To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / general / Old / calc_mpe_dbn.m @ 8:b5b38998ef3b
History | View | Annotate | Download (1.1 KB)
| 1 |
function [mpe, ll] = calc_mpe_dbn(engine, evidence, break_ties) |
|---|---|
| 2 |
% CALC_MPE Computes the most probable explanation of the evidence |
| 3 |
% [mpe, ll] = calc_mpe_dbn(engine, evidence, break_ties) |
| 4 |
% |
| 5 |
% INPUT |
| 6 |
% engine must support max-propagation |
| 7 |
% evidence{i,t} is the observed value of node i in slice t, or [] if hidden
|
| 8 |
% |
| 9 |
% OUTPUT |
| 10 |
% mpe{i,t} is the most likely value of node i (cell array!)
|
| 11 |
% ll is the log-likelihood of the globally best assignment |
| 12 |
% |
| 13 |
% This currently only works when all hidden nodes are discrete |
| 14 |
|
| 15 |
if nargin < 3, break_ties = 0; end |
| 16 |
|
| 17 |
if break_ties |
| 18 |
disp('warning: break ties is ignored')
|
| 19 |
end |
| 20 |
|
| 21 |
[engine, ll] = enter_evidence(engine, evidence, 'maximize', 1); |
| 22 |
|
| 23 |
observed = ~isemptycell(evidence); |
| 24 |
[ss T] = size(evidence); |
| 25 |
scalar = 1; |
| 26 |
N = length(evidence); |
| 27 |
mpe = cell(ss,T); |
| 28 |
bnet = bnet_from_engine(engine); |
| 29 |
ns = bnet.node_sizes; |
| 30 |
for t=1:T |
| 31 |
for i=1:ss |
| 32 |
m = marginal_nodes(engine, i, t); |
| 33 |
% observed nodes are all set to 1 inside the inference engine, so we must undo this |
| 34 |
if observed(i,t) |
| 35 |
mpe{i,t} = evidence{i,t};
|
| 36 |
else |
| 37 |
assert(length(m.T) == ns(i)); |
| 38 |
mpe{i,t} = argmax(m.T);
|
| 39 |
end |
| 40 |
end |
| 41 |
end |