To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @tabular_decision_node / tabular_decision_node.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.22 KB)

1
function CPD = tabular_decision_node(bnet, self, CPT)
2
% TABULAR_DECISION_NODE Represent a stochastic policy over a discrete decision/action node as a table
3
% CPD = tabular_decision_node(bnet, self, CPT)
4
%
5
% node is the number of a node in this equivalence class.
6
% CPT is an optional argument (see tabular_CPD for details); by default, it is the uniform policy.
7

    
8
if nargin==0
9
  % This occurs if we are trying to load an object from a file.
10
  CPD = init_fields;
11
  CPD = class(CPD, 'tabular_decision_node', discrete_CPD(1, []));
12
  return;
13
elseif isa(bnet, 'tabular_decision_node')
14
  % This might occur if we are copying an object.
15
  CPD = bnet;
16
  return;
17
end
18
CPD = init_fields;
19

    
20
ns = bnet.node_sizes;
21
fam = family(bnet.dag, self);
22
ps = parents(bnet.dag, self);
23
sz = ns(fam);
24

    
25
if nargin < 3
26
  CPT = mk_stochastic(myones(sz)); 
27
else
28
  CPT = myreshape(CPT, sz);
29
end
30

    
31
CPD.CPT = CPT;
32
CPD.sizes = sz; 
33

    
34
clamped = 1; % don't update using EM
35
CPD = class(CPD, 'tabular_decision_node', discrete_CPD(clamped, ns([ps self])));
36

    
37
%%%%%%%%%%%
38

    
39
function CPD = init_fields()
40
% This ensures we define the fields in the same order 
41
% no matter whether we load an object from a file,
42
% or create it from scratch. (Matlab requires this.)
43

    
44
CPD.CPT = [];
45
CPD.sizes = [];