To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / CPDs / @mlp_CPD / update_ess.m @ 8:b5b38998ef3b
History | View | Annotate | Download (5.29 KB)
| 1 |
function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) |
|---|---|
| 2 |
% UPDATE_ESS Update the Expected Sufficient Statistics of a CPD (MLP) |
| 3 |
% CPD = update_ess(CPD, family_marginal, evidence, node_sizes, cnodes, hidden_bitv) |
| 4 |
% |
| 5 |
% fmarginal = overall posterior distribution of self and its parents |
| 6 |
% fmarginal(i1,i2...,ik,s)=prob(Pa1=i1,...,Pak=ik, self=s| X) |
| 7 |
% |
| 8 |
% => 1) prob(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) with prob(Pa1,...,Pak)=sum{s,fmarginal}
|
| 9 |
% [self estimation -> CPD.self_vals] |
| 10 |
% 2) prob(Pa1,...,Pak) [SCG weights -> CPD.eso_weights] |
| 11 |
% |
| 12 |
% Hidden_bitv is ignored |
| 13 |
|
| 14 |
% Written by Pierpaolo Brutti |
| 15 |
|
| 16 |
if ~adjustable_CPD(CPD), return; end |
| 17 |
|
| 18 |
dom = fmarginal.domain; |
| 19 |
cdom = myintersect(dom, cnodes); |
| 20 |
assert(~any(isemptycell(evidence(cdom)))); |
| 21 |
ns(cdom)=1; |
| 22 |
|
| 23 |
self = dom(end); |
| 24 |
ps=dom(1:end-1); |
| 25 |
dpdom=mysetdiff(ps,cdom); |
| 26 |
|
| 27 |
dnodes = mysetdiff(1:length(ns), cnodes); |
| 28 |
|
| 29 |
ddom = myintersect(ps, dnodes); % |
| 30 |
if isempty(evidence{self}), % if self is hidden in what follow we must
|
| 31 |
ddom = myintersect(dom, dnodes); % consider its dimension |
| 32 |
end % |
| 33 |
|
| 34 |
odom = dom(~isemptycell(evidence(dom))); |
| 35 |
hdom = dom(isemptycell(evidence(dom))); % hidden parents in domain |
| 36 |
|
| 37 |
dobs = myintersect(ddom, odom); |
| 38 |
dvals = cat(1, evidence{dobs});
|
| 39 |
ens = ns; % effective node sizes |
| 40 |
ens(dobs) = 1; |
| 41 |
|
| 42 |
dpsz=prod(ns(dpdom)); |
| 43 |
S=prod(ens(ddom)); |
| 44 |
subs = ind2subv(ens(ddom), 1:S); |
| 45 |
mask = find_equiv_posns(dobs, ddom); |
| 46 |
for i=1:length(mask), |
| 47 |
subs(:,mask(i)) = dvals(i); |
| 48 |
end |
| 49 |
supportedQs = subv2ind(ns(ddom), subs); |
| 50 |
|
| 51 |
Qarity = prod(ns(ddom)); |
| 52 |
if isempty(ddom), |
| 53 |
Qarity = 1; |
| 54 |
end |
| 55 |
fullm.T = zeros(Qarity, 1); |
| 56 |
fullm.T(supportedQs) = fmarginal.T(:); |
| 57 |
|
| 58 |
% For dynamic (recurrent) net------------------------------------------------------------- |
| 59 |
% ---------------------------------------------------------------------------------------- |
| 60 |
high=size(evidence,1); % slice height |
| 61 |
ss_ns=ns(1:high); % single slice nodes sizes |
| 62 |
pos=self; % |
| 63 |
slice_num=0; % |
| 64 |
while pos>high, % |
| 65 |
slice_num=slice_num+1; % find active slice |
| 66 |
pos=pos-high; % pos=self posistion into a single slice |
| 67 |
end % |
| 68 |
|
| 69 |
last_dim=pos-1; % |
| 70 |
if isempty(evidence{self}), %
|
| 71 |
last_dim=pos; % |
| 72 |
end % last_dim=last reshaping dimension |
| 73 |
reg=dom-slice_num*high; |
| 74 |
dex=myintersect(reg(find(reg>=0)), [1:last_dim]); % |
| 75 |
rs_dim=ss_ns(dex); % reshaping dimensions |
| 76 |
|
| 77 |
if slice_num>0, |
| 78 |
act_slice=[]; past_ancest=[]; % |
| 79 |
act_slice=slice_num*high+[1:high]; % recover the active slice nodes |
| 80 |
% past_ancest=mysetdiff(ddom, act_slice); |
| 81 |
past_ancest=mysetdiff(ps, act_slice); % recover ancestors contained into past slices |
| 82 |
app=ns(past_ancest); |
| 83 |
rs_dim=[app(:)' rs_dim(:)']; % |
| 84 |
end % |
| 85 |
if length(rs_dim)==1, rs_dim=[1 rs_dim]; end % |
| 86 |
if size(rs_dim,1)~=1, rs_dim=rs_dim'; end % |
| 87 |
|
| 88 |
fullm.T=reshape(fullm.T, rs_dim); % reshaping the marginal |
| 89 |
|
| 90 |
% ---------------------------------------------------------------------------------------- |
| 91 |
% ---------------------------------------------------------------------------------------- |
| 92 |
|
| 93 |
% X = cts parent, R = discrete self |
| 94 |
|
| 95 |
% 1) observations vector -> CPD.parents_vals ------------------------------------------------- |
| 96 |
x = cat(1, evidence{cdom});
|
| 97 |
|
| 98 |
% 2) weights vector -> CPD.eso_weights ------------------------------------------------------- |
| 99 |
if isempty(evidence{self}) % R is hidden
|
| 100 |
sum_over=length(rs_dim); |
| 101 |
app=sum(fullm.T, sum_over); |
| 102 |
pesi=reshape(app,[dpsz,1]); |
| 103 |
clear app; |
| 104 |
else |
| 105 |
pesi=reshape(fullm.T,[dpsz,1]); |
| 106 |
end |
| 107 |
|
| 108 |
assert(approxeq(sum(pesi),1)); |
| 109 |
|
| 110 |
% 3) estimate (if R is hidden) or recover (if R is obs) self'value---------------------------- |
| 111 |
if isempty(evidence{self}) % R is hidden
|
| 112 |
app=mk_stochastic(fullm.T); % P(self|Pa1,...,Pak)=fmarginal/prob(Pa1,...,Pak) |
| 113 |
app=reshape(app,[dpsz ns(self)]); % matrix size: prod{j,ns(Paj)} x ns(self)
|
| 114 |
r=app; |
| 115 |
clear app; |
| 116 |
else |
| 117 |
r = zeros(dpsz,ns(self)); |
| 118 |
for i=1:dpsz |
| 119 |
if pesi(i)~=0, r(i,evidence{self}) = 1; end
|
| 120 |
end |
| 121 |
end |
| 122 |
for i=1:dpsz |
| 123 |
if pesi(i) ~=0, assert(approxeq(sum(r(i,:)),1)); end |
| 124 |
end |
| 125 |
|
| 126 |
CPD.nsamples = CPD.nsamples + 1; |
| 127 |
CPD.parent_vals(CPD.nsamples,:) = x(:)'; |
| 128 |
for i=1:dpsz |
| 129 |
CPD.eso_weights(CPD.nsamples,:,i)=pesi(i); |
| 130 |
CPD.self_vals(CPD.nsamples,:,i) = r(i,:); |
| 131 |
end |