To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / fgraph_to_bnet.m @ 8:b5b38998ef3b

History | View | Annotate | Download (798 Bytes)

1
function bnet = fgraph_to_bnet(fg)
2
% FGRAPH_TO_BNET Convert a factor graph to a Bayes net
3
% bnet = fgraph_to_bnet(fg)
4
%
5
% We assume all factors are tabular_CPD.
6
% We create 1 dummy observed node for every factor.
7

    
8
N = fg.nvars + fg.nfactors;
9
vnodes = 1:fg.nvars;
10
fnodes = fg.nvars+1:N;
11
dag = zeros(N);
12
for x=1:fg.nvars
13
  dag(x, fnodes(fg.dep{x})) = 1;
14
end
15
ns = [fg.node_sizes ones(1, fg.nfactors)];
16
discrete = [fg.dnodes fnodes];
17
bnet = mk_bnet(dag, ns, 'discrete', discrete);
18
for x=1:fg.nvars
19
  bnet.CPD{x} = tabular_CPD(bnet, x, 'CPT', 'unif');
20
end
21
ev = cell(1, fg.nvars); % no evidence
22
for i=1:fg.nfactors
23
  f = fnodes(i);
24
  e = fg.equiv_class(i);
25
  pot = convert_to_pot(fg.factors{e}, 'd', fg.dom{i}, ev);
26
  m = pot_to_marginal(pot);
27
  bnet.CPD{f} = tabular_CPD(bnet, f, 'CPT', m.T);
28
end
29
  
30