To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @mlp_CPD / convert_to_table.m @ 8:b5b38998ef3b

History | View | Annotate | Download (3.46 KB)

1
function T = convert_to_table(CPD, domain, evidence)
2
% CONVERT_TO_TABLE Convert a mlp CPD to a table, incorporating any evidence 
3
% T = convert_to_table(CPD, domain, evidence)
4

    
5
self = domain(end);                    
6
ps = domain(1:end-1);                               % self' parents                                       
7
%cps = myintersect(ps, cnodes);                      % self' continous parents      
8
cnodes     = domain(CPD.cpndx);
9
cps        = myintersect(ps, cnodes);
10
odom = domain(~isemptycell(evidence(domain)));      % obs nodes in the net
11
assert(myismember(cps, odom));                      % !ALL the CTS parents must be observed!
12
ns(cps)=1;
13
dps = mysetdiff(ps, cps);                           % self' discrete parents                                                    
14
dobs = myintersect(dps, odom);                      % discrete obs parents
15

    
16
% Extract the params compatible with the observations (if any) on the discrete parents (if any)
17

    
18
if ~isempty(dobs),
19
    dvals = cat(1, evidence{dobs});             
20
    ns_eff= CPD.sizes;                               % effective node sizes              
21
    ens=ns_eff;
22
    ens(dobs) = 1;                              
23
    S=prod(ens(dps));
24
    subs = ind2subv(ens(dps), 1:S);
25
    mask = find_equiv_posns(dobs, dps);        
26
    for i=1:length(mask),
27
        subs(:,mask(i)) = dvals(i);
28
    end     
29
    support = subv2ind(ns_eff(dps), subs)';
30
else 
31
    ns_eff= CPD.sizes;
32
    support=[1:prod(ns_eff(dps))];
33
end
34

    
35
W1=[]; b1=[]; W2=[]; b2=[];
36

    
37
W1 = CPD.W1(:,:,support);
38
b1= CPD.b1(support,:);
39
W2 = CPD.W2(:,:,support);
40
b2= CPD.b2(support,:);
41
ns(odom) = 1;
42
dpsize = prod(ns(dps));                             % overall size of the self' discrete parents  
43

    
44
x = cat(1, evidence{cps});    
45
ndata=size(x,2);
46

    
47
if ~isempty(evidence{self})                         %
48
    app=struct(CPD);                                %
49
    ns(self)=app.mlp{1}.nout;                       % pump up self to the original dimension if observed
50
    clear app;                                      %
51
end                                                 %
52

    
53
T =zeros(dpsize, ns(self));                         %
54
for i=1:dpsize                                      %                 
55
    W1app = W1(:,:,i);                              % 
56
    b1app = b1(i,:);                                % 
57
    W2app = W2(:,:,i);                              % 
58
    b2app = b2(i,:);                                % for each of the dpsize combinations of self'parents values 
59
    z = tanh(x(:)'*W1app + ones(ndata, 1)*b1app);   % we tabulate the corrisponding glm model
60
    a = z*W2app + ones(ndata, 1)*b2app;             % (element of the cell array CPD.glim)
61
    appoggio = normalise(exp(a));                   %
62
    T(i,:)=appoggio;                                %
63
    W1app=[]; W2app=[]; b1app=[]; b2app=[];         %
64
    z=[]; a=[]; appoggio=[];                        %
65
end                                                 %                
66

    
67
if ~isempty(evidence{self})
68
    appoggio=[];                            %
69
    appoggio=zeros(1,ns(self));             %
70
    r = evidence{self};                     %...if self is observed => in output there's only the probability of the 'true' class
71
    for i=1:dpsize                          % 
72
          appoggio(i)=T(i,r);               % 
73
    end
74
    T=zeros(dpsize,1);
75
    for i=1:dpsize
76
        T(i,1)=appoggio(i);                        
77
    end
78
    clear appoggio;
79
    ns(self) = 1;
80
end