To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @tabular_CPD / maximize_params.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.76 KB)

1
function CPD = maximize_params(CPD, temp)
2
% MAXIMIZE_PARAMS Set the params of a tabular node to their ML/MAP values.
3
% CPD = maximize_params(CPD, temp)
4

    
5
if ~adjustable_CPD(CPD), return; end
6

    
7
%assert(approxeq(sum(CPD.counts(:)), CPD.nsamples)); % false!
8
switch CPD.prior_type
9
 case 'none',
10
  counts = reshape(CPD.counts, size(CPD.CPT));
11
  CPD.CPT = mk_stochastic(counts);
12
 case 'dirichlet',
13
  counts = reshape(CPD.counts, size(CPD.CPT));
14
  CPD.CPT = mk_stochastic(counts + CPD.dirichlet);
15
 
16
 % case 'entropic',
17
%   % For an HMM,
18
%   % CPT(i,j) = pr(X(t)=j | X(t-1)=i) = transprob(i,j)
19
%   % counts(i,j) = E #(X(t-1)=i, X(t)=j) = exp_num_trans(i,j)
20
%   Z = 1-temp;
21
%   fam_sz = CPD.sizes;
22
%   psz = prod(fam_sz(1:end-1));
23
%   ssz = fam_sz(end);
24
%   counts = reshape(CPD.counts, psz, ssz);
25
%   CPT = zeros(psz, ssz);
26
%   for i=CPD.entropic_pcases(:)'
27
%     [CPT(i,:), logpost] = entropic_map_estimate(counts(i,:), Z);
28
%   end
29
%   non_entropic_pcases = mysetdiff(1:psz, CPD.entropic_pcases);
30
%   for i=non_entropic_pcases(:)'
31
%     CPT(i,:) = mk_stochastic(counts(i,:));
32
%   end
33
%   %for i=1:psz
34
%   %  [CPT(i,:), logpost] = entropic_map(counts(i,:), Z);
35
%   %end
36
%   if CPD.trim & (temp < 2) % at high temps, we would trim everything!
37
%     % grad(j) = d log lik / d theta(i ->j)
38
%     % CPT(i,j) = 0 => counts(i,j) = 0
39
%     % so we can safely replace 0s by 1s in the denominator
40
%     denom = CPT(i,:) + (CPT(i,:)==0);
41
%     grad = counts(i,:) ./ denom;
42
%     trim = find(CPT(i,:) <= exp(-(1/Z)*grad)); % eqn 32
43
%     if ~isempty(trim)
44
%       CPT(i,trim) = 0;
45
%       if all(CPD.trimmed_trans(i,trim)==0) % trimming for 1st time
46
% 	disp(['trimming CPT(' num2str(i) ',' num2str(trim) ')']) 
47
%       end
48
%       CPD.trimmed_trans(i,trim) = 1;
49
%     end
50
%   end
51
%   CPD.CPT = myreshape(CPT, CPD.sizes);
52
end