To check out this repository please hg clone the following URL, or open the URL using EasyMercurial or your preferred Mercurial client.

Statistics Download as Zip
| Branch: | Revision:

root / _FullBNT / BNT / CPDs / @gaussian_CPD / maximize_params_debug.m @ 8:b5b38998ef3b

History | View | Annotate | Download (5.32 KB)

1
function CPD = maximize_params(CPD, temp)
2
% MAXIMIZE_PARAMS Set the params of a CPD to their ML values (Gaussian)
3
% CPD = maximize_params(CPD, temperature)
4
%
5
% Temperature is currently ignored.
6

    
7
if ~adjustable_CPD(CPD), return; end
8

    
9
CPD1 = struct(new_maximize_params(CPD));
10
CPD2 = struct(old_maximize_params(CPD));
11
assert(approxeq(CPD1.mean, CPD2.mean))
12
assert(approxeq(CPD1.cov, CPD2.cov))
13
assert(approxeq(CPD1.weights, CPD2.weights))
14

    
15
CPD = new_maximize_params(CPD);
16

    
17
%%%%%%%
18
function CPD = new_maximize_params(CPD)
19

    
20
if CPD.clamped_mean
21
  cl_mean = CPD.mean;
22
else
23
  cl_mean = [];
24
end
25

    
26
if CPD.clamped_cov
27
  cl_cov = CPD.cov;
28
else
29
  cl_cov = [];
30
end
31

    
32
if CPD.clamped_weights
33
  cl_weights = CPD.weights;
34
else
35
  cl_weights = [];
36
end
37

    
38
[ssz psz Q] = size(CPD.weights);
39

    
40
prior =  repmat(CPD.cov_prior_weight*eye(ssz,ssz), [1 1 Q]);
41
[CPD.mean, CPD.cov, CPD.weights] = ...
42
    Mstep_clg('w', CPD.Wsum, 'YY', CPD.WYYsum, 'Y', CPD.WYsum, 'YTY', [], ...
43
	      'XX', CPD.WXXsum, 'XY', CPD.WXYsum, 'X', CPD.WXsum, ...
44
	      'cov_type', CPD.cov_type, 'clamped_mean', cl_mean, ...
45
	      'clamped_cov', cl_cov, 'clamped_weights', cl_weights, ...
46
	      'tied_cov', CPD.tied_cov, ...
47
	      'cov_prior', prior);
48

    
49

    
50
%%%%%%%%%%%
51

    
52
function CPD = old_maximize_params(CPD)
53

    
54

    
55
if ~adjustable_CPD(CPD), return; end
56

    
57
%assert(approxeq(CPD.nsamples, sum(CPD.Wsum)));
58
assert(~any(isnan(CPD.WXXsum)))
59
assert(~any(isnan(CPD.WXYsum)))
60
assert(~any(isnan(CPD.WYYsum)))
61

    
62
[self_size cpsize dpsize] = size(CPD.weights);
63

    
64
% Append 1s to the parents, and derive the corresponding cross products.
65
% This is used when estimate the means and weights simultaneosuly,
66
% and when estimatting Sigma.
67
% Let x2 = [x 1]'
68
XY = zeros(cpsize+1, self_size, dpsize); % XY(:,:,i) = sum_l w(l,i) x2(l) y(l)' 
69
XX = zeros(cpsize+1, cpsize+1, dpsize); % XX(:,:,i) = sum_l w(l,i) x2(l) x2(l)' 
70
YY = zeros(self_size, self_size, dpsize); % YY(:,:,i) = sum_l w(l,i) y(l) y(l)' 
71
for i=1:dpsize
72
  XY(:,:,i) = [CPD.WXYsum(:,:,i) % X*Y
73
	       CPD.WYsum(:,i)']; % 1*Y
74
  % [x  * [x' 1]  = [xx' x
75
  %  1]              x'  1]
76
  XX(:,:,i) = [CPD.WXXsum(:,:,i) CPD.WXsum(:,i);
77
	       CPD.WXsum(:,i)'   CPD.Wsum(i)];
78
  YY(:,:,i) = CPD.WYYsum(:,:,i);
79
end
80

    
81
w = CPD.Wsum(:);
82
% Set any zeros to one before dividing
83
% This is valid because w(i)=0 => WYsum(:,i)=0, etc
84
w = w + (w==0);
85

    
86
if CPD.clamped_mean
87
  % Estimating B2 and then setting the last column (the mean) to the clamped mean is *not* equivalent
88
  % to estimating B and then adding the clamped_mean to the last column.
89
  if ~CPD.clamped_weights
90
    B = zeros(self_size, cpsize, dpsize);
91
    for i=1:dpsize
92
      if det(CPD.WXXsum(:,:,i))==0
93
	B(:,:,i) = 0;
94
      else
95
	% Eqn 9 in table 2 of TR
96
	%B(:,:,i) = CPD.WXYsum(:,:,i)' * inv(CPD.WXXsum(:,:,i));
97
	B(:,:,i) = (CPD.WXXsum(:,:,i) \ CPD.WXYsum(:,:,i))';
98
      end
99
    end
100
    %CPD.weights = reshape(B, [self_size cpsize dpsize]);
101
    CPD.weights = B;
102
  end
103
elseif CPD.clamped_weights % KPM 1/25/02
104
  if ~CPD.clamped_mean % ML estimate is just sample mean of the residuals
105
    for i=1:dpsize
106
      CPD.mean(:,i) = (CPD.WYsum(:,i) - CPD.weights(:,:,i) * CPD.WXsum(:,i)) / w(i);
107
    end
108
  end
109
else % nothing is clamped, so estimate mean and weights simultaneously
110
  B2 = zeros(self_size, cpsize+1, dpsize);
111
  for i=1:dpsize
112
    if det(XX(:,:,i))==0  % fix by U. Sondhauss 6/27/99
113
      B2(:,:,i)=0;          
114
    else                    
115
      % Eqn 9 in table 2 of TR
116
      %B2(:,:,i) = XY(:,:,i)' * inv(XX(:,:,i));
117
      B2(:,:,i) = (XX(:,:,i) \ XY(:,:,i))';
118
    end                   
119
    CPD.mean(:,i) = B2(:,cpsize+1,i);
120
    CPD.weights(:,:,i) = B2(:,1:cpsize,i);
121
  end
122
end
123

    
124
% Let B2 = [W mu]
125
if cpsize>0
126
  B2(:,1:cpsize,:) = reshape(CPD.weights, [self_size cpsize dpsize]);
127
end
128
B2(:,cpsize+1,:) = reshape(CPD.mean, [self_size dpsize]);
129

    
130
% To avoid singular covariance matrices,
131
% we use the regularization method suggested in "A Quasi-Bayesian approach to estimating
132
% parameters for mixtures of normal distributions", Hamilton 91.
133
% If the ML estimate is Sigma = M/N, the MAP estimate is (M+gamma*I) / (N+gamma),
134
% where gamma >=0 is a smoothing parameter (equivalent sample size of I prior)
135

    
136
gamma = CPD.cov_prior_weight;
137

    
138
if ~CPD.clamped_cov
139
  if CPD.cov_prior_entropic % eqn 12 of Brand AI/Stat 99
140
    Z = 1-temp;
141
    % When temp > 1, Z is negative, so we are dividing by a smaller
142
    % number, ie. increasing the variance.
143
  else
144
    Z = 0;
145
  end
146
  if CPD.tied_cov
147
    S = zeros(self_size, self_size);
148
    % Eqn 2 from table 2 in TR
149
    for i=1:dpsize
150
      S = S + (YY(:,:,i) - B2(:,:,i)*XY(:,:,i));
151
    end
152
    %denom = CPD.nsamples + gamma + Z;
153
    denom = CPD.nsamples +  Z;
154
    S = (S + gamma*eye(self_size)) / denom;
155
    if strcmp(CPD.cov_type, 'diag')
156
      S = diag(diag(S));
157
    end
158
    CPD.cov = repmat(S, [1 1 dpsize]);
159
  else 
160
    for i=1:dpsize      
161
      % Eqn 1 from table 2 in TR
162
      S = YY(:,:,i) - B2(:,:,i)*XY(:,:,i);
163
      %denom = w(i) + gamma + Z;
164
      denom = w(i) + Z;
165
      S = (S + gamma*eye(self_size)) / denom;
166
      CPD.cov(:,:,i) = S;
167
    end
168
    if strcmp(CPD.cov_type, 'diag')
169
      for i=1:dpsize      
170
	CPD.cov(:,:,i) = diag(diag(CPD.cov(:,:,i)));
171
      end
172
    end
173
  end
174
end
175

    
176

    
177
check_covars = 0;
178
min_covar = 1e-5;
179
if check_covars % prevent collapsing to a point
180
  for i=1:dpsize
181
    if min(svd(CPD.cov(:,:,i))) < min_covar
182
      disp(['resetting singular covariance for node ' num2str(CPD.self)]);
183
      CPD.cov(:,:,i) = CPD.init_cov(:,:,i);
184
    end
185
  end
186
end
187

    
188

    
189