To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / general / Old / mk_gdl_graph.m @ 8:b5b38998ef3b

History | View | Annotate | Download (2.53 KB)

1
function gdl = mk_gdl_graph(G, domains, node_sizes, kernels, varargin)
2
% MK_GDL_GRAPH Make a GDL (generalized distributed law) graph
3
% gdl = mk_gdl_graph(G, domains, node_sizes, kernels, ...)
4
%
5
% A GDL graph is like a moralized, but untriangulated, Bayes net:
6
% each "node" represents a domain with a corresponding kernel function.
7
% For details, see "The Generalized Distributive Law", Aji and McEliece,
8
% IEEE Trans. Info. Theory, 46(2): 325--343, 2000
9
% 
10
% G(i,j) = 1 if there is an (undirected) edge between domains i,j
11
%
12
% domains{i} is the domain of node i
13
%
14
% node_sizes(i) is the number of values node i can take on,
15
%   or the length of node i if i is a continuous-valued vector.
16
% node_sizes(i) = 1 if i is a utility node.
17
%
18
% kernels is the list of kernel functions
19
%
20
% The list below gives optional arguments [default value in brackets].
21
% 
22
% equiv_class - equiv_class(i)=j  means factor node i gets its params from factors{j} [1:F]
23
% discrete - the list of nodes which are discrete random variables [1:N]
24
% chance   - the list of nodes which are random variables [1:N]
25
% decision - the list of nodes which are decision nodes [ [] ]
26
% utility  - the list of nodes which are utility nodes [ [] ]
27

    
28

    
29
ns = node_sizes;
30
N = length(domains);
31
vars = [];
32
for i=1:N
33
  vars = myunion(vars, domains{i});
34
end
35
Nvars  = length(vars);
36

    
37
gdl.equiv_class = 1:length(kernels);
38
gdl.chance_nodes = 1:Nvars;
39
gdl.utility_nodes = [];
40
gdl.decision_nodes = [];
41
gdl.dnodes = 1:Nvars;
42

    
43
if nargin >= 5
44
  args = varargin;
45
  nargs = length(args);
46
  for i=1:2:nargs
47
    switch args{i},
48
     case 'equiv_class', bnet.equiv_class = args{i+1}; 
49
     case 'chance',      bnet.chance_nodes = args{i+1}; 
50
     case 'utility',     bnet.utility_nodes = args{i+1}; 
51
     case 'decision',    bnet.decision_nodes = args{i+1}; 
52
     case 'discrete',    bnet.dnodes = args{i+1}; 
53
     otherwise,  
54
      error(['invalid argument name ' args{i}]);       
55
    end
56
  end
57
end
58

    
59

    
60
gdl.G = G;
61
gdl.vars = vars;
62
gdl.doms = domains;
63
gdl.node_sizes = node_sizes;
64
gdl.cnodes = mysetdiff(vars, gdl.dnodes);
65
gdl.kernels = kernels;
66
gdl.type = 'gdl';
67

    
68
% Compute a bit vector representation of the set of domains
69
% dom_bitv(i,j) = 1 iff variable j occurs in domain i
70
gdl.dom_bitv = zeros(N, length(vars));
71
for i=1:N
72
  gdl.dom_bitv(i, domains{i}) = 1;
73
end
74

    
75
% compute the interesection of the domains on either side of each edge (separating set)
76
gdl.sepset = cell(N, N);
77
gdl.nbrs = cell(1,N);
78
for i=1:N
79
  nbrs = neighbors(G, i);
80
  gdl.nbrs{i} = nbrs;
81
  for j = nbrs(:)'
82
    gdl.sepset{i,j} = myintersect(domains{i}, domains{j});
83
  end
84
end
85

    
86