To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @softmax_CPD / maximize_params.m @ 8:b5b38998ef3b

History | View | Annotate | Download (1.56 KB)

1
function CPD = maximize_params(CPD, temp)
2
% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (dsoftmax) using IRLS
3
% CPD = maximize_params(CPD, temperature)
4
% temperature parameter is ignored
5

    
6
% Written by Pierpaolo Brutti
7

    
8
if ~adjustable_CPD(CPD), return; end
9
options = foptions;
10

    
11
if CPD.verbose
12
  options(1) = 1;
13
else
14
  options(1) = -1;
15
end
16
%options(1) = CPD.verbose;
17

    
18
options(2) = CPD.wthresh;
19
options(3) = CPD.llthresh;
20
options(5) = CPD.approx_hess;
21
options(14) = CPD.max_iter;
22

    
23
dpsize = size(CPD.self_vals,3);
24
for i=1:dpsize,
25
  mask=find(CPD.eso_weights(:,:,i)>0); % for adapting the parameters we use only positive weighted example
26
  if  ~isempty(mask),
27
    if ~isempty(CPD.dps_as_cps.ndx),
28
        puredp_map = find_equiv_posns(CPD.dpndx, union(CPD.dpndx, CPD.dps_as_cps.ndx)); % find the glm  structure
29
        subs       = ind2subv(CPD.sizes(union(CPD.dpndx, CPD.dps_as_cps.ndx)),i);       % that corrisponds to the
30
        active_glm = max([1,subv2ind(CPD.sizes(CPD.dpndx), subs(puredp_map))]);         % i-th 'fictitious' example
31
        
32
        CPD.glim{active_glm} = netopt_weighted(CPD.glim{active_glm}, options, CPD.parent_vals(mask',:,i),...
33
            CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), 'scg');
34
    else
35
        alfa = 0.4; if CPD.solo, alfa = 1; end % learning step = 1 <=> self is all alone in the net
36
        CPD.glim{i} = glmtrain_weighted(CPD.glim{i}, options, CPD.parent_vals(mask',:),...
37
            CPD.self_vals(mask',:,i), CPD.eso_weights(mask',:,i), alfa);
38
    end               
39
  end
40
  mask=[];
41
end