To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.
root / _FullBNT / BNT / CPDs / @hhmmQ_CPD / Old / hhmmQ_CPD.m @ 8:b5b38998ef3b
History | View | Annotate | Download (3.78 KB)
| 1 |
function CPD = hhmmQ_CPD(bnet, self, Qnodes, d, D, varargin) |
|---|---|
| 2 |
% HHMMQ_CPD Make the CPD for a Q node at depth D of a D-level hierarchical HMM |
| 3 |
% CPD = hhmmQ_CPD(bnet, self, Qnodes, d, D, ...) |
| 4 |
% |
| 5 |
% Fd(t-1) \ Q1:d-1(t) |
| 6 |
% \ | |
| 7 |
% \ v |
| 8 |
% Qd(t-1) -> Qd(t) |
| 9 |
% / |
| 10 |
% / |
| 11 |
% Fd+1(t-1) |
| 12 |
% |
| 13 |
% We assume parents are ordered (numbered) as follows: |
| 14 |
% Qd(t-1), Fd+1(t-1), Fd(t-1), Q1(t), ..., Qd(t) |
| 15 |
% |
| 16 |
% The parents of Qd(t) can either be just Qd-1(t) or the whole stack Q1:d-1(t) (allQ) |
| 17 |
% In either case, we will call them Qps. |
| 18 |
% If d=1, Qps does not exist. Also, the F1(t-1) -> Q1(t) arc is optional. |
| 19 |
% If the arc is missing, startprob does not need to be specified, |
| 20 |
% since the toplevel is assumed to never reset (F1 does not exist). |
| 21 |
% If d=D, Fd+1(t-1) does not exist (there is no signal from below). |
| 22 |
% |
| 23 |
% optional args [defaults] |
| 24 |
% |
| 25 |
% transprob - transprob(i,k,j) = prob transition from i to j given Qps = k ['leftright'] |
| 26 |
% selfprob - prob of a transition from i to i given Qps=k [0.1] |
| 27 |
% startprob - startprob(k,j) = prob start in j given Qps = k ['leftstart'] |
| 28 |
% startargs - other args to be passed to the sub tabular_CPD for learning startprob |
| 29 |
% transargs - other args will be passed to the sub tabular_CPD for learning transprob |
| 30 |
% allQ - 1 means use all Q nodes above d as parents, 0 means just level d-1 [0] |
| 31 |
% F1toQ1 - 1 means add F1(t-1) -> Q1(t) arc, 0 means level 1 never resets [0] |
| 32 |
% |
| 33 |
% For d=1, startprob(1,j) is only needed if F1toQ1=1 |
| 34 |
% Also, transprob(i,j) can be used instead of transprob(i,1,j). |
| 35 |
% |
| 36 |
% hhmmQ_CPD is a subclass of tabular_CPD so we inherit inference methods like CPD_to_pot, etc. |
| 37 |
% |
| 38 |
% We create isolated tabular_CPDs with no F parents to learn transprob/startprob |
| 39 |
% so we can avail of e.g., entropic or Dirichlet priors. |
| 40 |
% In the future, we will be able to represent the transprob using a tree_CPD. |
| 41 |
% |
| 42 |
% For details, see "Linear-time inference in hierarchical HMMs", Murphy and Paskin, NIPS'01. |
| 43 |
|
| 44 |
|
| 45 |
ss = bnet.nnodes_per_slice; |
| 46 |
%assert(self == Qnodes(d)+ss); |
| 47 |
ns = bnet.node_sizes(:); |
| 48 |
CPD.Qsizes = ns(Qnodes); |
| 49 |
CPD.d = d; |
| 50 |
CPD.D = D; |
| 51 |
allQ = 0; |
| 52 |
|
| 53 |
% find out which parents to use, to get right size |
| 54 |
for i=1:2:length(varargin) |
| 55 |
switch varargin{i},
|
| 56 |
case 'allQ', allQ = varargin{i+1};
|
| 57 |
end |
| 58 |
end |
| 59 |
|
| 60 |
if d==1 |
| 61 |
CPD.Qps = []; |
| 62 |
else |
| 63 |
if allQ |
| 64 |
CPD.Qps = Qnodes(1:d-1); |
| 65 |
else |
| 66 |
CPD.Qps = Qnodes(d-1); |
| 67 |
end |
| 68 |
end |
| 69 |
|
| 70 |
Qsz = ns(self); |
| 71 |
Qpsz = prod(ns(CPD.Qps)); |
| 72 |
|
| 73 |
% set default arguments |
| 74 |
startprob = 'leftstart'; |
| 75 |
transprob = 'leftright'; |
| 76 |
startargs = {};
|
| 77 |
transargs = {};
|
| 78 |
CPD.F1toQ1 = 0; |
| 79 |
selfprob = 0.1; |
| 80 |
|
| 81 |
for i=1:2:length(varargin) |
| 82 |
switch varargin{i},
|
| 83 |
case 'transprob', transprob = varargin{i+1};
|
| 84 |
case 'selfprob', selfprob = varargin{i+1};
|
| 85 |
case 'startprob', startprob = varargin{i+1};
|
| 86 |
case 'startargs', startargs = varargin{i+1};
|
| 87 |
case 'transargs', transargs = varargin{i+1};
|
| 88 |
case 'F1toQ1', CPD.F1toQ1 = varargin{i+1};
|
| 89 |
end |
| 90 |
end |
| 91 |
|
| 92 |
Qps = CPD.Qps + ss; |
| 93 |
old_self = self-ss; |
| 94 |
|
| 95 |
if strcmp(transprob, 'leftright') |
| 96 |
LR = mk_leftright_transmat(Qsz, selfprob); |
| 97 |
transprob = repmat(reshape(LR, [1 Qsz Qsz]), [Qpsz 1 1]); % transprob(k,i,j) |
| 98 |
transprob = permute(transprob, [2 1 3]); % now transprob(i,k,j) |
| 99 |
end |
| 100 |
transargs{end+1} = 'CPT';
|
| 101 |
transargs{end+1} = transprob;
|
| 102 |
CPD.sub_CPD_trans = mk_isolated_tabular_CPD([old_self Qps], ns([old_self Qps self]), transargs); |
| 103 |
S = struct(CPD.sub_CPD_trans); |
| 104 |
CPD.transprob = myreshape(S.CPT, [Qsz Qpsz Qsz]); |
| 105 |
|
| 106 |
|
| 107 |
if strcmp(startprob, 'leftstart') |
| 108 |
startprob = zeros(Qpsz, Qsz); |
| 109 |
startprob(:,1) = 1; |
| 110 |
end |
| 111 |
|
| 112 |
if (d==1) & ~CPD.F1toQ1 |
| 113 |
CPD.sub_CPD_start = []; |
| 114 |
CPD.startprob = []; |
| 115 |
else |
| 116 |
startargs{end+1} = 'CPT';
|
| 117 |
startargs{end+1} = startprob;
|
| 118 |
CPD.sub_CPD_start = mk_isolated_tabular_CPD(Qps, ns([Qps self]), startargs); |
| 119 |
S = struct(CPD.sub_CPD_start); |
| 120 |
CPD.startprob = myreshape(S.CPT, [Qpsz Qsz]); |
| 121 |
end |
| 122 |
|
| 123 |
CPD = class(CPD, 'hhmmQ_CPD', tabular_CPD(bnet, self)); |
| 124 |
|
| 125 |
CPD = update_CPT(CPD); |
| 126 |
|