
46

    
47
E = max(eclass);
48
fg = mk_fgraph([G eye(N)], node_sizes, factors, 'equiv_class', [eclass E+1:E+N]);