To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / mk_bnet.m @ 8:b5b38998ef3b
History | View | Annotate | Download (2.91 KB)
| 1 |
function bnet = mk_bnet(dag, node_sizes, varargin) |
|---|---|
| 2 |
% MK_BNET Make a Bayesian network. |
| 3 |
% |
| 4 |
% BNET = MK_BNET(DAG, NODE_SIZES, ...) makes a graphical model with an arc from i to j iff DAG(i,j) = 1. |
| 5 |
% Thus DAG is the adjacency matrix for a directed acyclic graph. |
| 6 |
% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary. |
| 7 |
% |
| 8 |
% node_sizes(i) is the number of values node i can take on, |
| 9 |
% or the length of node i if i is a continuous-valued vector. |
| 10 |
% node_sizes(i) = 1 if i is a utility node. |
| 11 |
% |
| 12 |
% Below are the names of optional arguments [and their default value in brackets]. |
| 13 |
% Pass as 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ... |
| 14 |
% |
| 15 |
% discrete - the list of nodes which are discrete random variables [1:N] |
| 16 |
% equiv_class - equiv_class(i)=j means node i gets its params from CPD{j} [1:N]
|
| 17 |
% observed - the list of nodes which will definitely be observed in every case [ [] ] |
| 18 |
% 'names' - a cell array of strings to be associated with nodes 1:n [{}]
|
| 19 |
% This creates an associative array, so you write e.g. |
| 20 |
% 'evidence(bnet.names{'bar'}) = 42' instead of 'evidence(2} = 42'
|
| 21 |
% assuming names = { 'foo', 'bar', ...}.
|
| 22 |
% |
| 23 |
% e.g., bnet = mk_bnet(dag, ns, 'discrete', [1 3]) |
| 24 |
% |
| 25 |
% For backwards compatibility with BNT2, you can also specify the parameters in the following order |
| 26 |
% bnet = mk_bnet(dag, node_sizes, discrete_nodes, equiv_class) |
| 27 |
|
| 28 |
n = length(dag); |
| 29 |
|
| 30 |
% default values for parameters |
| 31 |
bnet.equiv_class = 1:n; |
| 32 |
bnet.dnodes = 1:n; % discrete |
| 33 |
bnet.observed = []; |
| 34 |
bnet.names = {};
|
| 35 |
|
| 36 |
if nargin >= 3 |
| 37 |
args = varargin; |
| 38 |
nargs = length(args); |
| 39 |
if ~isstr(args{1})
|
| 40 |
if nargs >= 1, bnet.dnodes = args{1}; end
|
| 41 |
if nargs >= 2, bnet.equiv_class = args{2}; end
|
| 42 |
else |
| 43 |
for i=1:2:nargs |
| 44 |
switch args{i},
|
| 45 |
case 'equiv_class', bnet.equiv_class = args{i+1};
|
| 46 |
case 'discrete', bnet.dnodes = args{i+1};
|
| 47 |
case 'observed', bnet.observed = args{i+1};
|
| 48 |
case 'names', bnet.names = assocarray(args{i+1}, num2cell(1:n));
|
| 49 |
otherwise, |
| 50 |
error(['invalid argument name ' args{i}]);
|
| 51 |
end |
| 52 |
end |
| 53 |
end |
| 54 |
end |
| 55 |
|
| 56 |
bnet.observed = sort(bnet.observed); % for comparing sets |
| 57 |
bnet.hidden = mysetdiff(1:n, bnet.observed(:)'); |
| 58 |
bnet.hidden_bitv = zeros(1,n); |
| 59 |
bnet.hidden_bitv(bnet.hidden) = 1; |
| 60 |
bnet.dag = dag; |
| 61 |
bnet.node_sizes = node_sizes(:)'; |
| 62 |
|
| 63 |
bnet.cnodes = mysetdiff(1:n, bnet.dnodes); |
| 64 |
% too many functions refer to cnodes to rename it to cts_nodes - |
| 65 |
% We hope it won't be confused with chance nodes! |
| 66 |
|
| 67 |
bnet.parents = cell(1,n); |
| 68 |
for i=1:n |
| 69 |
bnet.parents{i} = parents(dag, i);
|
| 70 |
end |
| 71 |
|
| 72 |
E = max(bnet.equiv_class); |
| 73 |
mem = cell(1,E); |
| 74 |
for i=1:n |
| 75 |
e = bnet.equiv_class(i); |
| 76 |
mem{e} = [mem{e} i];
|
| 77 |
end |
| 78 |
bnet.members_of_equiv_class = mem; |
| 79 |
|
| 80 |
bnet.CPD = cell(1, E); |
| 81 |
|
| 82 |
bnet.rep_of_eclass = zeros(1,E); |
| 83 |
for e=1:E |
| 84 |
mems = bnet.members_of_equiv_class{e};
|
| 85 |
bnet.rep_of_eclass(e) = mems(1); |
| 86 |
end |
| 87 |
|
| 88 |
directed = 1; |
| 89 |
if ~acyclic(dag,directed) |
| 90 |
error('graph must be acyclic')
|
| 91 |
end |
| 92 |
|
| 93 |
bnet.order = topological_sort(bnet.dag); |