To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / CPDs / @hhmmQ_CPD / Old / update_ess2.m @ 8:b5b38998ef3b
History | View | Annotate | Download (6.51 KB)
| 1 |
function CPD = update_ess2(CPD, fmarginal, evidence, ns, cnodes, hidden_bitv) |
|---|---|
| 2 |
% UPDATE_ESS Update the Expected Sufficient Statistics of a hhmm Q node. |
| 3 |
% function CPD = update_ess(CPD, fmarginal, evidence, ns, cnodes, idden_bitv) |
| 4 |
|
| 5 |
% Figure out the node numbers associated with each parent |
| 6 |
dom = fmarginal.domain; |
| 7 |
self = dom(end); % by assumption |
| 8 |
old_self = dom(CPD.old_self_ndx); |
| 9 |
Fself = dom(CPD.Fself_ndx); |
| 10 |
Fbelow = dom(CPD.Fbelow_ndx); |
| 11 |
Qps = dom(CPD.Qps_ndx); |
| 12 |
|
| 13 |
Qsz = CPD.Qsz; |
| 14 |
Qpsz = CPD.Qpsz; |
| 15 |
|
| 16 |
|
| 17 |
fmarg = add_ev_to_dmarginal(fmarginal, evidence, ns); |
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
% hor_counts(old_self, Qps, self), |
| 22 |
% fmarginal(old_self, Fbelow, Fself, Qps, self) |
| 23 |
% hor_counts(i,k,j) = fmarginal(i,2,1,k,j) % below has finished, self has not |
| 24 |
% ver_counts(i,k,j) = fmarginal(i,2,2,k,j) % below has finished, and so has self (reset) |
| 25 |
% Since any of i,j,k may be observed, we write |
| 26 |
% hor_counts(counts_ndx{:}) = fmarginal(fmarg_ndx{:})
|
| 27 |
% where e.g., counts_ndx = {1, ':', 2} if Qps is hidden but we observe old_self=1, self=2.
|
| 28 |
% To create this counts_ndx, we write counts_ndx = mk_multi_ndx(3, obs_dim, obs_val) |
| 29 |
% where counts_obs_dim = [1 3], counts_obs_val = [1 2] specifies the values of dimensions 1 and 3. |
| 30 |
|
| 31 |
counts_obs_dim = []; |
| 32 |
fmarg_obs_dim = []; |
| 33 |
obs_val = []; |
| 34 |
if hidden_bitv(self) |
| 35 |
effQsz = Qsz; |
| 36 |
else |
| 37 |
effQsz = 1; |
| 38 |
counts_obs_dim = [counts_obs_dim 3]; |
| 39 |
fmarg_obs_dim = [fmarg_obs_dim 5]; |
| 40 |
obs_val = [obs_val evidence{self}];
|
| 41 |
end |
| 42 |
|
| 43 |
% e.g., D=4, d=3, Qps = all Qs above, so dom = [Q3(t-1) F4(t-1) F3(t-1) Q1(t) Q2(t) Q3(t)]. |
| 44 |
% so self = Q3(t), old_self = Q3(t-1), CPD.Qps = [1 2], Qps = [Q1(t) Q2(t)] |
| 45 |
dom = fmarginal.domain; |
| 46 |
self = dom(end); |
| 47 |
old_self = dom(1); |
| 48 |
Qps = dom(length(dom)-length(CPD.Qps):end-1); |
| 49 |
|
| 50 |
Qsz = CPD.Qsizes(CPD.d); |
| 51 |
Qpsz = prod(CPD.Qsizes(CPD.Qps)); |
| 52 |
|
| 53 |
% If some of the Q nodes are observed (which happens during supervised training) |
| 54 |
% the counts will only be non-zero in positions |
| 55 |
% consistent with the evidence. We put the computed marginal responsibilities |
| 56 |
% into the appropriate slots of the big counts array. |
| 57 |
% (Recall that observed discrete nodes only have a single effective value.) |
| 58 |
% (A more general, but much slower, way is to call add_evidence_to_dmarginal.) |
| 59 |
% We assume the F nodes are never observed. |
| 60 |
|
| 61 |
obs_self = ~hidden_bitv(self); |
| 62 |
obs_Qps = (~isempty(Qps)) & (~any(hidden_bitv(Qps))); % we assume that all or none of the Q parents are observed |
| 63 |
|
| 64 |
if obs_self |
| 65 |
self_val = evidence{self};
|
| 66 |
oldself_val = evidence{old_self};
|
| 67 |
end |
| 68 |
|
| 69 |
if obs_Qps |
| 70 |
Qps_val = subv2ind(Qpsz, cat(1, evidence{Qps}));
|
| 71 |
if Qps_val == 0 |
| 72 |
keyboard |
| 73 |
end |
| 74 |
end |
| 75 |
|
| 76 |
if CPD.d==1 % no Qps from above |
| 77 |
if ~CPD.F1toQ1 % no F from self |
| 78 |
% marg(Q1(t-1), F2(t-1), Q1(t)) |
| 79 |
% F2(t-1) P(Q1(t)=j | Q1(t-1)=i) |
| 80 |
% 1 delta(i,j) |
| 81 |
% 2 transprob(i,j) |
| 82 |
if obs_self |
| 83 |
hor_counts = zeros(Qsz, Qsz); |
| 84 |
hor_counts(oldself_val, self_val) = fmarginal.T(2); |
| 85 |
else |
| 86 |
marg = reshape(fmarginal.T, [Qsz 2 Qsz]); |
| 87 |
hor_counts = squeeze(marg(:,2,:)); |
| 88 |
end |
| 89 |
else |
| 90 |
% marg(Q1(t-1), F2(t-1), F1(t-1), Q1(t)) |
| 91 |
% F2(t-1) F1(t-1) P(Qd(t)=j| Qd(t-1)=i) |
| 92 |
% ------------------------------------------------------ |
| 93 |
% 1 1 delta(i,j) |
| 94 |
% 2 1 transprob(i,j) |
| 95 |
% 1 2 impossible |
| 96 |
% 2 2 startprob(j) |
| 97 |
if obs_self |
| 98 |
marg = myreshape(fmarginal.T, [1 2 2 1]); |
| 99 |
hor_counts = zeros(Qsz, Qsz); |
| 100 |
hor_counts(oldself_val, self_val) = marg(1,2,1,1); |
| 101 |
ver_counts = zeros(Qsz, 1); |
| 102 |
%ver_counts(self_val) = marg(1,2,2,1); |
| 103 |
ver_counts(self_val) = marg(1,2,2,1) + marg(1,1,2,1); |
| 104 |
else |
| 105 |
marg = reshape(fmarginal.T, [Qsz 2 2 Qsz]); |
| 106 |
hor_counts = squeeze(marg(:,2,1,:)); |
| 107 |
%ver_counts = squeeze(sum(marg(:,2,2,:),1)); % sum over i |
| 108 |
ver_counts = squeeze(sum(marg(:,2,2,:),1)) + squeeze(sum(marg(:,1,2,:),1)); % sum i,b |
| 109 |
end |
| 110 |
end % F1toQ1 |
| 111 |
else % d ~= 1 |
| 112 |
if CPD.d < CPD.D % general case |
| 113 |
% marg(Qd(t-1), Fd+1(t-1), Fd(t-1), Qps(t), Qd(t)) |
| 114 |
% Fd+1(t-1) Fd(t-1) P(Qd(t)=j| Qd(t-1)=i, Qps(t)=k) |
| 115 |
% ------------------------------------------------------ |
| 116 |
% 1 1 delta(i,j) |
| 117 |
% 2 1 transprob(i,k,j) |
| 118 |
% 1 2 impossible |
| 119 |
% 2 2 startprob(k,j) |
| 120 |
if obs_Qps & obs_self |
| 121 |
marg = myreshape(fmarginal.T, [1 2 2 1 1]); |
| 122 |
k = 1; |
| 123 |
hor_counts = zeros(Qsz, Qpsz, Qsz); |
| 124 |
hor_counts(oldself_val, Qps_val, self_val) = marg(1, 2,1, k,1); |
| 125 |
ver_counts = zeros(Qpsz, Qsz); |
| 126 |
%ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1); |
| 127 |
ver_counts(Qps_val, self_val) = marg(1, 2,2, k,1) + marg(1, 1,2, k,1); |
| 128 |
elseif obs_Qps & ~obs_self |
| 129 |
marg = myreshape(fmarginal.T, [Qsz 2 2 1 Qsz]); |
| 130 |
k = 1; |
| 131 |
hor_counts = zeros(Qsz, Qpsz, Qsz); |
| 132 |
hor_counts(:, Qps_val, :) = marg(:, 2,1, k,:); |
| 133 |
ver_counts = zeros(Qpsz, Qsz); |
| 134 |
%ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1); |
| 135 |
ver_counts(Qps_val, :) = sum(marg(:, 2,2, k,:), 1) + sum(marg(:, 1,2, k,:), 1); |
| 136 |
elseif ~obs_Qps & obs_self |
| 137 |
error('not yet implemented')
|
| 138 |
else % everything is hidden |
| 139 |
marg = reshape(fmarginal.T, [Qsz 2 2 Qpsz Qsz]); |
| 140 |
hor_counts = squeeze(marg(:,2,1,:,:)); % i,k,j |
| 141 |
%ver_counts = squeeze(sum(marg(:,2,2,:,:),1)); % sum over i |
| 142 |
ver_counts = squeeze(sum(marg(:,2,2,:,:),1)) + squeeze(sum(marg(:,1,2,:,:),1)); % sum over i,b |
| 143 |
end |
| 144 |
else % d == D, so no F from below |
| 145 |
% marg(QD(t-1), FD(t-1), Qps(t), QD(t)) |
| 146 |
% FD(t-1) P(QD(t)=j | QD(t-1)=i, Qps(t)=k) |
| 147 |
% 1 transprob(i,k,j) |
| 148 |
% 2 startprob(k,j) |
| 149 |
if obs_Qps & obs_self |
| 150 |
marg = myreshape(fmarginal.T, [1 2 1 1]); |
| 151 |
k = 1; |
| 152 |
hor_counts = zeros(Qsz, Qpsz, Qsz); |
| 153 |
hor_counts(oldself_val, Qps_val, self_val) = marg(1, 1, k,1); |
| 154 |
ver_counts = zeros(Qpsz, Qsz); |
| 155 |
ver_counts(Qps_val, self_val) = marg(1, 2, k,1); |
| 156 |
elseif obs_Qps & ~obs_self |
| 157 |
marg = myreshape(fmarginal.T, [Qsz 2 1 Qsz]); |
| 158 |
k = 1; |
| 159 |
hor_counts = zeros(Qsz, Qpsz, Qsz); |
| 160 |
hor_counts(:, Qps_val, :) = marg(:, 1, k,:); |
| 161 |
ver_counts = zeros(Qpsz, Qsz); |
| 162 |
ver_counts(Qps_val, :) = sum(marg(:, 2, k, :), 1); |
| 163 |
elseif ~obs_Qps & obs_self |
| 164 |
error('not yet implemented')
|
| 165 |
else % everything is hidden |
| 166 |
marg = reshape(fmarginal.T, [Qsz 2 Qpsz Qsz]); |
| 167 |
hor_counts = squeeze(marg(:,1,:,:)); |
| 168 |
ver_counts = squeeze(sum(marg(:,2,:,:),1)); % sum over i |
| 169 |
end |
| 170 |
end |
| 171 |
end |
| 172 |
|
| 173 |
CPD.sub_CPD_trans = update_ess_simple(CPD.sub_CPD_trans, hor_counts); |
| 174 |
|
| 175 |
if ~isempty(CPD.sub_CPD_start) |
| 176 |
CPD.sub_CPD_start = update_ess_simple(CPD.sub_CPD_start, ver_counts); |
| 177 |
end |
| 178 |
|