To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / mk_bnet.m @ 8:b5b38998ef3b

History | View | Annotate | Download (2.91 KB)

1
function bnet = mk_bnet(dag, node_sizes, varargin)
2
% MK_BNET Make a Bayesian network.
3
%
4
% BNET = MK_BNET(DAG, NODE_SIZES, ...) makes a graphical model with an arc from i to j iff DAG(i,j) = 1.
5
% Thus DAG is the adjacency matrix for a directed acyclic graph.
6
% The nodes are assumed to be in topological order. Use TOPOLOGICAL_SORT if necessary.
7
%
8
% node_sizes(i) is the number of values node i can take on,
9
%   or the length of node i if i is a continuous-valued vector.
10
% node_sizes(i) = 1 if i is a utility node.
11
% 
12
% Below are the names of optional arguments [and their default value in brackets].
13
% Pass as 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ...
14
% 
15
% discrete - the list of nodes which are discrete random variables [1:N]
16
% equiv_class - equiv_class(i)=j  means node i gets its params from CPD{j} [1:N]
17
% observed - the list of nodes which will definitely be observed in every case [ [] ]
18
% 'names' - a cell array of strings to be associated with nodes 1:n [{}]
19
%    This creates an associative array, so you write e.g.
20
%     'evidence(bnet.names{'bar'}) = 42' instead of  'evidence(2} = 42' 
21
%     assuming names = { 'foo', 'bar', ...}.
22
%
23
% e.g., bnet = mk_bnet(dag, ns, 'discrete', [1 3])
24
%
25
% For backwards compatibility with BNT2, you can also specify the parameters in the following order
26
%   bnet = mk_bnet(dag, node_sizes, discrete_nodes, equiv_class)
27

    
28
n = length(dag);
29

    
30
% default values for parameters
31
bnet.equiv_class = 1:n;
32
bnet.dnodes = 1:n; % discrete 
33
bnet.observed = [];
34
bnet.names = {};
35

    
36
if nargin >= 3
37
  args = varargin;
38
  nargs = length(args);
39
  if ~isstr(args{1})
40
    if nargs >= 1, bnet.dnodes = args{1}; end
41
    if nargs >= 2, bnet.equiv_class = args{2}; end
42
  else    
43
    for i=1:2:nargs
44
      switch args{i},
45
       case 'equiv_class', bnet.equiv_class = args{i+1}; 
46
       case 'discrete',    bnet.dnodes = args{i+1}; 
47
       case 'observed',    bnet.observed = args{i+1}; 
48
       case 'names',  bnet.names = assocarray(args{i+1}, num2cell(1:n)); 
49
       otherwise,  
50
	error(['invalid argument name ' args{i}]);       
51
      end
52
    end
53
  end
54
end
55

    
56
bnet.observed = sort(bnet.observed); % for comparing sets
57
bnet.hidden = mysetdiff(1:n, bnet.observed(:)');
58
bnet.hidden_bitv = zeros(1,n);
59
bnet.hidden_bitv(bnet.hidden) = 1;
60
bnet.dag = dag;
61
bnet.node_sizes = node_sizes(:)';
62

    
63
bnet.cnodes = mysetdiff(1:n, bnet.dnodes);
64
% too many functions refer to cnodes to rename it to cts_nodes - 
65
% We hope it won't be confused with chance nodes!
66

    
67
bnet.parents = cell(1,n);
68
for i=1:n
69
  bnet.parents{i} = parents(dag, i);
70
end
71

    
72
E = max(bnet.equiv_class);
73
mem = cell(1,E);
74
for i=1:n
75
  e = bnet.equiv_class(i);
76
  mem{e} = [mem{e} i];
77
end
78
bnet.members_of_equiv_class = mem;
79

    
80
bnet.CPD = cell(1, E);
81

    
82
bnet.rep_of_eclass = zeros(1,E);
83
for e=1:E
84
  mems = bnet.members_of_equiv_class{e};
85
  bnet.rep_of_eclass(e) = mems(1);
86
end
87

    
88
directed = 1;
89
if ~acyclic(dag,directed)
90
  error('graph must be acyclic')
91
end
92

    
93
bnet.order = topological_sort(bnet.dag);